用户名: 密码: 验证码:
基于碳点的荧光传感器的制备与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物体内的一些微量物质,包括一些阳离子、阴离子和中性分子,在生物活动的调节过程中起着非常重要的作用。近年来,对于这些物质的检测引起了广泛关注。在各种检测技术中,荧光检测法不仅具有操作简单的特点,而且在灵敏度、选择性、响应时间、实时检测(如荧光成像技术)等方面均具有突出的优势,因而被广泛应用与生物检测领域。荧光碳点(Carbon Dots)作为碳纳米材料家族的新型成员,不仅具有优良的光学性能与小尺寸特性,而且还有良好的生物相容性及低细胞毒性,成为替代量子点的最佳选择。因此,本研究通过对荧光碳点的改性,制备了三种基于碳点的荧光检测体系,分别实现了对碘离子、pH、过氧化氢的选择性荧光检测和/或细胞成像。
     制备了Cdots-Hg(II)复合物,获得了碘离子的荧光增强型传感器。并采用核磁共振、原子力、红外光谱、紫外-可见光谱、荧光光谱等手段对碳点及基于碳点的检测传感器进行了表征。对于本检测体系,汞离子可以与碳点结合,形成了一种Cdots-Hg(II)复合物,并淬灭了碳点的荧光发射;而碘离子的加入,可以从复合物Cdots-Hg(II)中夺取汞离子形成更加稳定的碘化汞,重新使碳点的荧光恢复,从而实现了对碘离子的荧光检测。该体系可应用于纯水环境和尿液中对碘离子的检测,检测下限为436nM。
     将荧光素异硫氰酸酯(FITC)衍生物经共价键接枝到碳点表面,构建了一种碳点为基体的pH荧光比率检测体系。所制备的传感器CD-FITC粒径大小为5nm,其中碳点不仅构成了体系的载体,也是能量转移的供体。当环境的pH发生改变时,FITC基团的结构发生改变,引起其光谱学性质的变化,可接受来自供体的激发态能量而成为能量转移的受体,从而实现了对环境pH值的荧光比率检测。该检测体系在范围为4~8对pH具有较高的灵敏性,且pKa为5.69,可用于细胞内pH的检测。我们发现检测体系具有良好的水分散性、稳定的光谱学特性和很低的细胞毒性,也可以在活细胞内对胞内不同区域的pH进行成像。
     设计合成了一种基于碳点的多功能荧光检测体系,构建了基于FRET原理的比率型、具有线粒体靶向功能的过氧化氢荧光检测体系。在构筑荧光传感体系时,我们依次将靶向基团三苯基膦和过氧化氢探针(PF1)接枝到碳点表面(两者含量分别为4.21mg/g和31.47mg/g)。该检测体系具有很好的水溶性、且对过氧化氢的检测具有很好的选择性和抗干扰性,检测下限达到0.75μM。通过细胞毒性和细胞成像实验,发现该检测体系具有很低的细胞毒性和很好的线粒体靶向作用,并可在活细胞内,对外源性(exogenous)和内源性(endogenous)H2O2进行比率型荧光检测。
     我们的研究结果表明,作为一种新型的荧光纳米粒子,碳点具有水分散性良好、细胞毒性低、易于表面修饰、光学性质稳定等特点,是一种颇具潜力的生物检测用纳米材料。
Neutral molecules(ROS, RNS), anions (I-, F-), Cations(K+, Ca2+, Fe3+, Zn2+,H+) play avery important role in regulating the balance of living organisms. Currently, the detection ofbiomolecules in living systems has attracted considerable attention.However, due to thecomplexity of physiological system and the diversity of biologicalmolecules, the applicationof many detection methods faces daunting challenges. Amongvarious detection techniques,fluorescence method is considered to be sensitive, simple, rapid, real-time detection; hencethis method has been widely used in biological detection.
     Carbon dots (CDs) is a new fluorescence carbon nanomaterial, which possessuniqueoptical properties and smallsize effect. With good biocompatibility and withoutcytotoxicity it may be a nice substitute for QDs. In this dissertation, we prepared three kindsof nanoparticle sensors through the modification of carbon dots. These sensors can sensitivelyand quickly detect iodide, pH and hydrogen peroxide.
     First, we report on a simple method for the determination of iodide in aqueous solutionby exploiting the fluorescence enhancement that is observed if the complex formed betweencarbon dots and mercury ion is exposed to iodide. The sensor was characterized by XPS,AFM, UV-vis, fluorescence spectrophotometer and FT-IR.Fluorescent carbon dots (C-dots)were treated with Hg(II) ion which causes quenching of the emission of the C-dots. Onaddition of iodide, the Hg(II) ions are removed from the complex due to the strong interactionbetween Hg(II) and iodide. This causes the fluorescence to be restored and the detection limitis~436nM. The test is highly selective for iodide and was used for the determination ofiodide in buffer solution and urine.
     Then,we demonstrate a fluorescence resonance energy transfer(FRET)-based ratiometricpH nanosensor with carbon-dot (CD) as the carrier. The sensor was prepared by covalentlylinking a pH-sensitive fluorescent dye (fluorescein isothiocyanate, FITC) onto carbon-dot.The CD-based system exhibits a significant change in fluorescence intensity ratio between pH4and8with a pKa value of5.69. It also displays excellent water dispersibility, good spectralreversibility, satisfactory cell permeability and low cytotoxicity. Following the living celluptake, this nanoplatform with dual-chromatic emissions can facilitate real-time visualization of the pH evolution involved in the endocytic pathway of the nanosensor.
     Finally, we demonstrate a multifunctional fluorescent nanoprobe for detectingmitochondrialH2O2. The nanoprobe was prepared by covalently linking amitochondria-targeting ligand (triphenylphosphonium, TPP) and a H2O2recognition element(PFl) onto carbon dots (CDs). The content for the targeting ligand (TPP) and the H2O2recognition element (PFl) were determined to be4.21mg/g and31.47mg/g respectively. Thenanoprobe displays excellent water dispersibility, high sensitivity and selectivity, satisfactorycell permeability, very low cytotoxicity with detection limit of0.75μM. Following the livingcell uptake, this nanoprobe can specifically target and stain the mitochondria; and it can detectthe exogenous H2O2in L929cells, as well as the endogenously produced mitochondrial H2O2in Raw264.7cells upon stimulation by PMA.
     This study shows that CDs can serve as promising nano-carriers for fabricating practicalmultifunctional fluorescent nanosensors.
引文
[1] Bawendi M.G., Steigerwald, M. L., Brus, L. E. The quantum mechanics of larger semieonductorclusters(“quantumdots”)[J]. Annu. Rev. Phys. Chem.,1990,41:477-496
    [2] Whitesides G. M. Nanoscience, nanotechnology, and chemistry [J]. Small,2005,1:172-179
    [3] Alivisatos A. P. Semiconductor clusters, nanocrystals, and quantum dots[J]. Science,1996,27:933-937
    [4] Chan W. C., Nie S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J].Science,1998,281:2016-2018
    [5] Link S., Beeby A., FitzGerald S., et al. Visible to infrared luminescence from a28-atom gold cluster[J].J. Phys. Chem. B,2002,106:3410-3415
    [6] Duan H. W., Nie S. M.. Etching colloidal gold nanocrystals with hyperbranched and multivalentpolymers: A new route to fluorescent and water-soluble atomic clusters[J]. J. Am. Chem. Soc.,2007,129:2412-2413
    [7] Petty J. T., Zheng J., Hud, N. V., et al. DNA-templated Ag nanocluster formation [J]. J. Am. Chem. Soc.,2004,126:5207-5212
    [8] Sengupta B., Ritchie C. M., Buckman J. Q., et al. Base-directed formation of fluorescent silver clusters[J]. J. Phys. Chem. C,2008,112:18776-18782
    [9] Patra A., Friend C. S., Kapoor R, et al. Fluorescence upconversion properties of Er3+-dopedTiO2andBaTiO3nanocrystallites [J]. Chem. Mater.,2003,15:3650-3655
    [10] Bridot J. L., Faure A. C., Laurent S., et al. Hybrid gadolinium oxide nanoparticles:Multimodalcontrast agents for in vivo imaging [J]. J. Am. Chem. Soc.,2007,129:5076-5084
    [11] Louis C., Bazzi R., Marquette C. A., et al. Nanosized hybrid particles with double luminescence forbiological labeling [J]. Chem. Mater.,2005,17:1673-1680
    [12] Escribano P., Julian-Lopez B., Planelles-Arago J., et al. Photonic and nanobiophotonic properties ofluminescent lanthanide-doped hybrid organic-inorganic materials [J]. J. Mater.Chem.,2008,18:23-40.
    [13] Zhao J. L., Bardecker J. A., Munro A. M., et al. Efficient CdSe/CdS quantum dot light-emitting diodesusing a thermally polymerized hole transport layer [J]. Nano Lett,2006,6:463-467
    [14] Sun Q., Wang Y. A., Li L. S., et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nat. Photonics.,2007,1:717-722
    [15] Caruge J. M., Halpert J. E., Wood V., et al. Colloidal quantum-dot light-emitting diodes withmetal-oxide charge transport layers [J]. Nat. Photonics,2008,2:247-250
    [16] Liu Y. L., Ai K. L., Cheng X. L., et al. Gold-nanocluster-based fluorescent sensors for highly sensitiveand selective detection of cyanide in water [J]. Adv. Funct. Mater.,2010,20:951-956
    [17] Shang L., Dong S. J. Sensitive detection of cysteine based on fluorescent silver clusters [J]. Biosens.Bioelectron.,2009,24:1569-1573
    [18] Wan Q., Dattoli E., Lu W. Doping-dependent electrical characteristics of SnO2nanowires [J]. Small,2008,4:451-454
    [19] Xu X. Y., Ray R., Gu Y., et al. Electrophoretic analysis and purification of fluorescent single walledcarbon nanotube fragments [J]. J. Am. Chem. Soc.,2004,126:12736-12737
    [20] Sun Y. P., Zhou B., Lin Y., et al. Quantum-sized carbon dots for bright and colorfulphotoluminescence [J]. J. Am. Chem. Soc.,2006,128:7756-7757
    [21] Hu, S. L., Niu, K. Y., Sun, J., et al. One-step synthesis of fluorescent carbon nanoparticles by laserirradiation. J. Mater. Chem.,2009,19:484-488
    [22] Gokus T., Nalr R. R., Bonettl A., et al. Making graphene luminescent by oxygen plasma treatment [J].ACS Nano.,2009,3:3963-3968
    [23] Jiang H. Q., Chen F., Lagally M. G., et al. New strategy for synthesis and functionalization of carbonnanoparticles [J]. Langmuir,2010,26:1991-1995
    [24] Zhou J. G., Booker C., Li R. Y., et al. An electrochemical avenue to blue luminescent nanocrystalsfrom multiwalled carbon nanotubes (MWCNTs)[J]. J. Am. Chem. Soc.,2007,129:744-745
    [25] Zheng L. Y., Chi Y. W., Dong Y. Q., et al. Electrochemiluminescence of water-soluble carbonnanocrystals released electrochemically from graphite [J]. J. Am. Chem. Soc.,2009,131:4564-4565
    [26] Lu J., Yang J. X., Wang J., et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles,and graphene by the exfoliation of graphite in ionic liquids [J]. ACS Nano.,2009,3:2367-2375
    [27] Liu H. P., Ye T., Mao C. D. Fluorescent carbon nanoparticles derived from candle soot [J]. Angew.Chem. Int. Ed.,2007,46:6473-6475
    [28] Ray S. C., Saha A., Jana N. R., et al. Fluorescent carbon nanoparticles: Synthesis, characterization,and bioimaging application [J]. J. Phys. Chem. C,2009,113:18546-18551
    [29] Pan D. Y., Zhang J. C., Li Z., et al. Observation of pH-,solvent-,spin-,and excitation-dependent bluephotoluminescence from carbon nanoparticles [J]. Chem. Commun.,2010,46:3681-3683
    [30] Bourlinos A. B, Zboil R., Petr J., et al. Luminescent surface quaternized carbon dots [J]. Chem. Mater.,2012,24:6-8
    [31] Zhang B., Liu C. Y., Liu Y. A novel one-step approach to synthesize fluorescent carbon nanoparticles[J]. Eur. J. Inorg. Chem.,2010,28:4411-4414
    [32] Liu R. L., Wu D. Q., Liu S. H., et al. An aqueous route to multicolor photoluminescent carbon dotsusing silica spheres as carriers [J]. Angew. Chem. Int. Ed.,2009,48:4598-4601
    [33] Zong J., Zhu Y., Yang X., et al. Synthesis of photoluminescent carbogenic dots using mesoporoussilica spheres as nanoreactors [J]. Chem. Commun.,2011,47:764-766
    [34] Zhu H., Wang X., Li Y., et al. Microwave synthesis of fluorescent carbon nanoparticles withelectrochemiluminescence properties [J]. Chem. Commun.,2009,34:5118-5120
    [35] Zhai X., Zhang P., Liu C. J., et al. Highly luminescent carbon nanodots by microwave-assistedpyrolysis [J]. Chem. Commun.,2012,48:7955-7957
    [36] Tian L., Ghosh D., Chen W., et al. Nanosized carbon particles from natural gas soot [J]. Chem. Mater.,2009,21:2803-2809
    [37] Chi Y. W., Zheng L. Y., Dong Y. Q., et al. Electrochemiluminescence of water-soluble carbonnanocrystals released electrochemically from graphite [J]. J. Am. Chem. Soc.,2009,131:4564-4565
    [38] Liu C. J., Zhang P., Zhai X.Y., et al. Nano-carrier for gene delivery and bioimaging based on carbondots with PEI-passivation enhanced fluorescence [J]. Biomaterials,2012,33:3604-3613
    [39] Zhao Q. L., Zhang Z. L., Huang B. H., et al. Facile preparation of low cytotoxicity fluorescent carbonnanocrystals by electrooxidation of graphite [J]. Chem. Commun.,2008,41:5116-5118
    [40] Jaiswal A., Ghosh, S. S., Chattopadhyay A. One step synthesis of C-dots by microwave mediatedcaramelization of poly(ethylene glycol)[J] Chem. Commun.,2012,48:407-409
    [41] Liu C. J., Zhang P., Tian F., Li W. C., et al. One-step synthesis of surface passivated carbon nanodotsby microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging [J]. J. Mater.Chem.,2011,21:13163-13167
    [42] Wang F., Xie Z., Zhang H., et al. Highly luminescent organosilane-functionalized carbon dots [J]. Adv.Funct. Mater.,2011,21:1027-1031
    [43] Yang Y. H., Cui J. H., Zheng M. T., et al. One-step synthesis of amino-functionalized fluorescentcarbon nanoparticles by hydrothermal carbonization of chitosan [J]. Chem. Commun.,2012,48:380-382
    [44] Goh E. J., Kim K. S., Kim Y. R., et al. Bioimaging of hyaluronic acid derivatives using nanosizedcarbon dots [J]. Biomacromolecules,2012,13:2554-2561
    [45] Zhu A. W., Qu Q., Shao X. L., et al. Carbon-dot-based dual-emission nanohybrid produces aratiometric fluorescent sensor for in vivo imaging of cellular copper ions [J]. Angew. Chem. Int. Ed.,2012,51,1-6
    [46] Kong B., Zhu A., Ding C., et al. Carbon dot-based inorganic-organic nanosystem for two-photonimaging and biosensing of pH variation in living cells and tissues [J], Adv. Mater.,2012,24:5844-5848
    [47] Yu C. M., Li X. Z., Zeng F., et al. Carbon-dot-based ratiometric fluorescent sensor for detectinghydrogen sulfide in aqueous media and inside live cells [J]. Chem. Commun.,2013,49:403-405
    [48] Li Q., Ohulchanskyy T. Y., Liu R. L., et al. Photoluminescent carbon dots as biocompatiblenanoprobes for targeting cancer cells in vitro [J]. J. Phys. Chem. C,2010,114:12062-12068
    [49] Gao Q., Han J. M., Ma Z. F. Polyamidoamine dendrimers-capped carbon dots/Au nano crystal nanocomposites and its application for electrochemical immunosensor [J]. Biosensors and Bioelectronics,2013,49:323-328
    [50] Huang P., Lin J., Wang X. S., et al. Light-triggered theranostics based on photosensitizerconjugatedcarbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy [J]. Adv. Mater.,2012,24:5104-5110
    [51] Zhou L., Li Z. H., Liu Z., et al. Luminescent carbon dot-gated nanovehicles for pH-triggeredintracellular controlled release and imaging [J]. Langmuir,2013,29:6396-6403
    [52] Kim J., Park J., Kim H., et al. Transfection and intracellular trafficking properties of carbon dot-goldnanoparticle molecular assembly conjugated with PEI-pDNA [J]. Biomaterials,2013,34:7168-7180
    [53] Hoang A. H., Mario L. New colorimetric and fluorometric chemosensor based on a cationicpolythiophene derivative for iodide-specific detection [J]. J. Am. Chem. Soc.,2003,125:4412-4413
    [54] Haldimann M., Zimmerli B., Als C., et al. Direct determination of urinary iodine by inductivelycoupled plasma mass spectrometry using isotope dilution with iodine-129[J]. Clin. Chem.,1998,44:817-824
    [55] Singh N., Jang D. O. Benzimidazole-based tripodal receptor: highly selective fluorescent chemosensorfor iodide in aqueous solution [J]. Org. Lett.,2007,9:1991-1994
    [56] Bichsel Y., Von G. U. Determination of iodide and iodate by ion chromatography with postcolumnreaction and UV/Visible detection [J]. Anal. Chem.,1999,71:34-38
    [57] Ito K., Ichihara T., Zhuo H., et al. Determination of trace iodide in seawater by capillaryelectrophoresis following transient isotachophoretic preconcentration comparison with ion chromatography.Analytica Chimica Acta,2003,497:67-74
    [58] Kamavisdar A., Patel R. M. Flow injection spectrophotometric determination of iodide inenvironmental samples. Microchim Acta,2010,140:119-124
    [59] Michael S., Dominik B. M., Gr gel S. S. Luminescent probes for detection and imaging of hydrogenperoxide [J]. Microchim Acta,2011,174:1-18
    [60] Kim H., Kang J. Iodide selective fluorescent anion receptor with two methylene bridgedbis-imidazolium rings on naphthalene [J]. Tetrahedron Lett.,2005,46:5443-5445
    [61] Singh N., Kim M. J., Jang D. O. Chromogenic and fluorescent recognition of iodide with abenzimidazole-based tripodal receptor [J]. Org. Lett.,2011,13:3024-3027
    [62] Corma A., Galletero M. S., Garcia H., et al. Pyrene covalently anchored on a large external surfacearea zeolite as a selective heterogeneous sensor for iodide [J]. Chem. Commun.,2002,10:1100-1101
    [63] Li H. B., Han C. P., Zhang L. Synthesis of cadmium selenide quantum dots modified with thioureatype ligands as fluorescent probes for iodide ions [J].J. Mater. Chem.,2008,18:4543-4548
    [64] Zhao H. X., Liu L. Q., Liu Z. D., et al. Highly selective detection of phosphate in very complicatedmatrixes with an off–on fluorescent probe of europium-adjusted carbon dots [J]. Chem. Commun.,2011,47:2604-2606
    [65] Yu C. W., Zhang J., Li J. H., Liu P., et al. Fluorescent probe for copper(II) ion based on arhodaminespirolactame derivative, and its application to fluorescent imaging in living cells [J]. MicrochimActa,2011,174:247-255
    [66] Martinez M. R., Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions [J].Chem. Rev.,2003,103:4419-4476
    [67] Lin L. R., Fang W., Yu Y., et al. Selective recognition iodide in aqueous solution based onfluorescence enhancement chemosensor [J]. Spectrochimica Acta Part A: Molecular and BiomolecularSpectroscopy,2007,67:1403-1406
    [68] Ma B. L., Zeng F., Zheng F. Y., et al. A fluorescence turn-on sensor for iodide based on athymine–HgII–thymine complex [J]. Chem. Eur. J.,2011,17:14844-14850
    [69] Liu L., Xiao L., Zhu H. Y., et al. Preparation of magnetic and fluorescent bifunctional chitosannanoparticles for optical determination of copper ion [J]. Microchim Acta,2012,178:413-419
    [70] Wang X. H., Peng H. S., Chang Z., et al. Synthesis of ratiometric fluorescent nanoparticles for sensingoxygen [J]. Microchim Acta,2012,178:147-152
    [71] Li H. T., He X. D., Kang Z. H., et al. Water-soluble fluorescent carbon quantum dots andphotocatalyst design [J]. Angew. Chem. Int. Ed.,2010,49:4430-4434
    [72] Wang X. H., Qu K. G., Xu B. L., et al. Microwave assisted one-step green synthesis of cell-permeablemulticolor photoluminescent carbon dots without surface passivation reagents [J]. J. Mater. Chem.,2012,21:2445-2450
    [73] Chandra S., Pathan S. H., Mitra S., et al. Tuning of photoluminescence on different surfacefunctionalized carbon quantum dots [J]. RSC Advances,2012,2:3602-3606
    [74] Yan X. B., Xu T., Chen G., et al. Preparation and characterization of electrochemically depositedcarbon nitride films on silicon substrate [J]. J. Phys. D. Appl. Phys.,2004,37:907-913
    [75] Jaiswal A., Ghosh S. S., Chattopadhyay A. One step synthesis of C-dots by microwave mediatedcaramelization of poly(ethylene glycol)[J]. Chem, Commun.,2012,48:407-409
    [76] Peng H., Travas S. J. Simple aqueous solution route to luminescent carbogenic dots fromcarbohydrates [J]. Chem. Mater.,2009,21:5563-5565
    [77] Tang L., Ji R., Cao X., et al. Deep ultraviolet photoluminescence of water-soluble self-passivatedgraphene quantum dots [J]. ACS Nano,2012,6:5102-5110
    [78] Lu X. B., Qin X. Y., Liu S., et al. Economical, green synthesis of fluorescent carbon nanoparticles andtheir use as probes for sensitive and selective detection of mercury(II) ions [J]. Anal. Chem.,2012,84:5351-5357
    [79] Xia Y. S., Zhu C. Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensingmercury (II)[J]. Talanta,2008,75:215-221
    [80] Jagadeeswari S., Jhonsi M. A., Kathiravan A., et al.Photoinduced interaction between MPA cappedCdTe QDs and certain anthraquinone dyes [J]. Journal of Luminescence,2011,131:597-602
    [81] Zeng H. L., Durocher G. Analysis of fluorescence quenching in some antioxidants from non-linearStern-Volmer plots [J]. Journal of Luminescence,1995,63:75-84
    [82] Hepler L. G., Olofsson G.Mercury: Thermodynamic properties, chemical equilibria, and standardpotentials [J]. Chem. Rev.,1975,75:585-602
    [83] Wei S. C., Hsu P. H., Lee Y. F., et al. Selective detection of iodide and cyanide anions usinggold-nanoparticle-based fluorescent probes [J]. ACS Appl Mater Interfaces,2012,4:2652-2658
    [84] Wang M., Wu Z. K., Yang J., et al. Au25(SG)18as a fluorescent iodide sensor [J]. Nanoscale,2012,4:4087-4090
    [85] Shang Z. B., Wang Y., Jin W. J. Triethanolamine-capped CdSe quantum dots as fluorescent sensors forreciprocal recognition of mercury (II) and iodide in aqueous solution [J]. Talanta,2009,78:364-369
    [86] Busa W. B., Nuccitelli R. Metabolic regulation via intracellular pH [J]. Am. J. Physiol.,1984,246:R409-R438
    [87]Loiselle F. B., Casey J. R. Measurement of intracellular pH [J]. Methods Mol. Biol.,2003,227:259-280;
    [88] Kennedy R. T., Huang L., Aspenwall C. A. Extracellular pH is required for rapid release of insulinfrom Zn insulin precipitates in β-Cell secretory vesicles during exocytosis [J]. J. Am. Chem. Soc.,1996,118:1795-1796
    [89] Hoyt K. R., Reynolds I. J. Alkalinization prolongs recovery from glutamate-induced increases inintracellular Ca2+concentration by enhancing Ca2+efflux through the mitochondrial Na+/Ca2+exchangerin cultured rat forebrain neurons [J]. J. Neurochem.,1998,71:1051-1058
    [90] Chin E. R., Alllen D. G. The contribution of pH-dependent mechanisms to fatigue at differentintensities in mammalian single muscle fibres [J]. J. Physiol,1998,512:831-840
    [91] Han J., Burgess K. Fluorescent indicators for intracellular pH [J]. Chem. Rev.,2010,110:2709-2728
    [92] Izumi H., Torigoe T., Ishiguchi H., et al. Cellular pH regulators: potentially promising moleculartargets for cancer chemotherapy [J]. Cancer Treatment Rev.,2003,29:541-549
    [93] Davies T. A., Fine R. E., Johnson R. J., et al. Non-age related differences in thrombin responses byplatelets from male patients with advanced Alzheimer's disease [J]. Biochem.Biophys. Res. Commun.,1993,194:537-543
    [94] Gottlieb R. A., Giesing H. A., Zhu J. Y., et al. Cell acidification in apoptosis: granulocytecolony-stimulating factor delays programmed cell death in neutrophils by up-regulating the vacuolarH(+)-ATPase [J]. Proc. Natl. Acad. Sci. U. S. A.,1995,92:5965-5968
    [95] Cohen J. S., Motiei M., Carmi S., et al. Determination of intracellular pH and compartmentation usingdiffusion-weighted NMR spectroscopy with pH-sensitive indicators [J]. Magnetic Resonance in Medicine,2004,51:900-903
    [96] Hamilton G., Allsop J. M., Patel N., et al. Variations due to analysis technique in intracellular pHmeasurements in simulated and in vivo31P MR spectra of the human brain [J]. J. Magn. Reson.Imaging,2006,23:459-464
    [97] Wray S. Smooth muscle intracellular pH: measurement, regulation, and function [J]. Am. J. Physiol.1988,254: C213-C225
    [98] Stich M. I., Fischer L. H., Wolfbeis O. S. Multiple fluorescent chemical sensing and imaging [J].Chem. Soc. Rev.,2010,39:3102-114
    [99] Kim H. N., Ren W. X., Kim J. S. et al. Fluorescent and colorimetric sensors for detection of lead,cadmium, and mercury ions [J]. Chem. Soc. Rev.,2012,41:3210-3244
    [100] Zhu H., Fan J., Xu Q., et al. Imaging of lysosomal pH changes with a fluorescent sensor containing anovel lysosome-locating group [J]. Chem. Commun.,2012,48:11766-11768
    [101] Fan L., Fu Y., Liu Q., Lu D., et al. Novel far-visible and near-infrared pH probes based onstyrylcyanine for imaging intracellular pH in live cells [J]. Chem. Commun.,2012,48:11202-11204
    [102] Schutting S., Borisov S. M., Klimant I. Diketo-pyrrolo-pyrrole dyes as new colorimetric andfluorescent pH indicators for optical carbon dioxide sensors [J]. Anal. Chem.,2013,85:3271-3279
    [103] Liu B Y, Zeng F, Wu G F and Wu S Z A FRET-based ratiometric sensor for mercury ions in waterwith multi-layered silica nanoparticles as the scaffold [J]. Chem. Commun.,2011,47:8913-8915
    [104] Lakowicz J. R. Principles of Fluorescence Spectroscopy.2006,(New York: Springer)
    [105] Aragay G., Pons J., Merkoci A. Recent trends in macro-, micro-, and nanomaterial-based tools andstrategies for heavy-metal detection [J]. Chem. Rev.,2011,111:3433-3458
    [106] Chen S. H., Chuang Y. C., Lu Y. C., et al. A method of layer-by-layer gold nanoparticle hybridizationin a quartz crystal microbalance DNA sensing system used to detect dengue virus [J].Nanotechnology,2009,20:215501
    [107] Oh W., Jeong Y. S., Kim S., et al. Fluorescent polymer nanoparticle for selective sensing ofintracellular hydrogen peroxide [J]. ACS Nano,2012,6:8516-8524
    [108] Kim K. T., Truong L., Wehmas L., et al. Silver nanoparticle toxicity in the embryonic zebrafish isgoverned by particle dispersion and ionic environment [J]. Nanotechnology,2013,24:115101
    [109] Wan J. Q., Meng X. X., Liu E. Z., et al. Variation in pH of plaque after a mouth rinse with a saturatedsolution of mannitol [J]. Nanotechnology,2010,21:235104
    [110] Zhou K., Liu H., Zhang S., et al. Multicolored pH-tunable and activatable fluorescence nanoplatformresponsive to physiologic pH stimuli [J]. J. Am. Chem. Soc.,2012,134:7803-7811
    [111] Allard E., Larpent C. Core-shell type dually fluorescent polymer nanoparticles for ratiometricpH-sensing [J]. J. Polym. Sci.A,2008,46:6206-6213
    [112] Wu S. Q., Li Z., Han J. H., Han S. F. Dual colored mesoporous silica nanoparticles with pH activablerhodamine-lactam for ratiometric sensing of lysosomal acidity [J]. Chem. Commun.,2011,47:11276-11278
    [113] Fernandez A. L., Doussineau T., Dutz S., et al. Magnetic and fluorescent core-shell nanoparticles forratiometric pH sensing [J]. Nanotechnology,2011,22:415501
    [114] Dennis A. M., Rhee W. J., Sotto D., et al. Quantum dot-fluorescent protein FRET probes for sensingintracellular pH [J]. ACS Nano,2012,6:2917-2924
    [115] Shi W., Li X. H., Ma H. M. A tunable ratiometric pH sensor based on carbon nanodots for thequantitative measurement of the intracellular pH of whole cells [J]. Angew. Chem. Int. Edn.,2012,51:6432-6435
    [116] Zhang P., Li W., Zhai X., et al. A facile and versatile approach to biocompatible "fluorescentpolymers" from polymerizable carbon nanodots [J]. Chem. Commun.,2012,48:10431-10433
    [117] Hsu P. C., Chang H.T. Synthesis of high-quality carbon nanodots from hydrophilic compounds: roleof functional groups [J]. Chem. Commun.,2012,48:3984-3986
    [118] Yang S. T., Cao L., Luo P. G., et al. Carbon dots for optical imaging in vivo [J]. J. Am. Chem. Soc.,2009,131:11308-11309
    [119] Medintz I. L., Trammell S. A., Mattoussi H., et al. Reversible modulation of quantum dotphotoluminescence using a protein-bound photochromic fluorescence resonance energy transferacceptor[J]. J. Am. Chem. Soc.,2004,126:30-31
    [120] Valeur B. Molecular Fluorescence: Principles and Applications [J].2002,(New York: Wiley–VCH)
    [121] Moore M N. Do nanoparticles present ecotoxicological risks for the health of the aquaticenvironment [J]. Environ. Int.,2006,32:967-976
    [122] Ma X., Wu Y., Jin S., Tian Y., et al. Gold nanoparticles induce autophagosome accumulation throughsize-dependent nanoparticle uptake and lysosome impairment [J]. ACS Nano,2011,5:8629-8639
    [123] Mellman I. Endocytosis and molecular sorting [J].Annu. Rev. Cell Dev. Biol.,1996,12:575–625
    [124] Maxfield F. R., McGraw T. E. Endocytic recycling [J]. Nature Rev. Mol. Cell Biol.2004,5:121-132
    [125] Zhou K., Wang Y., Huang X., et al. Tunable, ultrasensitive pH-responsive nanoparticles targetingspecific endocytic organelles in living cells [J]. Angew. Chem. Int. Edn.,2011,50:6109-6114
    [126] Benjaminsen R. V., Sun H., Henriksen J. R., et al. Evaluating nanoparticle sensor design forintracellular pH measurements [J]. ACS Nano,2011,5:5864-5873
    [127] Bayer N., Schober D., Prchla E., et al. Effect of bafilomycin A1and nocodazole on endocytictransport in HeLa cells: implications for viral uncoating and infection [J]. J. Virol.,1998,72:9645-9655
    [128] Hanada H., Moriyama Y., Maeda M., et al. Kinetic studies of chromaffin granule H+-ATPase andeffects of bafilomycin A1[J]. Biochem. Biophys. Res. Commun.,1990,170:873-878
    [129] Brookes P. S., Yoon Y., Robotham J. L., et al. Calcium, ATP, and ROS: a mitochondrial love-hatetriangle [J]. Am. J. Physiol. Cell Physiol.,2004,287: C817-C833
    [130] Green D. R., Kroemer G. The pathophysiology of mitochondrial cell death [J]. Science,2004,305:626-629
    [131] Hoye A. T., Davoren J. E., Wipf P., et al. Targeting mitochondria [J]. Acc. Chem. Res.,2008,41:87-97
    [132] Ow Y.-L. P., Green D. R., Hao Z., et al. Cytochrome c: functions beyond respiration [J]. Nat. Rev.Mol. Cell Biol.,2008,9:532-542
    [133] Giorgio M., Trinei M., Migliaccio E., et al. Hydrogen peroxide: a metabolic by-product or a commonmediator of ageing signals [J]. Nat. Rev. Mol. Cell Biol.,2007,8:722-728
    [134] Harman D. The free radical theory of aging [J]. Antioxid Redox Signa,2003,5:557-561
    [135] Liu R. J., Li S. W., Yu X. L., et al. Facile synthesis of Au-nanoparticle/polyoxometalate/graphenetricomponent nanohybrids: an enzyme-free electrochemical biosensor for hydrogen peroxide [J]. Small,2012,8:1398-1406
    [136] Balaban R. S., Nemoto S., Finkel T. Mitochondria, oxidants, and aging [J]. Cell,2005,120:483-495
    [137] Stadtman E.R. Protein oxidation and aging [J]. Free Radical Res.,2006,40:1250-1258
    [138] Finkel T., Serrano M., Blasco M. A. The common biology of cancer and ageing [J]. Nature,2007,448:767-774
    [139] Barnham K. J., Masters C. L., Bush A. I. Neurodegenerative diseases and oxidative stress [J]. Nat.Rev. Drug Discovery,2004,3:205-214
    [140] Lin M.T., Beal M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases[J]. Nature,2006,443:787-795
    [141] Lippert A. R., Bittne G. C. V. D.r, Chang C. J. Boronate oxidation as a bioorthogonal reactionapproach for studying the chemistry of hydrogen peroxide in living systems [J]. Acc. Chem. Res.,2011,44:793-804
    [142] Liu Y. A., Liao X. B. Fluorescent probes for the detection of hydrogen peroxide in biological systems[J]. Current Organic Chemistry,2013,17:654-669
    [143] Shang L., Azadfar N., Stockmar F., et al. One-pot synthesis of near-infrared fluorescent gold clustersfor cellular fluorescence lifetime imaging [J]. Small,2011,7:2614-2620
    [144] Chen X. Q., Tian X. Z., Shin I., et al. Fluorescent and luminescent probes for detection of reactiveoxygen and nitrogen species [J]. Chem. Soc. Rev.,2011,40:4783-4804
    [145] Wu Z., Wang M., Yang J., et al. Well-defined nanoclusters as fluorescent nanosensors: a case studyon Au(25)(SG)(18)[J]. Small,2012,8:2028-2035
    [146] Dickinson B. C., Lin V. S., Chang C. J. Preparation and use of MitoPY1for imaging hydrogenperoxide in mitochondria of live cells [J]. Nature Protocols,2013,8:1249-1259
    [147] Yang Y. M., Zhao Q., Feng W., et al. Luminescent chemodosimeters for bioimaging [J]. Chem. Rev.,2013,113:192-270
    [148] Setsukinai K., Urano Y., Kakinuma K., et al. Development of novel fluorescence probes that canreliably detect reactive oxygen species and distinguish specific species [J]. J. Biol. Chem.,2003,278:3170-3175
    [149] Lo L. C., Chu C. Y. Development of highly selective and sensitive probes for hydrogen [J]. Chem.Commun.,2003,21:2728-2729
    [150] Maeda H., Fukuyasu Y., Yoshida S., et al. Fluorescent probes for hydrogen peroxide based on anon-oxidative mechanism [J]. Angew. Chem. Int. Ed.,2004,43:2389-2391
    [151] Chan J., Dodani S. C., Chang C. J. Reaction-based small-molecule fluorescent probes forchemoselective bioimaging [J]. Nat. Chem.,2012,4:973-984
    [152] Chang M. C., Pralle A., Isacoff E. Y., et al. A selective, cell-permeable optical probe for hydrogenperoxide in living cells [J]. J. Am. Chem. Soc.,2004,126:15392-15393
    [153] Miller E. W., Albers A. E., Pralle A., et al. Boronate-based fluorescent probes for imaging cellularhydrogen peroxide [J]. J. Am. Chem. Soc.,2005,127:16652-16659
    [154] Xu K., Tang B., Huang H., et al. Strong red fluorescent probes suitable for detecting hydrogenperoxide generated by mice peritoneal macrophages [J]. Chem. Commun.,2005,48:5974-5976
    [155] Kumar M., Kumar N., Bhalla V., et al. A charge transfer assisted fluorescent probe for selectivedetection of hydrogen peroxide among different reactive oxygen species [J]. Chem. Commun.,2012,48,4719-4721
    [156] Yuan L., Lin W., Xie Y., et al. Single fluorescent probe responds to H2O2, NO, and H2O2/NO withthree different sets of fluorescence signals [J]. J. Am. Chem. Soc.,2012,134:1305-1315
    [157] Masanta G., Heo C. H., Lim C. S., et al. A mitochondria-localized two-photon fluorescent probe forratiometric imaging of hydrogen peroxide in live tissue [J]. Chem. Commun.,2012,48:3518-3520
    [158] Albers A. E., Okreglak V. S., Chang C. J. A FRET-based approach to ratiometric fluorescencedetection of hydrogen peroxide [J]. J. Am. Chem. Soc.,2006,128:9640-9641
    [159] He F., Feng F., Wang S., et al. Fluorescence Ratiometric Assays of Hydrogen Peroxide and Glucosein Serum Using Conjugated Polyelectrolytes [J]. J. Mater. Chem.,2007,17:3702-3707
    [160] Dickinson B. C., Chang C. J. A targetable fluorescent probe for imaging hydrogen peroxide in themitochondria of living cells [J]. J. Am. Chem. Soc.,2008,130:9638-9639
    [161] Atchison N., Fan W., Brewer D. D., et al. Silica-nanoparticle coatings by adsorption fromlysine-silica-nanoparticle Sols on inorganic and biological surfaces [J]. Angew. Chem. Int. Ed.,2011,50:1617-1621
    [162] Bruchez M. J., Moronne M., Gin P., et al. Semiconductor nanocrystals as fluorescent biologicallabels [J]. Science,1998,281:2013-2016
    [163] Lee D. E., Koo H., Sun I. C., et al. Multifunctional nanoparticles for multimodal imaging andtheragnosis [J]. Chem. Soc. Rev.,2012,41:2656-2672
    [164] Tomat E., Nolan E. M., Jaworski J., et al. Organelle-specific zinc detection using zinpyr-labeledfusion proteins in live cells [J]. J. Am.Chem. Soc.,2008,130:15776-15777
    [165] Murphy M. P., Smith R. A. Targeting antioxidants to mitochondria by conjugation to lipophiliccations [J]. Annu. Rev. Pharmacol. Toxicol.,2007,47:629-656
    [166] Srikun D., Albers A. E., Chang C. J. A dendrimer-based platform for simultaneous dual fluorescenceimaging of hydrogen peroxide and pH gradients produced in living cells [J]. Chem. Sci.,2011,2:1156-1165
    [167] Chen S., Hong Y., Liu Y., et al. Full-Range Intracellular pH Sensing by an Aggregation-InducedEmission-Active Two-Channel Ratiometric Fluorogen [J]. J. Am. Chem. Soc.,2013,135:4926-4929
    [168] Mannders E. M. M., Stap J., Brakenhoff G. J., et al. Dynamics of three-dimensional replicationpatterns during the S-phase, analysed by double labelling of DNA and confocal microscopy [J]. J. Cell Sci.,1992,103:857-862
    [169] Bolte S., Cordelières F. P. A guided tour into subcellular colocalization analysis in light microscopy[J]. Journal of Microscopy,2006,224:213-232
    [170] Mu Q., Broughton D. L., Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon
    nanotubes: developing a model for cell uptake [J]. Nano Lett.,2009,9:4370-4375

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700