用户名: 密码: 验证码:
表面包覆对稀土掺杂Y_2O_3纳米材料上转换发光的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上转换发光材料的特点是所吸收的光子能量低于发射的光子能量(反Stokes定律),是一种颇具发展潜力的功能材料,在夜视系统、彩色显示、传感器、上转换激光器和生物医学等国民经济和国防建设领域有广阔的应用前景。鉴于掺杂稀土离子作为分立发光中心以及纳米材料具有较大的比表面积,纳米化上转换发光材料的表面效应会对其上转换发光产生一定影响,严重时甚至会猝灭荧光,而采用核-壳结构是解决这一问题的有效方法。本论文是以Y2O3:Tm3+-Yb3+纳米材料为范例,通过研究核-壳型Y2O3:Tm3+-Yb3+纳米材料的制备、结构及其上转换发光特性,为进一步提高核-壳型纳米材料的上转换发光性能提供实验和理论基础。
     为了检验纳米材料的表面效应对上转换发光的影响,采用Pechini型sol-gel方法合成了平均粒径为3.6~35 nm的Y2O3:Tm3+ -Yb3+纳米材料;微观结构研究表明,延长烧结时间和提高烧结温度会导致纳米材料的尺寸增大;光谱学研究表明,纳米材料的上转换发光强度依赖于纳米材料的尺寸。鉴于掺杂稀土离子的发光机制,一个外球壳与纳米材料中稀土离子摩尔浓度比的实验模型揭示,尺寸增大会使纳米材料中可参与上转换发光的稀土离子数目逐渐增加,这直接导致上转换发光强度的增加。依据此模型预测,能够产生上转换发光的纳米材料极限尺寸为4 nm。
     为了削弱表面效应对上转换发光特性的影响,采用St?ber方法制备了SiO2或TiO2包覆Y2O3:Tm3+-Yb3+纳米材料;微观结构研究表明,壳层厚度随包覆反应时间或包覆次数的增加而增加;光谱学研究表明,SiO2或TiO2包覆Y2O3:Tm3+-Yb3+纳米材料的上转换发光强度明显高于Y2O3:Tm3+-Yb3+纳米材料的发光强度;Eu3+离子掺杂纳米材料的光辐射量子效率在一定范围内也会随包覆反应时间的延长而逐渐提高。上转换发光增强的机理可解释为当包覆壳层后,壳层与内核纳米材料之间所形成的协作配位场“激活”了镶嵌在纳米材料表面处于“休眠”状态的稀土离子,使其成为新的分立发光中心,而大量新分立发光中心的出现则导致上转换发光强度的增大。进一步研究表明,壳层厚度对上转换发光过程会产生积极和消极两个方面的影响,积极影响是能调节和改善核-壳界面之间协作配位场的强度,有利于上转换发光的增强,而消极影响则是衰减入射泵浦光的强度和吸收分立发光中心辐射的上转换发光强度。积极和消极影响的相互竞争决定了核-壳型纳米材料上转换发光的强度。在壳层厚度相似的条件下,不同壳层材料吸收系数的差异是导致其上转换发光强度存在差异的主要原因。
     为了弱化上转换纳米材料的团簇特性,并使纳米材料具有一定的生物功能性,采用接枝改性法在SiO2包覆Y2O3:Tm3+-Yb3+纳米材料的表面接枝了三种活性有机官能团。结构研究表明,氨基、羧基和醛基官能团已经分别接枝在纳米材料的表面;光谱学研究表明,与Y2O3:Tm3+-Yb3+纳米材料相比,表面改性纳米材料的上转换发光强度均有不同程度的提高;与SiO2包覆Y2O3:Tm3+-Yb3+纳米材料相比,表面改性Y2O3:Tm3+-Yb3+纳米材料的上转换发光强度又略有降低,这表明附着在SiO2外壳上的有机官能团成为上转换发光强度提高的制约因素,因为有机官能团中的高振动能量C-H或C-C振子能够吸收一定的光子能量从而降低激发光的强度,同时也会降低上转换发光强度。Zeta势(ζ电位)和自然沉降实验结果表明,表面改性纳米材料在极性溶液中的分散稳定性均优于Y2O3:Tm3+-Yb3+纳米材料。
     综上所述,本文采用一个简单模型分析了纳米材料尺寸对上转换发光强度的影响,并预测稀土掺杂纳米材料上转换发光的极限尺寸。提出核-壳型纳米材料上转换发光的增强机理,通过实验验证了两个相关的推论。提出壳层厚度对上转换发光产生影响的原因是源自两个作用相互竞争的结果,即基质材料表面处的稀土离子由“休眠”状态转变为“激活”状态,和包覆壳层对入射泵浦光的吸收作用和对辐射上转换发光的再吸收作用。实现了Eu3+掺杂纳米材料的双光子同时吸收上转换发光,采用J-O理论定量地探索壳层厚度对上转换发光性能产生的影响。分析不同壳层材料对上转换发光强度产生影响的原因。氨基、羧基和醛基改性纳米粒子可获得较高的分散稳定性和上转换发光强度。
Upconversion luminescence materials capable of converting infrared radiation into visible light in an efficient way are potential candidates for photonic applications in several areas such as detection of infrared radiation, color displays, sensors, upconversion laser and biomedicine. However, due to the larger specific surface area of nanoparticles and the isolated luminescence centers of rare earth ions, numerous surface effects, such as lattice distortion, broken bond, surface adsorbate and other surface defect inevitably degenerate the fluorescent properties of rare earth ions doped nanoparticles, and even quench the fluorescence. A convenient strategy of growing an undoped shell around the nanoparticle surfaces, i.e. the so-called core-shell structure, can resolve this problem. In this paper, in order to improve the photoluminescence properties of rare earth ions doped nanoparticles, we reported the synthesis, structure and upconversion luminescence properties of core-shell type Y2O3:Tm3+-Yb3+ nano-particles.
     To verify the influence of surface effects on upconversion luminescence of Y2O3:Tm3+-Yb3+ nanoparticles, nanoparticles with average sizes of 3.6~35 nm were synthesized using the Pechini type sol-gel method. Their microstructures show that both prolonging the sinterring time and increasing the sinterring temperature can result in the increase of nanoparticle sizes. The optical spectral results indicate that the upconversion luminescence intensities of Y2O3: Tm3+-Yb3+ nanoparticles are closely related to the sizes of nanoparticles. Considering the luminescence mechanism of rare earth ions doped nanoparticles, the molar concentration ratio of rare earth ions in outside spherical shell to the entire sphere suggests that the increase of nanoparticle sizes can increase the number of rare earth ions participating in upconversion processes, directly resulting to the enhancement of upconversion luminescence intensities. From the model above, we can predict that the limit size of rare earth ions doped nanoparticles for upconversion luminescence is about 4 nm.
     To decrease the influence of surface effects on upconversion luminescence of Y2O3:Tm3+-Yb3+ nanoparticles, SiO2 or TiO2 coated Y2O3:Tm3+-Yb3+ nano- particles were prepared using the St?ber method. Their microstructures show that the shell thicknesses depend on the coating time and the number of the coated-layer. The optical spectral results indicate that the upconversion luminescence intensities of SiO2 or TiO2 coated Y2O3:Tm3+-Yb3+ nanoparticles are higher than those of non-coated nanoparticles, while the radiative quantum efficiencies of Eu3+ ions doped Y2O3 nanoparticles also increase with prolonging the coating time. The improved mechanism in upconversion luminescence intensities is that the cooperation ligand fields between shell and core structures can activate the“dormant”rare earth ions near or on the surfaces of nanoparticles; and new isolated luminescence centers of rare earth ions on the surfaces of nanoparticles will be formed; a lot of new luminescence centers result in the increase of upconversion luminescence intensities of the coated Y2O3:Tm3+-Yb3+ nano-particles. A competition process between two mechanisms was proposed to explain the effects of different thickness shells on upconversion luminescence intensities. One mechanism is the role conversion of rare earth ions on the nanoparticles’surfaces, which is from the“dormant”state to the“activated”state due to the cooperation ligand fields. The other is the absorption effects of shells on incident pump light and the reabsorption effects of shells on upconversion luminescence. The differences of the absorption coefficients for different shell materials can result in different upconversion luminescence intensities when they have similar shell thicknesses.
     To weaken the agglomeration of upconversion nanomaterials and bio- functionalize the upconversion nanomaterials, SiO2 coated Y2O3:Tm3+-Yb3+ nanoparticles were modified using the ligand-exchanging method. The microstructures show that amine, carboxyl and aldehyde functional groups have been modified on the surfaces of nanoparticles. The optical spectral results indicate that the upconversion luminescence intensities of surface-modified nanoparticles are higher than those of Y2O3:Tm3+-Yb3+ nanoparticles, while the upconversion luminescence intensities of surface-modified nanoparticles are slightly lower than those of SiO2 coated Y2O3:Tm3+-Yb3+ nanoparticles. Organic functional groups become the limiting factors for enhancing upconversion luminescence intensities, because the organic ligands with high energy C-H and C-C vibrational oscillators on the nanoparticle surfaces can absorb certain photon energies to decrease pump light and upconversion luminescence intensities. The results of Zeta potential (ζ) and plain sedimentation suggest that the stabilities of surface-modified nanoparticles in polarity solutions are better than those of non-modified nanoparticles.
     In summary, a simple model is utilized to demonstrate the influence of quantum size effect on the upconversion luminescence intensities of nano-particles,and then predict the limit size of rare earth ions doped nanoparticles for upconversion luminescence. The mechanism of the enhancement of upcon-version luminescence for core-shell type nanoparticles is presented, and two relative deductions are confirmed by spectral experiments. A competition process between two mechanisms is proposed to explain the effects of different thickness shells and different shell materials on upconversion luminescence intensities: the role conversion of rare earth ions on the nanoparticles’surfaces from the“dormant”state to the“activated”state, and the absorption effects of shells on incident pump light and the reabsorption effects of shells on upconversion luminescence. A two-photon simultaneous absorption upconversion lumine-scence of SiO2-coated Y2O3 nanoparticles doped with Eu3+ ions is obtained, and a Judd–Ofelt theory is used to quantificationally probe the influence of shell thicknesses on upconversion luminescence intensities. The influence of different shell materials on upconversion luminescence intensities is analyzed. After the surface modification with amine, carboxyl and aldehyde functional groups, the upconversion nanomaterials with better stabilities in polarity solutions and higher luminescence intensities are obtained.
引文
1. J. C. Boyer, L. A. Cuccia, J. A. Capobianco. Synthesis of Colloidal Upconverting NaYF4:Er3+/Yb3+ and Tm3+/Yb3+ Monodisperse Nanocrystals. Nano Lett. 2007, 7(3),847~852
    2.孙家跃,杜海燕.固体发光材料.化学工业出版社. 2003: 590~610
    3.何捍卫,周科朝,熊翔,黄伯云.红外-可见光的上转换材料研究进展.中国稀土学报.2003, 21(2):123~128
    4. J. A. Capobianco, F. Vetrone, J. C. Boyer, A. Speghini, M. Bettinelli. Enhancement of Red Emission (4F9/2→4I15/2) via Upconversion in Bulk and Nanocrystalline Cubic Y2O3:Er3+. J. Phys. Chem. B. 2002, 106:1181~1187
    5. X. Wang, X. G. Kong, G. Y. Shan,Y. Yu, Y. J. Sun, L. Y. Feng, K. F. Chao, S. Z. Lu, Y. J. Li. Luminescence Spectroscopy and Visible Upconversion Properties of Er3+ in ZnO Nanocrystals. J. Phys. Chem. B. 2004, 108: 18408~18413
    6. A. Patra, P. Ghosh, P. S. Chowdhury, M. A. R. C. Alencar,W. B. Lozano, N. Rakov, S. G. Maciel. Red to Blue Tunable Upconversion in Tm3+-Doped ZrO2 Nanocrystals. J. Phys. Chem. B. 2005, 109:10142~10146
    7. E. D. L Rosa, L. A. D. Torres, P. Salas, R. A. Rodriguez. Visible Light Emission under UV and IR Excitation of Rare Earth doped ZrO2 Nanophosphor. Optical Materials. 2005, 27: 1320~1325
    8. D. Y. Xu, J. G. Zang. Progress of Study on Upconversion Laser & Luminescence Materials. Journal of Synthetic Crystals. 2001, 30(2):203~210
    9. X. L. Ruan, M. Kaviany. Enhanced Laser Cooling of Rare Earth Ions Doped Nanocrystalline Powders. Phys. Rev. B. 2006, 73:155422~15
    10.苏锵.国家中长期科学和技术发展规划纲要中与稀土有关部分的思考——稀土发光材料部分.四川稀土. 2006, 3:2~4
    11. F. Wang, D. K. Chatterjee, Z. Q. Li, Y. Zhang, X. P. Fan, M. Q. Wang. Synthesis of Polyethylenimine/NaYF4 Nanoparticles with Upconversion Fluorescence. Nanotechnology. 2006, 17:5786~5791
    12. S. Sivakumar, P. R. Diamente, F. C. J. M. van Veggel. Silica-Coated Ln3+-Doped LaF3 Nanoparticles as Robust Down- and Up-converting Biolabels. Chemistry: A European Journal. 2006, 12: 5878~5884
    13. K. Kuningas, T. Rantanen, U. Karhunen, T. L?vgren, T. Soukka. Simultaneous Use of Time-Resolved Fluorescence and Anti-Stokes Photoluminescence in a Bioaffinity Assay. Anal. Chem. 2005, 77:2826~2834
    14. H. H. Peng, H. W. Song, B. J. Chen, S. Z. Lu, S. H. Huang. Spectral Difference between Nanocrystalline and Bulk Y2O3:Eu3+. Chem. Phys. Lett. 2003, 370: 485~489
    15. C. H. Yan, L. D. Sun, C. S. Liao, Y. X. Zhang, Y.Q. Liu, S. H. Huang, S. Z. Lü. Eu3+ ion as Fluorescent Probe for Detecting the Surface Effect in Nanocrystals. Appl. Phys. Lett. 2003, 82(20):3511~3513
    16.刘春旭,张家骅,吕少哲,刘俊业.纳米Gd2O3:Eu3+中Judd-Ofelt参数的实验确定.物理学报. 2004,53(11):3945~3949
    17. K. K?mpe, H. Borchert, J. Storz, A. Lobo, S. Adam, T. M?ller, M. Haase. Gree-Emitting CePO4: Tb/LaPO4 Core-Shell Nanoparticles with 70% Photo-luminescence Quantum Yield. Angew. Chem. Int. Ed. 2003, 42:5513~5516
    18. J. W. Stouwdam, F. C. J. M. van Veggel. Improvement in the Luminescence Properties and Processability of LaF3/Ln and LaPO4/Ln Nanoparticles by Surface Modification. Langmuir. 2004, 20:11763~11771
    19. G. S. Yi, G. M. Chow.Water-Soluble NaYF4: Yb, Er(Tm)/ NaYF4/ Polymer Core/Shell/Shell Nanoparticles with Significant Enhancement of Upcon-version Fluorescence. Chem. Mater. 2007, 19 (3):341~343
    20. Z. Q. Li, Y. Zhang. Monodisperse Silica-Coated Polyvinylpyrrolidone/ NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission. Angew. Chem. 2006, 118:7896~7899
    21. M. M. Lezhnina, T. Jüstel, H. K?tker, D. U. Wiechert, U. H. Kynast. Efficient Luminescence from Rare-Earth Fluoride Nanoparticles with Optically Functional Shells. Adv. Funct. Mater. 2006, 16: 935~942
    22.杨定明.纳米级稀土发光材料的制备及发光性能研究.四川大学博士论文. 2005:3~8
    23.徐长远,王永生,黄最明.发光材料研究进展.光电子技术与信息. 1997, 10(1):8~12
    24.赵凯华,罗蔚茵.量子物理.高等教育出版社. 2001:246~266
    25.孙家跃,杜海燕.固体发光材料.化学工业出版社. 2003: 40~54
    26. B. R. Judd. Optical Absorption Intensities of Rare Earth Ions. Phys. Rev. 1962, 127(3):750~761
    27. G. S. Ofelt Intensities of Crystal Spectra of Rare Earth Ions. J. Chem. Phys. 1962, 37 (3):511~520
    28. W. T. Carnall, P. R. Fields, K. Rajnak. Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions, ?. Pr3+, Nd3+, Pm3+, Sm3+,Dy3+,Ho3+,Er3+ and Tm3+. J. Chem. Phys. 1968, 49(10):4424~4442
    29. W. T. Carnall, P. R. Fields, K. Rajnak. Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions, ?V. Eu3+. J. Chem. Phys. 1968, 49(10): 4450~4455
    30. F. Bitter. The Optical Detection of Radiofrequency Resonance. Phys. Rev. 1949, 76:833~835
    31. A. Kastler. Les Méthods Optiques D`orientation Atomique ET Leurs Appli-cations. Proc. Phys. Sco. London. 1954, A67:853~863
    32. N. Bloembergen. Solid State Infrared Quantum Counters. Phys. Rev. Lett. 1959, 2:84~85
    33. F. E. Auzel. Compteur Quantique par Transfert D`énergie de Yb3+áTm3+ dans UN Tungstate Mixte ET dans UN Verre Germanate. Comt. Rend. Acad. Sci. (Paris). 1966, 263:819~821
    34. F. E. Auzel. Materials and Devices Using Double-Pumped Phosphors with Energy Transfer. Proceedings of the IEEE.1973, 61(6):758~786
    35. J. C. Wright. Up-Conversion and Excited-State Energy Transfer in Rare-Earth doped Materials. In Radiationless Processes in Molecules and Condensed Phases; Fong, F. K., Ed. Topics in Applied Physics. Springer: New York. 1976, 15: 239~245
    36. L.F. Johnson, H. Guggenheim. Infrared-Pumped Visible Laser. Appl. Phys. Lett. 1971, 19:44~46
    37. J. S. Chivian, W. E. Case, D. D. Eden. The photon avalanche: A new phenomenon in Pr3+-based infrared quantum counters. Appl. Phys. Lett. 1979, 35:124~126
    38. A. J. Silversmith. Green infrared-pumped erbium upconversion laser. Appl.Phys. Lett. 1987, 51:1977~1979
    39. J. Y. Allain, M. Monerie, H. Poignant. Tunable Green Upconversion Erbium Fibre Laser. Electronics Letters. 1992, 28: 111~113
    40. Y. X. Zhao, F. Simon, P. Simon. 22 mW Blue Output Power from A Pr3+ Fluoride Fibre Upconversion Laser. Optics Communications. 1995, 114: 285~288
    41. S. Sanders, R. G. Waarts, D. G. Mehuys. Laser Diode Pumped 106 mW Blue Upconversion Fiber Laser. Appl. Phys. Lett. 1995, 67: 1815~1817
    42. Sandrock. T, Scheife. H, Heumann. E, Huber. G. High Power Continuous Wave Upconversion Fiber Laser at Room Temperature. Optics Letters. 1997, 22: 808~810
    43. E. A. Downing, L. Hesselink, R. M. Macfarlane. Conference Proceedings Lasers and Electro Optics Society Annual Meeting. 1994, 8NJ: 6
    44. X. B. Chen, Y. X. Nie, W. M. Du. Comparison Investigation of Direct Upconversion Sensitization Luminescence between Er-Yb: Oxyfluoride Glass and Vitroceramics. Optics Communications.2000, 184: 289~304
    45. H. U. Güdel, M. Pollnau. Near-Infrared to Visible Photon Upconversion Processes in Lanthanide Doped Chloride, Bromide and Iodide Lattices. J. Alloys and Compounds. 2000, 303-304:307~315
    46. R. Balda, L .M. Lacha, Mendioroz.A. Upconversion Processes in Nd3+ Doped Fluoroarsenate Glasses. J. Alloys and Compounds. 2001, 323-324: 255~259
    47. U. H?mmerich, E. E. Nyeina, S. B. Trivedi. Crystal Growth, Upconversion, and Infrared Emission Properties of Er3+-doped KPb2Br5. J. Lumin. 2005, 113:100~108
    48. A. J. G. Adeva, R. Balda, J. Fernández, E. E. Nyeina, U. H?mmerich. Dynamics of the Infrared-to-Visible Upconversion in an Er3+-Doped KPb2Br5 Crystal. Phys. Rev. B. 2005, 72:165116~165127
    49. A. S. Gouveia-Neto, L. A. Bueno, R. F. do Nascimento, E. A. da Silva, J. E. B. da Costa, V. B. do Nascimento. White Light Generation by Frequency Upconversion in Tm3+/Er3+/Yb3+-Codoped Fluorolead Germanate Doped Glass. Appl. Phys. Lett. 2007, 91:091114~3
    50. F. E. Auzel. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104: 139~173
    51. M. F. Joubert. Photon Avalanche Upconversion in Rare Earth Laser Materials. Optical Materials. 1999, 11:181~203
    52. R. Balda, A. J. G. Adeva, M. Voda, J. Fernández. Upconversion processes in Er3+-doped KPb2Cl5. Phys. Rev. B. 2004, 69:205203~8
    53. G. Y. Chen, G. Somesfalean, Y. Liu, Z. G. Zhang, Q. Sun, F. P Wang. Upconversion Mechanism for Two-Color Emission in Rare-Earth-ion-Doped ZrO2 Nanocrystals. Phys. Rev. B. 2007,75: 195204~5
    54. G. Wakefield, H. A. Keron, P. J. Dobson, J. L. Hutchison. Synthesis and Properties of Sub-50-nm Europium Oxide Nanoparticles. J. Colloid. Interface. Sci. 1999, 215:179~182
    55. D. K. Williams, H. Yuan, B. M. Tissue. Size Dependence of Luminescence Spectra and Dynamics of Eu3+:Y2O3 Nanocrystals. J. Lumin. 1999, 83-84: 297~300
    56. Z. Q. Li, Y. Zhang. Monodisperse Silica-Coated Polyvinylpyrrolidone/ NaYF4 Nanocrystals with Multicolor Upconversion Fluorescence Emission. Angew. Chem. Int. Ed. 2006, 45:7732~7735
    57. S. Heer, K. K?mpe, H. U. Güdel, M. Haase. Highly Efficient Multicolor Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004, 14: 2102~2105
    58. G. X. Liu, G. Y. Hong, X. T. Dong, J. X. Wang. Silica-Coated Y2O3:Eu Nanoparticles and Their Luminescence Properties. J. Lumin. 2007, 126: 702~706
    59. P. Ghosh, A. Patra. Influence of Surface Coating on Physical Properties of TiO2/Eu3+ Nanocrystals. J. Phys. Chem. C. 2007, 111:7004~7010
    60. E. Snoeks, A. Langendijk, A. Polman. Mearsuring and Modifying the Spontaneous Emission Rate of Erbium near the Interface. Phys. Rev. Lett. 1995, 74(13):2459~2462
    61.王新,单桂晔,安利民,朝克夫,曾庆辉,陈宝玖,孔祥贵.Y2O3:Er3+纳米晶Anti-Stokes发光性质的研究.物理学报.2004, 53(6):1972~1976
    62.俞莹,吕树臣,周百斌,辛显双.纳米晶ZrO2:Yb3+-Er3+的制备及其室温上转换发射.物理学报. 2006, 55(8):4332~4336
    63. A. Patra, C. S. Friend, R. Kapoor, P. N. Prasad. Upconversion in Er3+:ZrO2 Nanocrystals. J. Phys. Chem. B. 2002, 106: 1909~1912
    64. A. Patra. Effect of Crystal Structure and Concentration on Luminescence in Er3+:ZrO2 Nanocrystals. Chem. Phys. Lett. 2004, 387:35~39
    65. A. Patra, S. Saha, M. A. R. C. Alencar, N. Rakov, G. S. Maciel. Blue Upconversion Emission of Tm3+-Yb3+ in ZrO2 Nanocrystals: Role of Yb3+ Ions. Chem. Phys. Lett. 2005, 407: 477~481
    66. T. Hirai, T. Orikoshi, I. Komasawa. Preparation of Y2O3:Yb, Er Infrared-to-Visible Conversion Phosphor Fine Particles Using an Emulsion Liquid Membrane System. Chem. Mater. 2002, 14: 3576~3583
    67. T. Hirai, T. Orikoshi. Preparation of Yttrium Oxysulfide Phosphor Nanoparticles with Infrared-to-Green and -Blue Upconversion Emission using An Emulsion Liquid Membrane System. J. Colloid. Interface. Sci. 2004, 273:470~477
    68. X. Wang, J. Zhuang, Q. Peng, Y. D. Li. A General Strategy for Nanocrystal Synthesis. Nature. 2005, 437(1):121~124
    69. L. Y. Wang, P. Li, Y. D. Li. Down- and Up-Conversion Luminescent Nanorods. Adv. Mater. 2007, 19:3304~3307
    70. F. Bai, D. S. Wang, Z. Y. Huo,W. Chen, L. P. Liu, X. Liang, C. Chen, X. Wang, Q. Peng, Y. D. Li. A Versatile Bottom-Up Assembly Approach to Colloidal Spheres from Nanocrystals. Angew. Chem. Int. Ed. 2007, 46: 6650~6653
    71. X. Bai, H. W. Song, L. X. Yu, L. M. Yang, Z. X. Liu, G. H. Pan, S. Z. Lu, X. G. Ren, Y. Q. Lei, L. B. Fan. Luminescent Properties of Pure Cubic Phase Y2O3/Eu3+Nanotubes/Nanowires Prepared by a Hydrothermal Method. J. Phys. Chem. B. 2005, 109:15236~15242
    72. X. Li, Q. Li, J. Y. Wang, J. Li. Hydrothermal Synthesis of Er-Doped Yttria Nanorods with Enhanced Red Emission via Upconversion. J. Lumin. 2007, 124:351~356
    73. G. J. H. De, W. P. Qin, J. S. Zhang, J. H. Zhang, Y. Wang, C. Y. Cao,Y. Cui. Effect of OH? on the Upconversion Luminescent Efficiency of Y2O3:Yb3+, Er3+ Nanostructures, Solid State Communications. 2006, 137: 483~487
    74. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104: 3893~3946
    75. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H. J. Zhang, Y. C. Han. Fabrication, Patterning and Optical Properties of Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography. Chem. Mater. 2002, 14: 2224~2231
    76. M. Yu, J. Lin, J. Fang. Silica Spheres Coated with YVO4:Eu3+ Layers via Sol-Gel Process: A Simple Method to Obtain Spherical Core-Shell Phosphors. Chem. Mater. 2005, 17:1783~1791
    77. C. K. Lin, C. M. Zhang, J. Lin. Phase Transformation and Photolumine-scence Properties of Nanocrystalline ZrO2 Powders Prepared via the Pechini-type Sol-Gel Process. J. Phys. Chem. C. 2007, 111:3300~3307
    78. J. Lin, M. Yu, C. K. Lin, X. M. Liu. Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol-Gel Process: Synthesis and Characteristics. J. Phys. Chem. C. 2007, 111:5835~5845
    79. S. Saengkerdsub, H. J. Im, C. Willis, S. Dai. Pechini-Type in-situ Polymerizable Complex (IPC) Method Applied to the Synthesis of Y2O3:Ln (Ln = Ce or Eu) Nanocrystallites. J. Mater. Chem. 2004, 14:1207~1211
    80. W. P. Guo, A. K. Datye, T. L. Ward. Synthesis of Barium Titanate Powders by Aerosol Pyrolysis of A Pechini-Type Precursor Solution. J. Mater. Chem. 2005, 15:470~477
    81. S. A. M. Lima, R. Davolos, G. Quirino, C. Legnani, M. Cremona. Low-Voltage Electroluminescence of Europium in Zinc Oxide Thin Films. Appl. Phys. Lett. 2007, 90:023503~3
    82. Y. W. Zhang, Y. Yang, S. J. Tian, C. S. Liao, C. H. Yan. Sol–Gel Synthesis and Electrical Properties of (ZrO2)0.85(REO1.5)0.15 (RE=Sc, Y) Solid Solutions. J. Mater. Chem. 2002, 12:219~224
    83.肖林久,孙彦彬,邱关明,陈永杰,代少俊.纳米稀土发光材料的研究进展.稀土. 2002, 23(4):46~49
    84.张中大,张俊英.无机光致发光材料及应用.化学工业出版社. 2005:263~290
    85. S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C. K. Tung, D. Tank, R. H. Austin. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis Elegans. Nano Lett. 2006,6(2):169~174
    86.凌诒萍,左伋,杨怡,陈誉华,陈赛娟,胡以平.细胞生物学.人民卫生出版社.2001:46~49
    87. H. Flachsbart, W. St?ber. Preparation of Radioactively Labeled Monodis-perse Silica Spheres of Colloidal Size. J. Colloid. Interface. Sci. 1969, 30: 568~573
    88. H. Wang, M. Yu, C. Lin, X. Liu, J. Lin. Synthesis and Luminescence Properties of Monodisperse Spherical Y2O3:Eu3+@SiO2 Particles with Core-shell Structure. J. Phys. Chem. C. 2007,111: 11223~11230
    89. C. K. Lin, D. Y. Kong, X. M. Liu, H. Wang, M. Yu, J. Lin. Monodisperse and Core-Shell-Structured SiO2@YBO3:Eu3+ Spherical Particles: Synthesis and Characterization. Inorg. Chem. 2007, 46: 2674~2681
    90.丁晓英,范慧俐,徐晓伟,郑延军.上转换无机荧光材料表面的氨基修饰.发光学报. 2006, 27(4):495~498
    91.崔黎黎,范慧俐,孟璐,徐晓伟,刘佳.上转换发光材料表面修饰羧基的制备与表征.功能材料. 2007, 38(1):4~10
    92. L. L. Cui, H. L. Fan, X. W. Xu, Y. P. Li. Research on Surface Modification of Upconversion Luminescence Na [Y0. 57Yb0. 39 Er0. 04] F4 by Glutaral-dehyde. J. Synthetic Crystals. 2007, 36(2):334~337
    93. R. W. G. Wyckoff. Crystals Structures. 2nd Ed (Interscience New York). 1964: 2: 2ff
    94. R. P. Leavitt, J. B. Gruber, N. C Chang. Optical Spectra, Energy Levels and Crystal-field Analysis of Tripositive Rare Earth Ions in Y2O3.ΙΙ. Non-Karmers Ions in C2 Sites. J. Chem. Phys. 1982, 76(10):4775~4788
    95. J. Silver, M. I. Martinez-Rubio, T. G. Ireland, G. R. Fern, R. Withnall. Yttrium Oxide Upconverting Phosphors. Part 4: Upconversion Luminescent Emission from Thulium-Doped Yttrium Oxide under 632.8 nm Light Excitation. J. Phys. Chem. B. 2003, 107:1548~1553
    96. X. L. Ruan, M. Kaviany. Enhanced Laser Cooling of Rare-Earth-Ion-Doped Nanocrystalline Powders. Phys. Rev. B. 2006, 73:155422~155435
    97. X. Li, Q. Li, Z. G. Xia, L. Wang, W. X. Yan, J. Y. Wang, R. I. Boughton. Growth and Characterization of Single-Crystal Y2O3: Eu Nanobelts Prepared with a Simple Technique. Crystal Growth & Design. 2006, 6(10): 2193~2196
    98. L. A. Riseberg, H. W. Moos. Multiphonone Orbit-Lattice Relaxation ofExcited States of Rare Earth Ion in Crystals. Phys. Rev. 1968, 174(2): 429~438
    99.卢亚雄,余学才,张晓霞.激光物理.北京邮电大学出版社.2005:52~61
    100. M. Wermuth, T. Riedener, H. U. Güdel. Spectroscopy and Upconversion Mechanisms of CsCdBr3: Dy3+. Phys. Rev. B. 1998, 57(8): 4369~4376
    101. R. Balda, J. Fernández, A. Mendioroz, M. Voda, M. A. Saleh. Infrared-to-Visible Upconversion Processes in Pr3+/Yb3+-codoped KPb2Cl5. Phys. Rev. B. 2003, 68(16):165101~7
    102.徐叙瑢,苏勉曾.发光学与发光材料.化学工业出版社. 2004:185~189
    103.黄培云.粉末冶金原理.冶金工业出版社. 1997:265~338
    104. X. Y. Chen, H. Z. Zhuang, G. K. Liu, S. Li, R. S. Niedbala. Confinement on Energy Transfer between Luminescent Centers in Nanocrystals. J. Appl. Phys. 2003, 94:5559~5565
    105.张庆礼,何伟,孙敦陆,王爱华,殷绍唐. Judd-Ofelt光谱分析理论.谱学与光谱分析.2005,25(3):329~333
    106.孙宝娟,刘泉林,梁敬魁,纪丽娜,张继业,刘延辉,李静波,饶光辉.Y2O3-Eu2O3-SnO2三元系固相线下相关系及其发光性质研究.物理学报.2007,56 (12) :7147~7152
    107. C. X. Liu, J. Y. Liu, K. Dou. Judd-Ofelt Intensity Parameters and Spectral Properties of Gd2O3:Eu3+ Nanocrystals. J. Phys. Chem. B. 2006, 110: 20277~20281
    108. M. Chen, S. X. Zhou, L. M. Wu, S. H. Xie, Y. Chen. Preparation of Silica-Coated Polystyrene Hybrid Spherical Colloids. Macromol. Chem. Phys. 2005, 206:1896~1902
    109. C. A. Traina, J. Schwartz. Surface Modification of Y2O3 Nanoparticles. Langmuir. 2007, 23:9158~9161
    110. R. P. Bagwe, L. R. Hilliard, W. H. Tan. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir. 2006, 22:4357~4362
    111. M. F. Wang, J. K. Oh, T. E. Dykstra, X. D. Lou, G. D. Scholes, M. A. Winnik. Surface Modification of CdSe and CdSe/ZnS Semiconductor Nanocrystals with Poly (N, N-dimethylaminoethyl methacry-late). Macro-molecules.2006, 39:3664~3672
    112. M. Jebb, P. K. Sudeep, P. Pramod, K. G. Thomas, P. V. Kamat. Ruthenium (II) Trisbipyridine Functionalized Gold Nanorods. Morphological Changes and Excited-State Interactions. J. Phys. Chem. B. 2007, 111:6839~6844
    113. S. H. Kwon, B. J. Hong, H. Y. Park, W. G. Knoll, J. W. Park. DNA-DNA Interaction on Dendron-Functionalized Sol-Gel Silica Films Followed with Surface Plasmon Fluorescence Spectroscopy. J. Colloid. Interface. Sci. 2007, 308:325~331
    114. Y. L. Qi, M. Chena, S. Liang, J. Zhao, W. Yang. Hydrophobation and Self-Assembly of Core-Shell Au@SiO2 Nanoparticles. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2007, 302:383~387
    115. B. K. Teo, X. H. Sun. Silicon-Based Low-Dimensional Nanomaterials and Nanodevices. Chem. Rev. 2007, 107:1454~1532
    116. A. Schroedter, H. Weller, R. Eritja, W. E. Ford, J. M. Wessels. Biofunctionalization of Silica-Coated CdTe and Gold Nanocrystals. Nano Lett. 2002, 2(12):1363~1367
    117. A. Duran, C. Serna, V. Fornes, Fernandez, J. M. Navarro Structural Considerations about SiO2 Glasses Prepared by Sol-Gel. J. Non-Cryst. Solids. 1986, 82: 69~77
    118. Z. Dang, B. G. Anderson, Y. Amenomiya, B. A. Morrow. Silica-Supported Zirconia. 1. Characterization by Infrared Spectroscopy, Temperature-Programmed Desorption, and X-ray Diffraction. J. Phys. Chem. 1995, 99: 14437~14443
    119. Z. F. Liu, R. J. Davis. Investigation of the Structure of Microporous Ti-Si Mixed Oxides by X-ray, UV Reflectance, FT-Raman, and FT-IR Spectro-scopes. J. Phys. Chem. 1994, 98: 1253~1261
    120. P. J. Dirken, M. E. Smith, H. J. Whitfield. 17O and 29Si Solid State NMR Study of Atomic Scale Structure in Sol-Gel-Prepared TiO2-SiO2 Materials. J. Phys. Chem. 1995, 99: 395~401
    121. A. Kyt?kivi, S. Haukka. Reactions of HMDS, TiCl4, ZrCl4, and AlCl3 with Silica As Interpreted from Low-Frequency Diffuse Reflectance Infrared Spectra. J. Phys. Chem. B. 1997, 101: 10365~10372
    122. A. M. E. Toni, S. Yin, T. Sato. Control of Silica Shell Thickness and Microporosity of Titania-Silica Core-Shell Type Nanoparticles to Depressthe Photocatalytic Activity of Titania. J. Colloid. Interface. Sci. 2006, 300: 123~130
    123. H. J. Feng, Y. Chen, F. Q. Tang, J. Ren. Synthesis and Characterization of Monodispersed SiO2/Y2O3:Eu3+ Core-shell Submicro-spheres. Mater. Lett. 2006, 60: 737~740
    124.母国光,战元龄.光学.人民教育出版社. 1978:537
    125. D. R. Gamelin, S. R. Lüthi, H. U. Güdel. The Role of Laser Heating in the Intrinsic Optical Bistability of Yb3+-Doped Bromide Lattices. J. Phys. Chem. B. 2000, 104:11045~11057
    126.罗文雄,黄世华,由芳田,彭洪尚.YBO3:Eu3+纳米晶发光特性.物理学报.2007, 56 (3):1765~1769
    127. C. K. J?rgensen, B. R. Judd. Hypersensitive Pseudoquadrupole Transitions in Lanthanides. Mol. Phys. 1964, 8(3):281~290
    128. S. Tanabe. Optical Transitions of Rare Earth Ions for Amplifiers: How the Local Structure Works in Glass. J. Non-Cryst. Solids. 1999,259:1~9
    129.陈宝玖,王海宇,鄂书林,黄世华.从Eu3+发射光谱获得J-O参数?2、?4.发光学报. 2001, 22(2): 139~142
    130. R. Debnath, A. Nayak, A. Ghosh. On the Enhancement of Luminescence Efficiency of Y2O3:Eu3+ Red Phosphor by Incorporating (Al3+, B3+) in the Host Lattice. Chem. Phys. Lett. 2007,444:324~327
    131. F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, M. Bettinelli. A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+, Yb3+ Nanocrystals. J. Phys. Chem. B. 2005, 109:17400~17405
    132. C. Cannas, M. Casu, M. Mainas, A. Musinu, G. Piccaluga, S. Polizzi, A. Speghini, M. Bettinelli. Synthesis, characterisation and optical properties of nanocrystalline Y2O3-Eu3+dispersed in a silica matrix by a deposition-precipitation method. J. Mater. Chem. 2003,13:3079~3084
    133. P. Riello, S. Bucella, D. Cristofori, A. Benedetti, R. Polloni, E. Trave, P. Mazzoldi. Effect of the Microstructure on Concentration Quenching in Heavily Doped Tb2O3-ZrO2 Nanoparticles Embedded in Silica. Chem. Phys. Lett. 2006, 431:326~331
    134. A. Borrás, A. Barranco, F. Yubero, A. R. González-Elipe. Supported Ag-TiO2 Core-Shell Nanofibres Formed at Low Temperature by Plasma Deposition. Nanotechnology. 2006, 17:3518~3522
    135. S. Cerneaux, X. Y. Xiong, G. P. Simon, Y. B. Cheng, L. Spiccia. Sol–gel synthesis of SiC-TiO2 nanoparticles for microwave processing. Nanotechno-logy. 2007, 18:055708~10
    136. L. Y. Bai, X. Y. Su, M. K. Lei. Effect of Chelation on PL Properties of Er3+ doped TiO2 Powders Prepared by Sol-gel Method. J. Inorg. Mater. 2006, 21(5):1085~1091
    137. S. R. Lu, H. L. Zhang, C. X. Zhao, X. Y. Wang. New Epoxy/ Silica-Titania Hybrid Materials Prepared by the Sol–Gel Process. J. App. Polym. Sci. 2006, 101(2):1075~1081
    138. A. M. E. Toni, S. Yin, T. G. Sato. Control of Silica Shell Thickness and Microporosity of Titania-Silica Core-Shell Type Nanoparticles to depress the Photocatalytic Activity of Titania. J. Colloid. Interface. Sci. 2006, 300: 123~130
    139. A. D'Orazio, M. De Sario, L. Mescia, V. Petruzzelli, F. Prudenzano, A. Chiasera, M. Montagna, C. Tosello, M. Ferrari. Design of Er3+ doped SiO2–TiO2 planar waveguide amplifier. J. Non-Cryst. Solids. 2003, 322:278~283
    140. H. Q. Jiang, Q. Wei, Q. X. Cao, X. Yao. Spectroscopic ellipsometry characterization of TiO2 thin films prepared by the sol-gel method. Ceramics International. 2008, 34 :1039~1042
    141. A. Konrad, U. Herr, R. Tidecks, F. Kummer, K. Samwer. Luminescence of bulk and nanocrystalline cubic yttria. J. App. Phys. 2001, 90(7):3516~3523
    142.刘晃清,王玲玲,邹炳锁.退火温度对ZrO2纳米材料中Eu3+离子发光的影响.物理学报. 2007, 56(1):556~560
    143. G. H. Chen, Z. B. Guan. Transition Metal-Catalyzed One-Pot Synthesis of Water-Soluble Dendritic Molecular Nanocarriers. J. Am. Chem. Soc. 2004, 126:2662~2663
    144. S. M. Chen, G. Z. Wu, Y. D. Liu, D. W. Long. Preparation of Poly (acrylic acid) Grafted Multiwalled Carbon Nanotubes by a Two-Step Irradiation Technique. Macromolecules. 2006, 39:330~334
    145. A. S. Pereira, M. Peres, M. J. Soares, E. Alves, A. Neves, T. Monteiro, T. Trindade, Synthesis, Surface Modification and Optical Properties of Tb3+-doped ZnO Nanocrystals. Nanotechnology. 2006,17:834~839
    146.沈钟,赵振国,王果庭.胶体与表面化学.第三版.化学工业出版社. 2004:368
    147. T. Gougousi, D. Niu, R. W. Ashcraft, G. N. Parsons. Carbonate Formation during Post-Deposition Ambient Exposure of High-k Dielectrics. Appl. Phys. Lett. 2003, 83:3543~3545
    148. M. D. Porter, T. B. Bright, D. L. Allara, C. E. D. Chidsey. Spontaneously Organiz-ed Molecular Assemblies.4.Structural Characterization of N-alkyl Thiol Monolayer on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry. J. Am. Chem. Soc. 1987,109:3559~3568
    149.李润卿,范国梁.有机结构波谱分析.天津大学出版社. 2002:99~100
    150. S. Heer, O. Lehmann, M. Haase, H. U. Güdel. Blue, Green, and Red Upconversion Emission from Lanthanide-Doped LuPO4 and YbPO4 Nanocrystals in a Transparent Colloidal Solution. Angew. Chem. Int. Ed. 2003, 42:3179~3182.
    151. S. Heer, K. K?mpe, H. U. Güdel, M. Haase. Highly Efficient Multicolor Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004,16:23~24
    152.高濂,孙静,刘阳桥,纳米粉体的分散及表面改性.化学工业出版社.2003: 112~124
    153.沈钟,赵振国,王果庭.胶体与表面化学.第三版.化学工业出版社. 2004: 70~93
    154. M. Grit, W. J. M. Underderg, D. J. A. Crommelin. Hydrolysis of Satured Soybean Phosphatidylcholine in Aqueous Liposome Dispersiomes. J. Pharm. Sci. 1993, 82(4):362~366
    155.王思玲,苏德森.胶体分散药物制剂.人民卫生出版社. 2006:386~429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700