用户名: 密码: 验证码:
功能化二氧化硅纳米颗粒介电泳行为及其对细胞介电性质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精确可控和可逆的微米或纳米结构自组装在微纳生化传感领域有着巨大的应用前景,是近年来纳米研究领域的一个热点。介电泳技术是一种很有潜力的纳米操控技术,可以实现纳米颗粒在微电极上的排布及自组装等操作。但是通过介电泳对组装的微纳结构进行精确控制目前仍存在比较大的困难。本论文以功能化二氧化硅纳米颗粒的介电泳行为及其对细胞介电性质的影响为研究目标,通过在二氧化硅纳米颗粒表面修饰磷酸功能基团实现了其在微电极上自组装结构的精确可控和可逆。并且发现功能化二氧化硅纳米颗粒被细胞吞噬后会对其介电性质产生影响。本论文的主要工作包括以下三个方面:
     1、不同功能基团修饰对二氧化硅纳米颗粒介电泳自组装行为的影响研究
     通过对二氧化硅纳米颗粒、羧基化二氧化硅纳米颗粒、磷酸化二氧化硅纳米颗粒、PEG化二氧化硅纳米颗粒和氨基化二氧化硅纳米颗粒在交流电场下的介电泳自组装行为进行考察,发现带较强负电荷的功能化基团修饰可以有效地增强二氧化硅纳米颗粒在微电极上的自组装行为。其原因是带较强负电荷的功能化基团能增强二氧化硅纳米颗粒表面的阳离子扩散层,从而提高其表面电导率。这为有针对性地改善纳米颗粒在水溶液中的介电性质,使其更好进行介电泳白组装提供了有力的实验依据。
     2、基于介电泳技术的实时可控、可逆二氧化硅荧光亚微米线研究
     在第一章的基础上,以磷酸化修饰的二氧化硅荧光纳米颗粒为研究对象,通过改变频率、电极间距等因素对其在交流电场下的介电泳行为进行了系统的考察。发现该纳米颗粒可以在间距为20pm的电极间组装成荧光亚微米线。通过控制电场频率,可以很好地控制组装的亚微米线的数目,并且这种亚微米线结构的组装是可逆的。此外,通过将磷酸化修饰的二氧化硅纳米颗粒分散在不同的介质中,发现其介电泳行为对分散介质中的氢离子敏感。该部分研究内容展示了功能化二氧化硅纳米颗粒的介电泳行为的潜在应用前景。
     3、不同功能化基团修饰的二氧化硅纳米颗粒对细胞介电性质的影响研究
     本章中,以间距不同的叉指式电极阵列作为对细胞介电性质变化的辨别工具,考察了不同功能化二氧化硅纳米颗粒与HeLa细胞共孵育后对细胞介电性质的影响。发现功能化二氧化硅纳米颗粒被HeLa细胞吞噬后可以在细胞内对细胞的介电泳行为和介电性质产生影响。该研究首次探讨了纳米颗粒对细胞介电性质的影响,为研究细胞的微小介电性质的变化提供了方法。
Precise fabrication of controllable and reversible nanostructures or microstructures-based functional devices and systems are of great interest for expanding the potential nanotechnology applications in the areas such as biosensing. Dielectrophoresis (DEP), the movement of polarizable particle induced by a nonhomogeneous AC electric field, has been proven as a robust method to rapidly manipulate and assemble biological and synthetic nanomaterials into nanodevices and mocrosystems. However, due to inadequate understanding of DEP mechanisms, it remains very limited to precisely control the final structure of assembled nanoparticles under DEP. This thesis is aimed at DEP assembly of functionalized silica nanoparticles and its effects on dielectric properties of cells. Precisely controllable and reversible DEP assembled submicrostruct have been achieved by modification of anionic groups on silica nanoparticles, and the effects of intracellular functionalized silica nanoparticles on dielectric properties of cells have been proven. This thesis is composed of the following three parts:
     1. Research on effects of different surface functionalized groups on DEP assembly behavior of silica nanoparticles.
     The DEP assembly behavior of five types of silica nanoparticles (SiNPs), including OH-SiNPs, COOH-SiNPs, NH2-SiNPs, CH3HPO2-SiNPs and PEG-SiNPs have been investigated respectively. It was found that anionic groups could obviously enhance the DEP assembly behavior of SiNPs on the microelectrodes. The anionic group could bring an increase on the dielectric conductivity of the SiNPs by enhancing the surface conductivity. These results well indicated that the DEP assembly behavior of nanomaterials in aqueous suspensions could been changed by functionalized group modification.
     2. Research on controllable and reversible submicrowires assembled from CH3HPO2-SiNPs.
     On basis of the work in the first part, the DEP assembly behavior of CH3HPO2-SiNPs was further investigated. By using Rubpy dye doped in the core of the CH3HPO2-SiNPs, the assembly process was visualized real time by inverse fluorescence microscopy. Precise control over the frequency of the applied AC field showed that DEP forces can assemble CH3HPO2-SiNPs from aqueous suspensions into submicrowires and the number of the assembled submicrowires between microelectrode gaps could be well controlled with reversibility. Furthermore, the DEP assembly process of CH3HPO2-SiNPs is sensitive to pH of the dispersed medium. These findings provide a way to solve the difficulty in controlling the DEP assembly process of nanoparticles and offer application opportunities for DEP assembly of functionalized SiNPs.
     3. Research on the effects of different functionalized silica nanoparticles on dielectric properties of cells
     Electrode arrays with different gap distances were designed to assemble cells with different dielectric properties into different region of the electrode arrays. The assembly behavior of Hela cells on the electrode arrays were investigated after incubated with different functionalized silica nanoparticles. It was found the intracellular functionalized silica nanoparticles could obviously change the assembled region of HeLa cells on the electrode arrays, which means the dielectric properties of the cells had been changed. This part of work provides a new method for investigating small dielectric property changes of cells.
引文
[1]Kevin D H, Simon O L, Jacob P W, et al. Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions. Science, 2001,294:1082-1086
    [2]Pareshkumar M P, Aditya B, Gerard H. Markx. Enzyme and Microbial Technology 2008,43 (5):523-530
    [3]Surendra K R, Darren W B, Conrad D J, et al. A microfluidic system combining acoustic and dielectrophoretic particle preconcentration and focusing. Sensors and Actuators B 2008,130 (2):645-652
    [4]Cao J, Cheng P, Hong F J. A numerical analysis of forces imposed on particles in conventional dielectrophoresis in microchannels with interdigitated electrodes. Journal of Electrostatics 2008,66 (2):620-626
    [5]Lo C H, Chun H Y, Chi L C, et al. A planar interdigitated ring electrode array via dielectrophoresis for uniform patterning of cells. Biosensors and Bioelectronics,2008,24 (1):869-875
    [6]Huang Y, Sunghae J, Melanie D, et al. Dielectrophoretic Cell Separation and Gene Expression Profiling on Microelectronic Chip Arrays. Analytical Chemistry,2002,74 (4):3362-3371
    [7]Blanca H, Lapizco E, Blake A S, et al. Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry,2004,76 (3):1571-1579
    [8]Lao A I K, Lee Y K, Hsing I M. Mechanistic Investigation of Nanoparticle Motion in Pulsed Voltage Miniaturized Electrical Field Flow Fractionation Device by in Situ Fluorescence Imaging. Analytical Chemistry,2004,76 (7): 2719-2724
    [9]Lee H Y, Joel V. Optimizing Micromixer Design for Enhancing Dielectrophoretic Microconcentrator Performance. Analytical Chemistry,2007, 79(2):1833-1839
    [10]Jan R, Thanh T D, Ralf E. Dielectrophoretic Manipulation of DNA:Separation and Polarizability. Analytical Chemistry,2007,79 (5):3925 3932
    [11]Michele D. Pysher and Mark A. Hayes. Electrophoretic and Dielectrophoretic Field Gradient Technique for Separating Bioparticles. Analytical Chemistry, 2007,79 (7):4552-4557
    [12]Chin H K, Yee C L, Isabel R. Dynamic Cell Fractionation and Transportation Using Moving Dielectrophoresis. Analytical Chemistry,2007,79 (9): 6975-6987
    [13]Joe A. Research Profile:Bringing dielectrophoresis to the masses of cells. Analytical Chemistry,80 (7):2285-2285
    [14]Joel V, Martha L. Gray, Mehmet Toner. A Microfabrication-Based Dynamic Array Cytometer. Analytical Chemistry,2002,74 (5):3984-3990
    [15]Eric B C, Anup K, Singh. Dielectrophoresis in Microchips Containing Arrays of Insulating Posts:Theoretical and Experimental Results. Analytical Chemistry, 2003,75 (6):4724-4731
    [16]Louise M B, Andrew J S, Anup K S, et al. Dielectrophoretic Manipulation of Particles and Cells Using Insulating Ridges in Faceted Prism Microchannels. Analytical Chemistry,2005,77 (8):6798-6804
    [17]Kai F H, Yvonne H, Lionel M B, et al. Dielectrophoresis-Activated Multiwell Plate for Label-Free High-Throughput Drug Assessment. Analytical Chemistry, 2008,80 (2):2063-2068
    [18]Jung-Yeul J, Ho-Young K. Separation of Microparticles and Biological Cells Inside an Evaporating Droplet Using Dielectrophoresis. Analytical Chemistry, 2007,79 (5):5087-5092
    [19]蒋珂玮,刘伟景,万丽娟,张健.对于氧化锌棒状结构的介电泳操控研究.传感技术学报,2008,21(7):1103-1108
    [20]Benjamin G H, Ezekiel S, et al. Continuous-Flow Particle Separation by 3D Insulative Dielectrophoresis Using Coherently Shaped dc-Biased ac Electric Fields. Analytical Chemistry,2007,79 (9):7291-7300
    [21]Chin H K, Yee C L, Isabel R, et al. Cell Motion Model for Moving Dielectrophoresis. Analytical Chemistry,2008,80 (6):5454-5461
    [22]Aliaksei B, Andrzej S B. Dielectrophoretic and Electrothermal Effects at Alternating Current Heated Disk Microelectrodes. Analytical Chemistry,2008, 80 (9):7392-7400
    [23]He X X, Nie H L, Wang K M, et al. In Vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles. Analytical Chemistry,2008, 80 (10):9597-9603
    [24]Stefan F, Stephen G, Shirley, Thomas S, Gu I F. Dielectrophoretic Sorting of Particles and Cells in a Microsystem. Analytical Chemistry,1998,70 (1): 1909-1915
    [25]Vahey M D, Voldman J. An Equilibrium Method for Continuous-Flow Cell Sorting Using Dielectrophoresis. Analytical Chemistry,2008,80 (2):3135-3143
    [26]Unyoung K, Qian J R, Sophia A. Kenrick, et al. Multitarget Dielectrophoresis Activated Cell Sorter. Analytical Chemistry,2008,80 (8):8656-8661
    [27]Lee S Y, Kima T H, Suh D I, et al. An electrical characterization of a hetero-junction nanowire PN diode formed by dielectrophoresis alignment. Physica E 2007,36 (1):194-198
    [28]于鹏,李明林,董再励,周磊等.基于行波介电泳原理的微粒操纵系统及实验研究.仪器仪表学报,2008,29(4):33-36
    [29]Henry O F, Kai F H, et al. An integrated dielectrophoretic quartz crystal microbalance device for rapid biosensing applications. Biosensors and Bioelectronics,2007,23 (1):225-232
    [30]Papadakis S J, Gu Z, Gracias D H. Dielectrophoretic assembly of reversible and irreversible metal nanowire networks and vertically aligned arrays. Applied Physics Letters,2006,88 (5):233118
    [31]Xiong X G, Ahmed B, Selvapraba S, et al. Directed assembly of gold nanoparticle nanowires and networks for nanodevices. Applied Physics Letters, 2007,91 (3):063101
    [32]Chen D F, H Du, W H Li. Bioparticle separation and manipulation using dielectrophoresis. Sensors and Actuators A,2007,133 (2):329-334
    [33]Yasuhiro T, Tatsuro E, Yasuko Y, Takeshi H. Design and fabrication of a dielectrophoresis-based cell-positioning and cell-culture device for construction of cell networks. S0026-265X(08)00154-9
    [34]Honegger T, Berton K, Pinedo-Rivera T, Peyrade D. Design and realization of a microfluidic system for dielectrophoretic colloidal handling. Microelectronic Engineering,2008,133 (2):329-334
    [35]Ramon A J, Ryouta K, Sanchez F J, et al. Detection of pesticide residues using an immunodevice based on negative dielectrophoresis. Biosensors and Bioelectronics,2008,148 (1):194-198
    [36]Jae W L, Kyeong J M, Moon H H, et al. Dielectrophoretic assembly of GaN nanowires for UV sensor applications. Solid State Communications,2008,148 (1):194-198
    [37]Liu W J, Zhang J, Wan L J, Jiang K W, et al. Dielectrophoretic manipulation of nano-materials and its application to micro/nano-sensors. Sensors and Actuators B,2008,133 (2):664-670
    [38]Annop L, Boonchai T. Dynamic simulation using a multipolar model of particles under dielectrophoretic force. Journal of Electrostatics,2007,65 (1):672-679
    [39]Lionel M. Broche, Navneet B, et al. Early detection of oral cancer-Is dielectrophoresis the answer? Oral Oncology,2007,43 (1):199-203
    [40]Mo Y, Zhang X. Electrical assisted patterning of cardiac myocytes with controlled macroscopic anisotropy using a microfluidic dielectrophoresis chip. Sensors and Actuators A,2007,135 (1):73-79
    [41]Janko A, Vincent L, Helmut F K. Evaluation of a concept for on-chip biochemical assay based on dielectrophoresis-controlled adhesion of beads. Microelectronic Engineering,2004,73 (2):822-829
    [42]Junya S, Shin I H, et al. Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor. Sensors and Actuators B,2007,127 (2):505-511
    [43]Tomoyuki Y, Masato S, et al. Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis. Biosensors and Bioelectronics, 2007,22 (6):2730-2736
    [44]Demierre N, Braschler T, Muller R, Renaud P. Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sensors and Actuators B,2008,132 (1):388-396
    [45]Luke A M, Michael D B, Michael R W. Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field. Bioelectrochemistry,2008,72 (1):141-148
    [46]Zurina Z A, Les D, Gerard H M. Novel electrode structures for large scale dielectrophoretic separations based on textile technology. Journal of Biotechnology,2007,130 (1):183-187
    [47]倪中华,朱树存.基于介电泳的生物粒子分离芯片.东南大学学报,2009,35(5):724-728
    [48]刘伟景,张健等.介电泳操控纳米材料及其在微纳传感器中的应用.传感技术学报,2008,21(1):17-21
    [49]Crews N, Darabi J, Voglewede P, Guo F, Bayoumi A. An analysis of interdigitated electrode geometry for dielectrophoretic particle transport in micro-fluidics. Sensors and Actuators B,2007,125 (2):672-679
    [50]Chin H K, Yee C L, et al. Modeling of dielectrophoretic force for moving dielectrophoresis electrodes. Journal of Electrostatics,2008,66 (3):514-525
    [51]Clime L, Veres T. Magnetically controlled dielectrophoresis of metallic colloids. Journal of Colloid and Interface Science,2008,326:511-516
    [52]Saar G, David E, Uri D. Hybrid dielectrophoresis devices that employ electrically floating electrodes. Sensors and Actuators A,2008,142 (1):138-146
    [53]Du F, Baune M, Thoming J. Insulator-based dielectrophoresis in viscous media--Simulation of particle and droplet velocity. Journal of Electrostatics, 2007,65 (1):452-458
    [54]Park R, Kaler K V, Jones T. A Nonequilibrium Statistical Mechanical Calculation of the Surface Conductance of the Electrical Double Layer of Biological Cells and Its Application to Dielectrophoresis. The Journal of Physical Chemistry,1993,97 (18):4745-4755
    [55]周金华,龚錾,李银妹.光镊与介电泳微操纵技术.激光生物学报,2007,16(1):119-126
    [56]刘泳宏,赵湛.基于NEMS技术的介电泳芯片及其关键工艺问题的研究.传感技术学报,2006,19(5):1979-1982
    [57]Samuel P F, Darwin R R, et al. Cellular Immobilization within Microfluidic Microenvironments:Dielectrophoresis with Polyelectrolyte Multilayers. Journal of the American Chemical Society,2006,128 (9):13678-13679
    [58]Dong L F, Vachara C, et al. Floating-Potential Dielectrophoresis-Controlled Fabrication of ngle-Carbon-Nanotube Transistors and Their Electrical Properties. The Journal of Physical Chemistry B,2005,109 (27):13148-13153
    [59]Liu Y L, Jae-Hyun Chung, et al. Dielectrophoretic Assembly of Nanowires. The Journal of Physical Chemistry B,2006,110 (29):14098-14106
    [60]Fan C Z, Huang P, Yu K W. Dielectrophoresis of an Inhomogeneous Colloidal Particle under an Inhomogeneous Field:A First-Principles Approach. The Journal of Physical Chemistry B,2007,111 (25):7467-7468
    [61]Huang L, Wang M, Zhang Y, et al. Synthesis of Gold Nanotadpoles by a Temperature-Reducing Seed Approach and the Dielectrophoretic Manipulation. The Journal of Physical Chemistry C,2007,111 (9):16154-16160
    [62]Prabhu U A, Chen H, Alan M C, Jun L. Dielectrophoretic Trapping of Single Bacteria at Carbon Nanofiber Nanoelectrode Arrays. The Journal of Physical Chemistry A,2007,111 (49):12772-12777
    [63]金辉,张智伶,李明媚等.介电粒子所受DEP力模型及相关参数分析.天津理工大学学报,2009,25(2):71-73
    [64]Victoria E F, Zhu Y X. Dielectrophoresis of Functionalized Lipid Unilamellar Vesicles with Contrasting Surface Constructs. The Journal of Physical Chemistry B,2009,113 (6):1552-1558
    [65]Yury P R, Yuri V, Sameer S, et al. CdTe Nanowire Networks:Fast Self-Assembly in Solution, Internal Structure, and Optical Properties. The Journal of Physical Chemistry C,2007,111 (51):18927-18931
    [66]Manuel J M, Howard K S, Matteo P. Brownian Dynamics Simulations of Single-Wall Carbon Nanotube Separation by Type Using Dielectrophoresis. The Journal of Physical Chemistry B,2008,112 (25):7467-7477
    [67]Mandy L Y, Vincent G, Joseph C L, et al. Active Manipulation of Quantum Dots using AC Electrokinetics. The Journal of Physical Chemistry C,2009,113 (16): 6561-6565
    [68]Masato S, Tomoyuki Y, Yoshiaki M, et al. Dielectrophoretic Micropatterning with Microparticle Monolayers Covalently Linked to Glass Surfaces. Langmuir, 2004,20(8):11005-11011
    [69]Won R, Jasper L D, Varun V. D, et al. Electrostatic Stabilization of Colloids in Carbon Dioxide:Electrophoresis and Dielectrophoresis. Langmuir,2005,21 (5): 5914-5923
    [70]曾雪,徐溢等.介电电泳芯片的结构设计与模拟分析进展.MEMs器件与技术,2009,34(7):34-39
    [71]Rahul P B, Lisa R H, Tan W H. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir,2006,22 (2): 4357-4362
    [72]Ajay S N, Kheya S, Sood A K. Frequency-Dependent Shape Changes of Colloidal Clusters under Transverse Electric Field. Langmuir,2005,21 (8): 11623-11627
    [73]Lay T L, Carlos A P L, Fernando G. Controlled Nanoparticle Assembly by Dewetting of Charged Polymer Solutions. Langmuir,2004,20 (11):4430-4435
    [74]Jody V, Daynene M V, Susan S, et al. Dielectrically Addressable Microspheres Engineered Using Self-Assembled Monolayers. Langmuir,2003,19 (10): 2425-2433
    [75]Seunghyun H, Sehun J, Jaeboong C, et al. Electrical Transport Characteristics of Surface-Conductance-Controlled Dielectrophoretically Separated Single-Walled Carbon Nanotubes. Langmuir,2007,23 (9):4749-4752
    [76]Masato S, Tomoyuki Y, Hitoshi S, Tomokazu M. Negative Dielectrophoretic Patterning with Colloidal Particles and Encapsulation into a Hydrogel. Langmuir, 2007,23 (7):4088-4094
    [77]Brian P L, Hilton A M, Christopher H D, Garth J S. Dielectrophoretic Force Microscopy of Aqueous Interfaces. Langmuir,2005,21 (2):1436-1440
    [78]Robert K, Wolfgang F. Pearl Chain Formation of Nanoparticles in Microelectrode Gaps by Dielectrophoresis. Langmuir,2004,20 (9): 11797-11801
    [79]Simon O L, David M S. Assembly of Colloidal Particles into Microwires Using an Alternating Electric Field. Langmuir,2005,21 (3):4874-4880
    [80]Ketan H B, Orlin D V. Control and Modeling of the Dielectrophoretic Assembly of On-Chip Nanoparticle Wires. Langmuir,2004,20 (1):467-476
    [81]Daniel M K, Orlin D V. Surface-Guided Templating of Particle Assemblies Inside Drying Sessile Droplets. Langmuir,2008,24 (2):1371-1380
    [82]Shahnawaz M, Subir B. Dielectrophoretic Levitation in the Presence of Shear Flow:Implications for Colloidal Fouling of Filtration Membranes. Langmuir, 2007,23 (21):10618-10627
    [83]Salil P D, Brian M T, Joel V. A Photopatternable Silicone for Biological Applications. Langmuir,2008,24 (5):575-581
    [84]于海波,李文荣等.面向CNT基纳米器件的DEP装配实验研究.仪器仪表学报,2008,29(4):49-52
    [85]Pushkar P L, Manish M, Eric M F. Anomalous Particle Rotation and Resulting Micro structure of Colloids in AC Electric Fields. Langmuir,2008,24 (22): 12842-12848
    [86]Peter D H, Prasad S S, Zhu Y. Dielectrophoresis and AC-Induced Assembly in Binary Colloidal Suspensions. Langmuir,2008,24 (21):12164-12171
    [87]Trau M, Saville D A, Aksay I A. Assembly of Colloidal Crystals at Electrode Interfaces. Langmuir,1997,13 (24):6375-6381
    [88]Satoshi T, Takashi S, Hitoshi W. Positive Dielectrophoretic Mobilities of Single Microparticles Enhanced by the Dynamic Diffusion Cloud of Ions. Langmuir, 2000,16 (25):3866-3872
    [89]Yoav T. Discontinuous Meniscus Location in Tapered Capillaries Driven by Pressure Difference and Dielectrophoretic Forces. Langmuir,2007,23 (15): 8028-8034
    [90]Wei Y, Wei W, Liu L, Fan S S. Mounting multi-walled carbon nanotubes on probes by dielectrophoresis. Diamond & Related Materials,2008,17 (2) 1877-1880
    [91]Chiou P Y, Aaron T O, Ming C W. Massively parallel manipulation of single cells and microparticles using optical images. Nature,2005,436:370-372
    [92]Ralph K, Frank H, Manfred M K, Hilbert V L. Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes. Nano Letters,2004,6 (12):1395—1399
    [93]Masato S, Tomoyuki Y, Hitoshi S, et al. Negative dielectrophoretic patterning with different cell types. Biosensors and Bioelectronics,2008,24 (6): 1043-1047
    [94]Schwamb T, Tae Y C, Niklas S, et al. A Dielectrophoretic Method for High Yield Deposition of Suspended, Individual Carbon Nanotubes with Four-Point Electrode Contact. Nano Letters,2007,7 (12):3633-3638
    [95]Andrew D B, Benjamin P C, Jonathan M C, et al. Construction and Characterization of a Gold Nanoparticle Wire Assembled Using Mg-Dependent RNA-RNA Interactions. Nano Lett.,2006,6 (3):445-448
    [96]Dong L F, Jocelyn B, Vachara C, et al. Dielectrophoretically Controlled Fabrication of Single-Crystal Nickel Silicide Nanowire Interconnects. Nano Letters,2005,5 (10):2112-2115
    [97]Ralph H. Single particle characterization and manipulation by opposite field dielectrophoresis. Journal of Electrostatics,2002,56 (2):435-447
    [98]Kima S, Xuan Y, Ye P D, Mohammadi S, Lee S W. Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis. Solid-State Electronics,2008,52 (8):1260-1263
    [99]Michael P H. Dielectrophoretic Behavior of Latex Nanospheres:Low-Frequency Dispersion. Journal of Colloid and Interface Science,2002,25 (6):291-294
    [100]Seung Y L, Ahmad U, Duk I S, et al. The synthesis of ZnO nanowires and their subsequent use in high-current field-effect transistors formed by dielectrophoresis alignment. Physica E,2008,40 (2):866-872
    [101]Oh S H, Lee S H, Sophia A K, et al. Microfluidic Protein Detection through Genetically Engineered Bacterial Cells. Journal of Proteome Research,2006,5 (2):3433-3437
    [102]Zurina Z A, Les D, Gerard H M. Novel electrode structures for large scale dielectrophoretic separations based on textile technology. Journal of Biotechnology,2007,130 (2):183-187
    [103]Pham P, Texier I, Larrea A S, et al. Numerical design of a 3-D microsystem for bioparticle dielectrophoresis:The Pyramidal Microdevice. Journal of Electrostatics,2007,65 (6):511-520
    [104]Hyun J L, Tomoyuki Y, Masato S, et al. Rapid fabrication of nanoparticles array on polycarbonate membrane based on positive dielectrophoresis. Sensors and Actuators B,2008,131 (2):424-431
    [105]Janko A, Vincent L, Helmut F K. Evaluation of a concept for on-chip biochemical assay based on dielectrophoresis-controlled adhesion of beads. Microelectronic Engineering,2004,73 (6):822-829
    [106]Hee W S, Chang S H, et al. Controlled assembly of single SWNTs bundle using dielectrophoresis. Microelectronic Engineering,2005,81 (8):83-89
    [107]Kevin D H, Simon O L, Jacob P W, et al. Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions. Science, 2001,294:1082-1086
    [108]Sanjeev K, Seok H Y, Kim G H. Bridging the nanogap electrodes with gold nanoparticles using dielectrophoresis technique. Current Applied Physics,2009, 9 (2):101-103
    [109]Ralph H O. Single particle characterization and manipulation by opposite field dielectrophoresis. Journal of Electrostatics,2002,56 (2):435-447
    [110]Li W H, Du H, Chen D F, Shu C. Analysis of dielectrophoretic electrode arrays for nanoparticle manipulation. Computational Materials Science,2004,30 (2): 320-325
    [111]Wong X, Rosales C. Robust dielectrophoretic single-cell trap design using BEM. Engineering Analysis with Boundary Elements,2008,32 (2):388-394
    [112]Andreas H, Monika F, Dieter K. Determination of particle distributions in microfluidic systems under the influence of electric fields. Microelectronic Engineering,2008,85 (2):1294-1297
    [113]Yantzi J D, Yeow J T W, Abdallah S S. Multiphase electrodes for microbead control applications:Integration of DEP and electrokinetics for bio-particle positioning. Biosensors and Bioelectronics,2006,22 (8):2539-2545
    [114]Hyun J L, Tomoyuki Y, Masato S, et al. Simple and rapid preparation of vertically aligned gold nanoparticle arrays and fused nanorods in pores of alumina membrane based on positive dielectrophoresis. Sensors and Actuators B, 2009,136(2):320-325
    [115]Zheng L F, James P B, Peter J B. Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. Biosensors and Bioelectronics 2004,20 (5):606-619
    [116]Michael K, Magnus S J, et al. T cell activation on a single-cell level in dielectrophoresis-based microfluidic devices. Journal of Chromatography A, 2008,12 (2):83-89

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700