用户名: 密码: 验证码:
沉香、檀香评价体系的优化及对沉香结香方法的评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正品沉香药材分为国产沉香和进口沉香,是中国、日本、印度及其他东南亚国家的传统名贵药材和天然香料。沉香具有行气止痛、温中止呕、纳气平喘的功效。白木香是国产沉香的唯一植物资源,现为国家二级保护植物。白木香树因受到虫蚁、雷劈、伤病等损害会分泌树脂并浸润沉积于木质部中,经多年结聚而形成沉香,获得高品质的沉香一般需要30年以上。商业上的巨大利润和非法贸易正导致世界各地的沉香资源越来越少,沉香属大部分植物被列入世界自然保护联盟(IUCN,2002)濒危植物红皮书中的“受威胁(threatened)”等级,属于世界限制贸易的野生濒危树种。因此加快沉香生产速度、提高沉香品质成为目前急需解决的问题。但迄今为止,沉香的生物合成途径和形成机理尚未阐明,人工造香技术生产的沉香与天然沉香的品质差异有待探讨,目前市售沉香混伪、制伪情况严重。
     檀香为檀香科檀香属的树种,是名贵香料、药材和高级工艺雕刻品原料,其药用部分是具有芳香性的心材和从心材中提取的檀香油。在檀香自然状态下生长十分缓慢,8年左右才开始形成心材,一般需20~25年左右才能完全形成高等级的檀香心材。檀香属下的多个品种都被称为檀香,包括印度檀香、大果澳洲檀香、大花澳洲檀香、滨海夏威夷檀香和斐济檀香等,但品质最佳的是印度檀香,《中国药典》2010年版(一部)也仅收载印度檀香一个品种。种源差异、成材时间过长等因素使得檀香药材品质差异极大,市场价值差异极大,混伪情况严重。
     目前沉香、檀香质量评价方法均缺乏有效、专属的评价指标。鉴于此,本文利用TLC、GC-MS、DNA分子测序等技术优化了沉香和檀香质量评价体系,应用数学处理模型和数理统计方法对沉香GC-MS数据进行挖掘,找出与沉香品质相关的特征性成分,并以优化后的沉香评价体系对不同人工造香技术的结香效果进行比较研究。对引种檀香的rDNAITS序列进行分析。旨在为识别伪制沉香和檀香、完善沉香和檀香的质量标准提供依据,并指导人工造香技术快速生产沉香药材。
     本文采用《中国药典》2010年版(一部)方法对收集的34个沉香样品进行检验,检验结果结合药材的外观和来源,可将34个沉香样品分为三类:天然沉香、人工沉香和伪品。天然沉香按照商品沉香的分类标准分为三个等级:两个一等品(油格占80%),三个二等品(油格占60%)和三个三等品(油格占40%以下)。人工沉香根据来源分为三个物理刺激样品、两个化学刺激样品和三个化学与生物联合刺激所得的样品。按照中国药典检验的结果表明只有质量较优的天然沉香完全符合规定,而人工沉香的颜醇浸出物微量升华试验与中国药典的规定有差异。
     取8个天然沉香和8个人工沉香样品,在《中国药典》2010年版(一部)TLC鉴别方法的基础上进行优化,分别考察了不同展开溶剂系统、不同检视方法,构建了沉香的TLC指纹图谱,经方法学考察该指纹图谱具有一定的重复性、稳定性,符合指纹图谱研究的相应要求。TLC指纹图谱可以直观、快速地区分天然沉香和人工沉香,但无法区别不同等级天然沉香和不同结香方法生产的人工沉香。
     为解决上述问题,本文构建了沉香的GC-MS特征图谱,并从天然沉香品质较优、人工沉香品质较差的差异入手,以GC-MS数据为基础进行由浅入深的数据分析。
     具体分析过程如下:
     1.取16个天然与人工沉香样品的GC-MS指纹图谱中的431个色谱峰数据进行聚类分析,发现该指纹图谱可以有效地区分天然沉香和人工沉香。
     2.检索结果表明沉香中主要存在5大类化合物:2-(2-苯乙基)色酮类(后面简称色酮类)、倍半萜类、脂肪族、芳香族和甾体类化合物。取色酮类、倍半萜类、脂肪族、芳香族和甾体类化合物的总相对百分含量加上醇溶性浸出物含量6组数据进行聚类分析,聚类结果显示采用分类数据可以将所有16个样品分成2个大类,第一类包含所有8个天然沉香以及30号人工沉香,且品质较好的天然一等品和二等品都先各自聚为一支再与其他天然沉香聚成一支;30号虽然为刀砍物理刺激所得样品,但因其结香时间较长,其品质接近天然沉香,与天然沉香聚为一支;第二类包含7个人工沉香,且按照不同结香方法进行聚类。说明不同类别化合物及其含量能更好地体现了不同品质沉香与不同结香方法所得沉香之间的差异。
     取天然沉香和人工沉香的不同类别化合物总含量的平均值进行两独立样品t检验,了解到色酮类化合物和倍半萜类化合物的含量在天然沉香与人工沉香中具有显著性差异;然后将色酮类化合物、倍半萜类化合物的含量和醇浸出物含量进行双变量相关分析,发现色酮类化合物含量、倍半萜化合物含量与醇浸出物含量分别呈负相关和正相关,且两者之间具有较强的负线性相关。由于倍半萜类化合物为沉香的主要活性成分,说明醇溶性浸出物含量与沉香的品质存在一定的相关性。色酮类化合物与倍半萜类化合物的含量比值在天然沉香中比较稳定,可以明显区分人工沉香与天然沉香,且可以有效区别不同结香方法所得的样品。因此,该比值可以作为沉香品质评价的一个主要指标。
     3.采用遗传算法-支持向量机联用(GA-SVM)数学模式优选影响天然沉香与人工沉香分类的主要成分。本文将天然沉香和人工沉香的GC-MS结果(各成分的峰面积)作为支持向量机的输入特征参数,采用遗传算法与支持向量机耦合,对特征参数进行优选,得到49个对天然沉香和人工沉香分类最具影响力的成分。对这49个成分进行独立样本双侧t检验,取具有统计学差异的22个化合物的百分含量与醇溶性浸出物含量进行相关分析。发现其中有13个化合物的含量与醇溶性浸出物含量之间呈现中等强度以上的相关性,且具有统计学意义。其中含量最高的成分是白木香醛和斯巴醇。取16个样品的白木香醛、斯巴醇含量和醇溶性浸出物含量进行聚类分析,结果以上述三个指标进行聚类可以将沉香一等品和二等品聚为一类;其他人工沉香以及一些品质较差的天然沉香聚为一类。结果表明,白木香醛与斯巴醇的含量确实能够有效地区分不同品质的沉香。
     结合上述实验和数据分析结果,确定优化后的沉香评价体系包括外观性状、醇溶性浸出物的微量升华试验、醇溶性浸出物含量、优化后的TLC指纹图谱和GC-MS指纹图谱,并且可以用醇溶性浸出物含量、色酮类与倍半萜类化合物的含量比值以及白木香醛和斯巴醇的含量等数据对沉香品质进行评价。
     取优化后的评价体系对不同结香技术所得的动态样品进行分析,并以醇溶性浸出物含量、色酮类与倍半萜类化合物的含量比值、白木香醛和斯巴醇相对含量为指标,对结香效果进行评价。发现甲酸与拟盘多毛孢属内生真菌(Pestalotiopsis sp.)混合诱导的白木香结香效果最好,而甲酸与多节孢内生真菌(Nodulisporium sp.)混合诱导的白木香结香效果最差。
     本文构建了檀香的TLC、GC-MS指纹图谱。取檀香样品的GC-MS指纹图谱数据,结合文献数据进行统计分析,发现总檀香醇%及α-/β-檀香醇%比值在不同檀香品种之间具有一定的变化规律,与品质具有一定相关性,可与挥发油含量一起用于檀香药材的质量评价。优化后的檀香评价体系包括外观性状、挥发油含量测定、优化后的TLC指纹图谱和GC-MS指纹图谱,并且可以用挥发油含量、总檀香醇含量和α-檀香醇和β-檀香醇的含量比值为评价指标对檀香的品质进行评价。
     采集不同培育代数、不同来源的印度、印尼檀香,采用PCR扩增-测序技术对其rDNA ITS序列进行测定,了解了我国广东地区所引种檀香的基因变异情况,并为后续的药材分子鉴定提供基础。DNA测序结果表明,檀香的rDNA ITS序列在种内稳定,不受引种代数、寄主等因素的影响。通过GenBank数据库中最近源序列相似率分析,构建系统发育树,结果表明檀香属植物种间存在较大差异,可应用DNA分子测序技术建立檀香分子鉴定方法,对市售檀香品种正本清源。
     本研究通过沉香和檀香TL、GC-MS指纹图谱、rDNA ITS序列系统发育树的构建和分析,综合运用药物分析学、化学计量学和分子系统学的方法,探讨了与沉香和檀香品质相关的特征成分和评价指标,优化了沉香和檀香的质量评价体系。并深入分析天然沉香和人工沉香品种差异,揭示了不同人工造香技术的优劣。为加快沉香生产速度、提高沉香和檀香的品质,开发和利用人工种植沉香和檀香资源奠定基础。
Agarwood. the resinous portions of Aquilaria plants, have been used as medicines and incenses in Asia. Aquilaria sinensis (Lour) Gilg.(Thymeleaceae), distributed in Fujian, Guangdong, Guangxi and Hainan provinces of China, is the major producer of agarwood in China, which had been recommended to be the grade Ⅱ protected plant in China (1999). In nature, agarwood was produced only when the plant was wounded or attacked by pathogens or insects. Black and fragrant resin produced under occasional stimulation is deposited in the stem or main branches of the trees. It is generally considered that the more the resin, the better the quality of agarwood. With increased consumption of agarwood in recent years, over-exploitation of agarwood in forest caused depletion of the natural resources. The International Union for the Conservation of Nature (IUCN) in2002classified all species of Aquilaria including A. sinensis as "vulnerable"(IUCN2002). So, improving the yield and quality of agarwood is very important now. However, the formation of agarwood has long been mysterious and associated with arcane forces, and the difference in quality between natural agarwood and artificial agarwood is not clear. There is a serious adulterants of agarwood in market.
     Sandalwood belongs to the Santalaceae family, highly valued for its fragrant heartwood, which contains sandal oil that is used in perfumes, medicine. In natural condition, Sandal grows very slowly; about8years begin to form heartwood, which normally takes20to25years to fully form high grade sandalwood. The species in Santalaceae family such as S. album, S. yasi, S. spicatum, S. paniculatum, S. austrocaledonicum etc can form fragrant heartwood. But, there are great quality difference among the species. This is true for S.album L. from India, Indonesia and East Timor which is the bench mark of commercial sandalwood species, owing to its high quality. S.album L is the only specie in the Pharmacopoeia of the People's Republic of China (Chinese Pharmacopoeia,2010). The variation of quality among species and the long time to form fragrant heartwood caused the quality of sandalwood vary greatly; market value difference is great, and leading to a severe mixed false situation.
     In order to meet the increasing demand, Aquilaria sinensis trees and sandalwood trees were widely cultivated in the south of china. However, the lack of reasonable and feasible evaluation system of quality hinders the development and utilization of agarwood and sandalwood.
     So, in this study, we intended to find out the quality-related evaluation index of agarwood and sandalwood by using the statistical models, and to optimize the evaluation system of agarwood and sandalwood by using thin layer chromatography (TLC) and gas chromatography-mass spectrometry (GC-MS) techniques. And the rDNA ITS sequences of S. album L. introduced from India and Indonesia were amplified by PCR technology and were sequenced. The study can distinguish the fake from commercial agarwood and sandalwood, and can improve the standard of quality control. It is useful in rapid production of agarwood by artificial technology.
     34Samples collected from market were detected by the methods in Chinese Pharmacopoeia. Combined with the appearance and sources, the34samples can be divided into three groups by the test results:natural agarwood, artificial agarwood and fake agarwood. Follow the commercial classification criteria, the natural agarwoods were categorized into three grades. The1st grade has the best quality, the2nd grade has medium quality and the3rd grade has the poorest quality. The artificial agarwoods were categorized into three groups by the different artificial inducing technology. Three samples were artificial induced by physical methods, two samples were artificial induced by chemical methods, and three samples were artificial induced by chemical and biological joint stimulation. All the experimental results of the natural agarwoods met Chinese pharmacopoeia (edition2010) regulations, but the color reaction results of the artificial agarwoods were different from the regulations of Chinese pharmacopoeia (edition2010).
     An optimized TLC chromatographic fingerprint was established on the basis of TLC identification method of Chinese Pharmacopoeia.8Natural agarwoods and8artificial agarwoods were performed, and the results indicated that the TLC chromatographic fingerprint could distinguish the natural agarwoods and artificial agarwoods easily, but could not distinguish different grade in natural agarwoods and the artificial agarwoods from different artificial inducing technology.
     In order to distinguish the agarwoods with different quality and from different artificial inducing technology. A GC-MS chromatographic fingerprint was established. The data of8natural agarwood samples and8artificial agarwood samples in GC-MS chromatograph were studied by Genetic algorithm-Support vector machine (GA-SVM)model, two independent samples t test, correlation analysis and hierarchical clustering analysis. Specific analysis of the process are as follows:
     1. The relative contents of431peaks were cluster by hierarchical clustering analysis method. The clustering results indicated that the GC-MS chromatographic fingerprint could distinguish the natural agarwoods and artificial agarwoods.
     2. The components identified in the GC-MS chromatographic fingerprint were divided into five classes:2-(2-phenylethyl) chromanone derivatives, sesquiterpenes, aromatic compounds,aliphatic compounds and steroids. The major constituents were2-(2-phenylethyl) chromanone derivatives in all samples. The total relative contents of five compounds combined with the content of ethanol extraction were cluster by hierarchical clustering analysis method. The clustering results indicated that the different grade in natural agarwoods and the artificial agarwoods from different artificial inducing technology could be distinguished.
     The average total relative contents of five compounds were analyzed using two independent samples t test. It was found that the total relative contents of2-(2-phenylethyl) chromanone derivatives and sesquiterpenes had significant difference between natural agarwoods and artificial agarwoods. The correlation analysis among the total relative contents of2-(2-phenylethyl) chromanone derivatives and sesquiterpenes and the content of ethanol extraction revealed that there was a positive correlation between the total relative contents of sesquiterpenes and the content of ethanol extraction and a negative correlation between the total relative contents of2-(2-phenylethyl) chromanone derivatives and the content of ethanol extraction. There was a negative linear correlation between the total relative contents of2-(2-phenylethyl) chromanone derivatives and sesquiterpenes. Owing to sesquiterpenes was the active components of agarwood, the quality of agarwood should be related with the content of ethanol extraction and the relative content of2-(2-phenylethyl) chromone derivatives and sesquiterpenes.
     3. The Genetic algorithm-Support vector machine (GA-SVM)model was used to mine the data of8natural agarwood samples and8artificial agarwood samples in order to extract the the most influential ingredient which can evaluate the quality of agarwood.49ingredients extracted were analyzed using two independent samples t test. Only22ingredients had significant difference between natural agarwoods and artificial agarwoods. After correlation analysis among the relative contents of22ingredients and the content of ethanol extraction, it was found only13ingredients had significantly correlation with the content of ethanol extraction. Among the13ingredients, the relative contents of baimuxinal and spathulenol were higher than the others. The finding supposed that the relative contents of baimuxinal and spathulenol should be closely related with the quality of agarwood. In order to verify the suppose, the relative contents of baimuxinal and spathulenol combined with the content of ethanol extraction were cluster by hierarchical clustering analysis method. The clustering results indicated that the different grade in natural agarwoods and the artificial agarwoods from different artificial inducing technology could be distinguished almost.
     So, the optimized evaluation system of agarwood includes description, color reaction, ethanol extraction content detection and the TLC, GC-MS analysis. Four quality-related evaluation index, including the content of ethanol extraction, the relative content of2-(2-phenylethyl) chromone derivatives and sesquiterpenes, the contents of baimuxinal and spathulenol, can be used in the quality evaluation of agarwood.
     Then the evaluation system of agarwood with the four evaluation indexes was used in evaluating the quality of agarwood from different artificial inducing technology. A pinholes-infusion method to induce the generation of agarwood by chemically stimulated and/or inoculate combined method was established.1-2years after the artificial inoculation, resinous wood were collected and the inoculating effects were detected by the four evaluation indexes mentioned above. The results revealed that the artificial agarwood produced by chemically stimulated with formic acid combined with infected by Pestalotiopsis sp. method had higher quality than other resinous wood produced by other methods. In contrast, the artificial agarwood produced by chemically stimulated with formic acid combined with infected by Nodulisporium sp.method had poorest quality in all resinous wood.
     The TLC and GC-MS chromatographic fingerprint were also developed for evaluating and controlling the quality of sandalwood. Combined with literature data, some regulation was found by statistical analysis, such as there was some regularly variation of total content of santalol and α-/β-santalol percent ratio among different santalum species. So the total content of santalol and α-/β-santalol percent ratio combined with the heartwood oil content can be used to evaluate the quality of sandalwood.
     The optimized evaluation system of sandalwood includes description, heartwood oil content detection and the TLC, GC-MS analysis. Three quality-related evaluation index, including the content of heartwood oil, the relative content of2-(2-phenylethyl) chromone derivatives and sesquiterpenes, the total content of santalol and α-/β-santalol percent ratio can be used in the quality evaluation of sandalwood.
     The optimized evaluation system of sandalwood is not good in distinguishing the different species in Santalaceae family. So to develop a molecular identification of Santalum may be useful.
     Different fresh leaves samples of Santalum album L. introduced from India and Indonesia were collected and their rDNA ITS sequences were amplified by PCR technology and were sequenced by the Beijing Genomics institute. All Santalum reference sequences in GenBank were collected for further phylogenetic analysis. It was foud that the rDNA ITS sequence data of Santalum is stable in same species, but exist difference inter-species. The result should provide the basis for molecular identification of Santalum.
     The optimized evaluation system of agarwood and sandalwood, combined with evaluation indexes which were found by data mining technology are reasonable and feasible in the quality control of agarwood and sandalwood. And the evaluation systems can promote the efficient artificial techniques to increase the production and improve the quality of agarwood and sandalwood.
引文
[1]国家药典委员会.中华人民共和国药典[S].北京:中国医药科技出版社,2010,1:357
    [2]Burkill IH. A Dictionary of the economic products of the Malay Peninsula. Vol.1[M]. London, 1935.
    [3]Bhattacharya B. On the formation and development of agar in the wood of Aquilaria agallocha[J]. Sci Cul,1952,18 (5):240-242.
    [4]Gibson IAS.. The role of fungi in the origin of oleoresin deposits (Agaru) in the wood of Aquilaria agallocha (Roxb.) [J]. Bano Biggyn Patrika,1977,6 (1):16-26.
    [5]Tamuli P, Boruah P, Nath SC, et al. Fungi from diseased agarwood tree (.Aquilaria agallocha Roxb.):two new records[J]. Adv Forest Res,2000,22:182-187.
    [6]Tabata Y, Widjaja E, Mulyaningsih T, et al. Structural survey and artificial induction of aloeswood [J]. Wood Res,2003 (90):11-12.
    [7]Subehan, Ueda Jun-Ya, Fujino H, et al. A field survey of agarwood in Indonesia[J]. J Tradit Med, 2005,22 (4):244-251.
    [8]戚树源,林立东,叶勤法.沉香中苄基丙酮及其在黄绿墨耳真菌中的生物转化[J].生物工程学报,1998,14(4):114-117.
    [9]Rahman MA, Basak AC. Agar production in agar trees by artificial inoculation and wounding[J]. Bano Biggyan Patrika,1980,9 (1/2):87-93.
    [10]Nobuchi T, Somkid S. Preliminary observation of Aquliaria crassna wood associated with the formation of aloeswood bult[J]. Kyoto Univ Forests,1991,63:226-235.
    [11]Michiho I, Ken-Ichiro O, Toru Y, et al. Induction of sesquiterpenoid production by methyl jasmonate in Aquilaria sinensis cell suspension culture[J]. J Essent Oil Res,2005,17 (2):175-180.
    [12]张争,杨云,魏建和,等.白木香结香机制研究进展及其防御反应诱导结香假说[J].中草药,2010(1):156-159.
    [13]刘玉峰,杨秀伟,刘铜华.沉香叶挥发油化学成分的GC-MS分析[J].中国现代中药,2007(8):7-9.
    [14]丽艳,罗丽萍,杨柏云,等.白木香种子油脂肪酸组成分析[J].安徽农业科学,2008(6)2207-2208.
    [15]戚树源,陆碧瑶,朱亮锋,等.白木香中白木香醛形成的研究(简报)[J].植物生理学通讯,1992(5):336-339.
    [16]杨峻山,陈玉武.国产沉香化学成分的研究Ⅱ.白木香醇和去氢白木香醇的分离和结构[J].药学学报,1986(7):516-520.
    [17]杨峻山,陈玉武.国产沉香化学成分的研究Ⅰ.白木香酸和白木香醛的分离和结构测定[J].药学学报,1983(3):191-198.
    [18]徐金富,朱亮峰,陆碧瑶,等.中国沉香精油化学成分研究[J]. J Integr Plant Biol,1988,30 (6):635-638.
    [19]梅文莉,曾艳波,刘俊,等.五批国产沉香挥发性成分的GC-MS分析[J].中药材,2007(5):551-555.
    [20]Mei W, Zeng Y, Wu J, et al. Chemical composition and anti-MRS A activity of the essential oil from Chinese eaglewood[J]. J Chin Pharmaceu Sci,2008 (17):225-229.
    [21]杨友宝,宁德山.中药沉香挥发油成分分析[J].湖南中医杂志,2004(5):48-49.
    [22]田佳佳,郭晓玲,赖林城,等.国产沉香醇浸膏挥发油成分分析[J].时珍国医国药,2009(10):2505-2507.
    [23]杨峻山,王玉兰,苏亚伦.国产沉香化学成分研究Ⅳ.2-(2-苯乙基)色酮类化合物的分离与鉴定[J].药学学报,1989(9):678-683.
    [24]杨峻山,王玉兰,苏亚伦.国产沉香化学成分的研究V.三个2-(2-苯乙基)色酮衍生物的分离和鉴定[J].药学学报,1990(3):186-190.
    [25]Konishi T, Konoshima T, Shimada Y, et al. Six new 2-(2-phenylethyl) chromones from Agarwood[J]. Chem Pharm Bull (Tokyo),2002,50 (3):419-422.
    [26]Yagura T, Ito M, Kiuchi F, et al. Four new 2-(2-phenylethyl)chromone derivatives from withered wood of Aquilaria sinensis[J]. Chem Pharm Bull (Tokyo),2003,51 (5):560-564.
    [27]Dai HF, Liu J, Zeng YB, et al. A new 2-(2-phenylethyl) chromone from Chinese eaglewood[J]. Molecules,2009,14 (12):5165-5168.
    [28]刘军民,高幼衡,徐鸿华,等.沉香化学成分研究(Ⅱ)[J].中草药,2007(8):1138-1140.
    [29]刘军民,高幼衡,徐鸿华,等.沉香的化学成分研究(Ⅰ)[J].中草药,2006(3):325-327.
    [30]Yagura T, Shibayama N, Ito M, et al. Three novel diepoxy tetrahydrochromones from agarwood artificially produced by intentional wounding[J]. Tetrahedron Lett,2005,46 (25):4395-4398.
    [31]Iwagoe K, Kakae T, Konishi T, et al. Studies on the Agalwood (Jinko). Ⅷ:Structures of bi-phenylethylchromone derivatives [J]. Chem Pharm Bull,1989,37 (1):124-128. [32] Konishi T, Iwagoe K, Sugimoto A, et al. Studies on Agalwood (Jinko). X:Structures of 2-(2-Phenylethyl) chromone derivatives[J]. Chem. Pharm. Bull.,1991,39 (1):207-209.
    [33]陈亚,江滨,曾元儿.沉香色酮类化学成分研究[J].中国现代中药,2011(1):21-22.
    [34]高幼衡,刘军民,徐鸿华.国产沉香中新的2-(2-苯乙基)色原酮化合物结构研究[C].中国化学会第四届有机化学学术会议.中国云南昆明;2005.125.
    [35]Liu J, Jiao W, You-Xing Z, et al. A new cytotoxic 2-(2-phenylethyl) chromone from Chinese eaglewood[J]. Chin Chem Lett,2008,19 (8):934-936.
    [36]杨峻山,王玉兰,苏亚伦,等.国产沉香化学成分的研究Ⅲ.异白木香醇的结构测定和低沸点成分的分离与鉴定[J].药学学报,1989,24(4):264-268.
    [37]林立东,戚树源.国产沉香中的三萜成分[J].中草药,2000(2):11-12.
    [38]戚树源,陆碧瑶.白木香愈伤组织的化学成分[J].中草药,1993(2):59-60,74.
    [39]刘俊,梅文莉,崔海滨,等.白木香种子挥发油的化学成分及抗菌活性研究[J].中药材,2008(3):340-342.
    [40]Dash M, Kumar PJ, Panda P. Phytochemical and antimicrobial screening of extracts of Aquilaria agallocha Roxb.[J]. Afr J Biotechnol,2008,7:3531-3534.
    [41]Chen H, Yang Y, Xue J, et al. Comparison of compositions and antimicrobial activities of essential oils from chemically stimulated agarwood, wild agarwood and healthy Aquilaria sinensis (Lour.) gilg trees[J]. Molecules,2011,16 (6):4884-4896.
    [42]Kupeli E, Tosun A, Yesilada E. Assessment of anti-inflammatory and antinociceptive activities of Daphne pontica L. (Thymelaeaceae) [J]. J Ethnopharmacol,2007,113 (2):332-337.
    [43]Miniyar PB, Chitre TS, Karve SS, et al. Anti-oxidant activity of ethyl acetate extract of Aquilaria agallocha on nitrite-induced methemoglobin formation[J]. Int J Green Parm,2008,2(1):43-45.
    [44]Jin-Long C, Shun-Xing G, Pei-Gen X. Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis [J]. J Zhejiang Univ Sci B,2011,12 (5):385-392.
    [45]徐维娜,高晓霞,郭晓玲,等.白木香果皮挥发性成分及抗肿瘤活性的研究[J].中药材,2010(11):1736-1740.
    [46]周永标.一种进口沉香的药理作用考察[J].中药材,1989(12):42-44.
    [47]Okugawa H, Ueda R, Matsumoto K, et al. Effect of jinkoh-eremol and agarospirol from agarwood on the Central Nervous System in mice[J]. Planta Med,1996,62 (1):2-6.
    [48]Okugawa H, Ueda R, Matsumoto K, et al. Effect of agarwood extracts on the central nervous system in mice [J]. Planta Med,1993,59 (1):32-36.
    [49]Takemoto H, Ito M, Shiraki T, et al. Sedative effects of vapor inhalation of agarwood oil and spikenard extract and identification of their active components[J]. J Nat Med,2008,62 (1):41-46.
    [50]J-Y Ueda, Imamura L, Tezuka Y, et al. New sesquiterpene from Vietnamese agarwood and its induction effect on brain-derived neurotrophic factor mRNA expression in vitro[J]. Bioorg Med Chem, 2006,14 (10):3571-3574.
    [51]国家药典委员会.中华人民共和国药典[S].北京:中国医药科技出版社,2010,一部:172.
    [52]陈代贤,郭月秋,品浩然,等.商品沉香及类似品真伪质量的考查与分析[J].中药材,2007(11):1380-1383.
    [53]高晓霞,田佳佳,章卫民,等.一种用松香制伪的沉香药材鉴别研究[J].广东药学院学报,2009(6):573-578.
    [54]关斌.沉香以及混淆品的简易鉴别研究[J].中草药,2000(7):80-81.
    [55]李凤琴,王广林.一阶导数光谱法鉴别沉香及非习用进口沉香[J].中药材,1994(1):18.
    [56]钟建理,饶伟文,谢黔峰,等.沉香的近红外光谱法鉴别初探[J].西北药学杂志,2010(4)273-275.
    [57]张妤琳,曹玲,谭力,等.液质联用技术用于沉香中非法掺入含松香酸类物质的检测[J].中成药,2011(5):844-847.
    [58]王凌,季申.气相色谱法测定进口沉香中苄基丙酮的含量[J].中草药,2003(3):37-39.
    [59]戚树源,林立东,胡厚才.白木香中色酮类化合物的形成[J].中草药,2000(9):21-22.
    [60]何梦玲,戚树源,胡兰娟.白木香离体侧根中色酮类化合物的诱导形成[J].中草药,2010(2):281-284.
    [61]陈亚,江滨,曾元儿.高效液相色谱法测定沉香药材中两种活性成分的含量[J].时珍国医国药,2007(7):1697-1698.
    [62]Hamilton L, Conrad, Eugene C. Sandalwood in the Pacific:A State-of-Knowledge Synthesis and Summary from the April 1990 Symposium[C]. USDA Forest Service Gen. Honolulu, Hawaii. USA.1990.
    [63]Brand JE, Fox JED, Pronk G, et al. Comparison of oil concentration and oil quality from Santalum spicatum and S. album plantations,8-25 years old, with those from mature S. spicatum natural stands[J]. Australian Forestry,2007,70 (4):235-241
    [64]Dr. Tony Page. Development of High Quality Sandalwood Oil[J]. James Cook University.
    [65]Page T, Tate H, Tungon J, et al. Evaluation of heartwood and oil characters in nine populations of Santalum austrocaledonicum from Vanuatu Regional Workshop on Sandalwood Research[J]. Sandalwood Research Newsletter,2006,21:4-6.
    [66]Harbaugh DT. A taxonomic revision of Australian northern sandalwood (Santalum lanccolatum, Santalaceae) [J]. Aust Syst Bot,2007,20 (5):409-416.
    [67]Azeez SA, Nelson R, Prasadbabu A, et al. Genetic diversity of Santalum album using random amplified polymorphic DNAs[J]. African Journal of Biotechnology,2010,8 (13):1.
    [68]Xin-Hua Z, Teixeira Da Silva JA, Ma GH. Karyotype analysis of Santalum album L.[J]. Caryologia,2010,63 (2):142.
    [69]Byrne M, Macdonald B, Brand J. Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum) [J]. Heredity (Edinb),2003,91 (4): 389-395.
    [70]Srikanta Dani KG, Ravikumar P, Pravin Kumar R. Genetic Diversity Estimates in Three Geographically Isolated Populations of Santalum album in India[J]. Sandalwood Research Newsletter, 2009,24:1-6.
    [71]Brand JE. Genotypic variation in Santalum album[J]. Sandalwood Research Newsletter,1994,2: 2-4.
    [72]Byrne M, MacDonald B, Broadhurst L, et al. Regional genetic differentiation in Western Australian sandalwood (Santalum spicatum) as revealed by nuclear RFLP analysis[J]. Theor Appl Genet,2003,107 (7):1208-1214.
    [73]Doran J, Thomson L, Brophy J, et al. Variation in heartwood oil composition of young sandalwood trees in the South Pacific (Santalum yasi, S. album and F1 hybrids in Fiji, andS. yasi in Tonga and Niue) [J]. Sandalwood Research Newsletter,2005,20:3-7.
    [74]Brand J E, Fox JED. Review of research into sandalwood (Santalum spicatum) tree farm systems in south-western Australia[C]. Forests in a Chang-ing Landscape:16th Common-wealth Forestry Conferencejointly with the 19th Biennial Con-ference of the Institute of Foresters of Australia, Fremantle, Western Australia. Conventions, Promaco, Perth,2001:527-535.
    [75]Brand JE, Jones PJ. The influence of landforms on sandalwood (Santalum spicatum (R. Br) A. DC.) size structure & density in the North East Goldfields, Western Australia [J]. Rangeland J, 2002,24 (2):219-226.
    [76]蔡岳文,邱蔚芬,曾庆钱,等.檀香规范化栽培技术[J].广东林业科技,2008(1):98-100.
    [77]许明英,李跃林,任海,等.檀香在华南植物园的引种栽培[J].经济林研究,2006(3):39-41.
    [78]Brand JE. Ecology of sandalwood (Santalum spicatum) near Paynes Find & Menzies. Western Australia:size structure & dry-sided stems [J]. Rangeland J,1999,21 (2):220-228.
    [79]Brand JE, Crombie DS, Mitchell MD. Establishment and growth of sandalwood (Santalum spicatum) in South-Western Australia:the influence of host species [J]. Australian Forestry,2000, 63 (1):60-65.
    [80]Radomiljac, Mccomb JA, Pate JS, et al. Xylem Transfer of Organic Solutes in Santalum album L (Indian Sandalwood) [J]. Annals Botany,1998,82 (5):675-682.
    [81]马国华,何跃敏,张静峰,等.檀香幼苗半寄生性初步研究[J].热带亚热带植物学报,2005(3):233-238.
    [82]文海涛,赵红英,林励,等.檀香萜烯合成酶基因的克隆与序列分析[J].广东药学院学报,2010(2):131-133.
    [83]Jones CG, Moniodis J, Zulak KG, et al. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases[J]. J Biol Chem,2011,286 (20):17445-17454.
    [84]Suma TB, Balasundaran M. Isozyme variation in five provenances of Santalum album in India[J]. Aust J Bot,2003,51 (3):243-249.
    [85]Jones CG, Ghisalberti EL, Plummer JA, et al. Quantitative co-occurrence of sesquiterpenes:a tool for elucidating their biosynthesis in Indian sandalwood, Santalum album [J]. Phytochemistry,2006,67 (22):2463-2468.
    [86]李应兰,陈福莲.人工促成檀香结香的研究[J].热带亚热带植物学报,1994,2(3):39-45.
    [87]林励,林奇艺,蔡岳文,等.外界刺激檀香“结香”试验研究[J].中药材,2000,23(7):376-377.
    [88]林奇艺,林励.激素檀香生长的影响[J].中药材,2000,23(8):437-438.
    [89]林励,魏敏,肖省娥,等.外界刺激对檀香挥发油含量及质量的影响[J].中药材,2000,23(3): 152-154.
    [90]Sindhu RK, Kumar UA, Arora S. Santalum album Linn:A review on morphology, phytochemistry and pharmacological aspects[J]. Int. J. Pharm.Tech. Res.,2010,2:914-919.
    [91]Ifra Ghori, Ahmad SS. Antibacterial activities of honey, sandal oil and black pepper[J]. PakJBot, 2009,41 (1):461-466.
    [92]Ochi T, Shibata H, Higuti T, et al. Anti-Helicobacter pylori compounds from Santalum album[J]. J Nat. Prod.,2005,68 (6):819-824.
    [93]Okiei W, Ogunlesi M, Osibote EA. Comparative study on the antimicrobial activities of different Polaritirs from Leaves of Nauclea latifolia[J]. J Med Plants Res,2011,5 (3):321-329.
    [94]Kim TH, ItoH, Hatano T, et al. New antitumor sesquiterpenoids from Santalum album of Indian origin[J]. Tetrahedron,2006,62 (29):6981-6989.
    [95]Chandradhar Dwivedi, Xiangming Guan, Wendy L. Harmsen, et al. Chemopreventive Effects of a-Santalol on Skin Tumor Development in CD-1 and SENCAR Mice[J]. Cancer Epidemiol Biomarkers Prev,2003,12 (2):151-156.
    [96]刘良,刘中秋.引种栽培进口“南药”药材质量的药理学评价一一进口与引种檀香、肉桂、白豆蔻、马钱子、大风子药理作用比较研究[J].中药药理与临床,1996,12(6):24-28.
    [97]郭建生,曾贵荣,王小娟,等.檀香挥发油对豚鼠离体回肠和小鼠小肠推动功能的影响[J].西安交通大学学报(医学版),2010,31(3):365-369.
    [98]Kim TH, Ito H, Hayashi K, et al. Aromatic constituents from the heartwood of Santalum album L[J]. Chem Pharm Bull (Tokyo),2005,53 (6):641-644.
    [99]颜仁梁,刘志刚,林励.檀香化学成分研究[J].中药材,2006,29(4):337-338.
    [100]张全龙,王婉华.一种伪品檀重的鉴别[J].基层中药杂志,1993,7(2):12-14.
    [101]蒋万浪,姚丽佳,沈克拉.檀香及其混用品的鉴别研究[J].中国药业,2005(9):81.
    [102]钟名诚,李琦.檀香的鉴别方法研究[J].中国药业,2008(8):56.
    [103]黄富远.檀香的边材不作檀香药用[J].辽宁中医药大学学报,2007(2):123.
    [104]彭强,赵桦,张林,等.檀香及其掺伪品檀香边材的鉴别比较[J].中草药,2002(11):86-87.
    [105]宏惠田,杨汝峰,李桂兰.檀香掺伪的鉴定[J].天津药学,1998(3):45-46.
    [106]舒毕琼.檀香及两种伪品檀香的鉴别[J].湖南中医药导报,1997(4):46-47.
    [107]何报作,邓贤婷,何开家,等.檀香伪品一侧柏木的生药鉴定[J].中药材,1993(12):12-14.
    [108]张永亮,宋吉莲,吕永红,等.沉香、降香、檀香的真伪鉴别[J].时珍国医国药,2003(10):619.
    [109]侯世海.檀香,紫檀香,降乍及苏木的紫外光谱和薄层色谱鉴别[J].青海医药杂志,1999,29(10):54-55.
    [110]李书渊.药用紫檀香考辨[J].中药材,1998(5):259-261.
    [111]董震初.檀香的鉴别经验介绍[J].中药通报,1958(8):271.
    [112]檀香木油国际标准(IS03518:2002)[S].
    [113]Liu HX, Zhang RS, Yao XJ, et al. Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs[J]. J Chem Inf Comput Sci,2004,44 (1):161-167.
    [114]Jalali-Heravi M, Kyani A. Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method:activity of carbonic anhydrase Ⅱ inhibitors[J]. Eur J Med Chem, 2007,42 (5):649-659.
    [115]王磊,章卫民,潘清灵,等.白木香内生真菌的分离及分子鉴定[J].菌物研究,2009(1):37-42.
    [116]Strobel G, Daisy B, Castillo U, et al. Natural products from endophytic microorganisms[J]. J Nat Prod,2004,67 (2):257-268.
    [117]李冬利,吴正超,陈玉婵,等.白木香内生真菌多竹孢Nodulisporium spA4的化学成分研究[J].中国中药杂志,2011(23):3276-3280.
    [118]李春丽,毛海舫,潘仙华.檀香化合物的合成研究进展[J].香料香精化妆品,2006(1):31-35.
    [119]Bradfield AE, Francis EM, Penfold AR, et al. Lanceol, a sesquiterpene-alcohol from the oil of Santalum lanceolatum PartⅠ. [J]. J Chem Soc,1936:1619-1625.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700