用户名: 密码: 验证码:
水溶性荧光聚合物的设计、合成与荧光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自首次合成荧光聚合物被报道以来,荧光聚合物引起了人们的广泛关注,近年来,人们已经制备了不同类型的荧光聚合物。而在众多类型的荧光聚合物中,由于水溶性荧光聚合物克服了荧光小分子不易溶于水的缺点,具备了潜在的应用前景。在本文中,我们综述了荧光聚合物的研究进展,制备了含有香豆素,荧光素以及1,8-萘酰亚胺发色团的五种水溶性荧光聚合物并对它们的荧光性质做了详细的研究。
     本论文选用无毒、廉价以及与生物体有较好相容性的水溶性高分子作为原料,以功能化的香豆素、荧光素和1,8-萘酰亚胺作为发色团,通过活性基团修饰法和基于荧光功能单体制备荧光聚合物两种方式将有机荧光分子引入到聚合物基体中,实现了荧光小分子的高分子化。采用核磁(~1H NMR),质谱(HR-MS),红外光谱(FT-IR),差示扫描量热法(DSC),可见紫外分光光度仪(UV-Vis)和荧光光谱等方法对合成的荧光分子以及荧光聚合物的结构和性能做了表征,系统地研究了所合成的荧光聚合物的荧光性能。
     (1)我们首先采用活性基团修饰法,选择香豆素为发色团,使7-羟基-4-甲基香豆素与环氧氯丙烷反应,合成出带有活性环氧基团的7-环氧丙氧基-4-甲基香豆素(MEC),然后通过开环反应将MEC接枝到聚乙烯醇的侧链上,制备了一种蓝紫色的荧光材料,实现香豆素的高分子化。研究体系在不同酸碱条件下聚合物荧光的变化,实验结果证明所合成的这种荧光材料与小分子7-羟基-4-甲基香豆素相比,环境的酸碱性对其荧光的影响不大。此外,还研究了温度(从0℃到60℃)对聚合物荧光强度的影响,得到荧光强度随温度变化的线性方程。随着温度的升高,聚合物荧光强度下降。实验证明所得的荧光聚合物具有良好的水溶性,其荧光强度对温度具有敏感特性。
     (2)我们采用基于荧光功能单体制备荧光聚合物的方法,选择荧光素为发色团,使它与丙烯酰氯反应,合成出含有双键的荧光素单体Ac-Flu,然后令其与丙烯酰胺共聚,制备得到含有荧光素生色团的水溶性荧光聚合物poly(Ac-Flu-co-AM)。研究了常见金属离子对聚合物荧光强度的影响,其中以Fe~(3+)对聚合物的荧光淬灭程度最大。以Fe~(3+)的浓度为横坐标,相对荧光强度I_0/I为纵坐标,得到了Fe~(3+)的浓度与聚合物水溶液相对荧光强度存在线性关系。实验证明所得的荧光聚合物可以在水中作为一种潜在的检测Fe~(3+)的荧光传感器来使用。
     (3)我们设计了带有哌嗪识别集团的香豆素荧光单体Ac-HMPC,采用基于荧光功能单体制备荧光聚合物的方法,使其与丙烯酰胺聚合,得到了一种水溶性的蓝色荧光聚合物poly(Ac-HMPC-co-AM)。再次用另一种制备荧光聚合物的方法实现了香豆素的高分子化。我们研究了水体系中pH和金属离子对聚合物的荧光强度的影响。随着pH的减小,荧光强度逐渐增强。在常见的金属离子中,Ni~(2+)对聚合物的荧光增强程度最大。我们探讨了质子和金属离子对荧光增强的机理,为水溶性荧光聚合物在荧光传感领域的应用做了基础性研究。
     (4)我们利用第四章中制备的带有哌嗪活性功能基的香豆素,使它与烯丙基溴反应,制备得到了带有烯丙基可聚合双键的荧光单体。采用基于荧光功能单体制备荧光聚合物的方法,使其与乙烯吡咯烷酮进行自由基聚合得到了一种蓝色荧光聚合物poly(Al-HMPC-co-VP)。研究水体系中pH和金属离子对聚合物的荧光强度的影响,探讨其荧光增强的机理,并且与丙烯酰单体Ac-HMPC制得的荧光聚合物作对比,为荧光聚合物传感器的设计以及潜在应用展开了基础性的研究。
     (5)我们设计了含有1,8-萘酰亚胺为生色团荧光单体,使其与乙烯基吡咯烷酮共聚,制备得到含有1,8-萘酰亚胺生色团的水溶性荧光聚合物。研究水体系中pH和金属离子对聚合物的荧光强度的影响,pH对共聚物的水溶液的荧光峰有显著的影响,氢离子能增强单体和的荧光强度。金属离子Zn~(2+),CO~(2+),Cr~(3+),Ni~(2+)和Cu~(2+)对聚合物荧光强度均有增强作用,其中以Zn~(2+)对聚合物的荧光增强程度最大。实验结果表明所制备的水溶性荧光聚合物具有潜在的检测Zn~(2+)的特性。
     本论文成功地合成了五类新型的水溶性荧光聚合物,为荧光聚合物的制备提供了新的设计思路和合成方法,有望在此基础上进一步研究具有环境检测性能的荧光聚合物。
Since the first fluorescent material composed of polymer as a substrate was reported, fluorescent polymers have attracted much attention and recently various new materials have been prepared. Water-soluble fluorescent polymers show much more potential application compared with organic molecules. In this dissertation, the development of new fluorescent polymers materials is reviewed. To overcome the defects of organic molecules that are insoluble in water, five types of water-soluble copolymers bearing coumarin, fluorescein and 1, 8-naphthalimide were designed and synthesized.
     In this paper, the modified coumarin, fluorescein and 1, 8-naphthalimide as chromophores were attached successfully on several avirulent, low-cost, biocompatible and water soluble polymers through two different methods, respectively. The synthesized monomer and fluorescent polymers were characterized by the methods of nuclear magnetic resonance (~1H NMR), mass spectrography (MS), fourier transform infrared spectroscopy (FT-IR), ultra-violet-visible spectra (UV-Vis) and differential scanning calorimetry (DSC), respectively. And the fluorescence behaviors of polymers were investigated in detail.
     (1) A novel water-soluble fluorescent material was prepared via ring-opening reaction between 4-methyl-7-(2, 3-expoxypropoxy) coumarin (MEC) and poly(vinyl alcohol) (PVA) (via its epoxy derivate). The fluorescent behaviors of this material (PVA-MEC) in solution, solid and film were studied in detail. The results showed that the fluorescence of PVA-MEC arose from isolated dye molecules and had a good film forming ability. The effects of acid/base environments on PVA-MEC were also studied and the results showed that it was less affected by environment than 7-HMC. In addition, the temperature dependences of fluorescence of PVA-MEC were investigated in detail. The fluorescent polymer showed excellent linear response between fluorescence intensity and temperature. These observations suggest that PVA-MEC is an excellent fluorescent macromolecular material with a convenient method of preparation and had a good water-soluble ability.
     (2) An acrylic monomer bearing xanthene group, acryloyl-fluorescein (Ac-Flu) was synthesized from fluorescein and acryloyl chloride. The photophysical behaviors of Ac-Flu and its copolymer were explored by recording the fluorescence spectra in solution, solid state and film in detail. In addition, the ability of the copolymer to detect different metal cations in aqueous solution was investigated. The results showed that poly(Ac-Flu-co-AM) had a good linear response between the logarithm of concentration of Fe~(3) against the relative fluorescence intensity for Fe~(3+) concentration. The results suggest that this copolymer may offer potential as a reusable polymer sensor for Fe~(3+) ion in aqueous solution.
     (3) An acrylic monomer bearing couamrin moiety, 7-hydroxy-4-methyl-8-(4'-acryloylpiperazin-1'-yl) methylcoumarin (Ac-HMPC) was synthesized from 7-hydroxy-4-methyl-8-(4'-piperazin-1'-yl)methyl coumarin (HMPC) and acryloyl chloride (Ac). The main photophysical properties of the fluorescent copolymer poly(Ac-HMPC-co-AM) were determined viewing its sensor for protons and metal cations. The fluorescent polymer displayed "on-off"switching in its fluorescence intensity over a wide pH scale. In addition, it was found the fluorescence enhancement of poly(Ac-HMPC-co-AM) in the presence of Ni~(2+) ion. The results suggest that copolymer may offer potential as a reusable polymer for sensor protons and Ni~(2+) ion in aqueous solution.
     (4) A monomer 7-hydroxy-4-methyl-8-(4'-allyloxypiperazin-1'-yl)methyl-coumarin with blue fluorescence was synthesized. Then it was copolymerized with N-vinylpyrrolidone to obtain a water-soluble fluorescent copolymer poly(Al-HMPC-co-VP). The fluorescence characterstics of the polymer as a function of pH sensor were investigated in aqueous solution. It was found that the polymer displayed sensitive fluorescence signal amplification over a wide pH scale, which was ascribed to a photoinduced electron transfer from the peperazine receptor to the coumarin fluorophore. In addition, The influence of metal cations on the fluorescence intensity of poly(Al-HMPC-co-VP) were also studied. Obvious fluorescence enhancement was the photophysical response of the polymer to the presence of Ni ion. The results suggest that copolymer may offer potential as a reusable polymer for sensor protons and Ni~(2+) ion in aqueous solution.
     (5) A novel water-soluble colored polymer, based on 1, 8-naphthalimide, was synthesized through a series of easy reactions with high yields. It emitted green fluorescence both in an aqueous solution and in a solid state. Fluorescence characteristics of the polymer as a function of pH were investigated in aqueous solutions. The presence of metal cations (Zn~(2+), Co~(2+), Cr~(3+), Ni~(2+) and Cu~(2+)) could enhance the fluorescence intensity of an aqueous solution of this polymer. It was sensitive to present in the studied system. The results suggest that this newly synthesized compound could work as a polymeric sensor responding to water polluted by Zn~(2+).
     In conclusion, the paper offered us a design of synthetic method that is simple, convenient and practical for the preparation of multifuctional fluorescent polymers, particularly fluorescent polymers sensors.
引文
[1]. Wu C F, Bamhill Ha, Liang X P, Wang Q, Jiang H B. A new probe using hybrid virus-dye nanoparticles for near-infrared fluorescence tomography. Opti Communi,2005,255(4-6): 366-374
    [2]. Motellier S, Michels M H, Dureault B, Toulhoat P. Fiber-Optic pH sensor for in situ applications. Sens Actual B: Chem, 1993, 11 (1-3): 467-473
    [3]. 陈玮,章竹君,李建中.以聚丙烯酰胺凝胶为基质的光导纤维pH传感器.高等学校化学学报,1998,19(1):35-38
    [4]. Goldfinch M J, Lowz C R. Solid-phase optoelectronic sensors for biochemical Analysis. Analytical biochemistry, 1984, 138 (2): 430-436
    [5]. Lee T S, Yang C D, Park W H. Synthesis and electrostatic multilayer assembly of an acridine-containing polymer with properties of an optical sensor. Macromol Rapid Commun, 2000, 21 (14): 951-955
    [6]. Niu C G, Li Z Z. Covalently immobilized aminonaphthalimide as fluorescent carrier for the preparation of optical sensors. Anal Bioanal Chem, 2002, 372 (4): 519-524
    [7]. Santra S, Zhang P, Wang K, Tapec R, Tan W. Conjugation of biomolecules withluminophoredoped silica nanoparticles for photostable biomarkers. Anal Chem, 2001,73 (20): 4988-4993.
    [8].何晓晓,王柯敏,谭蔚泓,肖丹,李军,羊小海.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用.科学通报,2001,46(16):1353-1356
    [9].何晓晓,陈基耘,王柯敏,谭蔚泓,秦迪岚.吲哚类菁染料Cy_3嵌入的核壳荧光纳米颗粒的制备及其性质研究.高等学校化学学报,2006,27(10):1838-1839
    [10]. Kimberly A K, Lee J. Fluorescein isothiocyanate-hapten immunoassay for determination of peptide-cell interactions. Anal Biochem, 2004,330 (2): 181-185
    [11]. Cong R, Turksen S, Russo P. A New synthesis of fluorescein isothiocyanate labeled poly(styrenesulfonate sodium salt). Macromolecules, 2004, 37 (12): 4731-4735
    [12]. Selvan S T, Patra P K, Ang C Y, Ying J Y. Synthesis of silica-coated semiconductor andmagnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed Engl. 2007,46 (14): 2448-2452
    [13].李朝辉,王柯敏,谭蔚泓,李军,付志英,王益林,刘剑波,羊小海.硅壳包被的核壳型 量子点荧光纳米颗粒的制备及其在细胞识别中的应用.科学通报,2005,50(13):1318-1322
    [14].王艳中,黄素平.新型荧光材料的应用及其发展趋势.化工新型材料,2000,11,13-15
    [15]. Tsien, R Y. Fluorescent imaging: technique tracks messenger molecules in living cells. Chem.Eng.News, 1994,72,34-44
    [16].吴世康.分子荧光信号器件和光控分子开关研究的现状和进展.化学进展,1994,6:301-313
    [17]. Hou X L, Tong X F, Dong W J, Dong C, Shuang S M. Synchronous fluorescence determination of human serum albumin with methyl blue as a fluorescence probe. Spectrochim Acta, Part A: Mole Biomole Spectro, 2007,66 (3): 552-556
    [18]. Guan Y, Zhou W, Yao X H, Zhao M P, Li Y Z. Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5. Anal Chimi Acta, 2006, 570 (1): 21-28
    [19]. Zhou Y Y, Bian G R, Wang L Y, Dong L, Wang L, Kan J. Sensitive determination of nucleic acids using organic nanoparticle fluorescence probes. Spectrochim Acta, Part A: Mole Biomole Spectro, 2005,61 (8): 1841-1845
    [20]. Chen Y J, Yang J H, Wang Z L, Wu X, Wang F. Scopoletine as fluorescence probe for determination of protein. Spectrochim Acta, Part A: Mole Biomole Spectro, 2007,66 (3): 686-690
    [21]. Nakamura Y, Miyatake R, Matsubara A, Kiyota H, Ueda M. Enantio-differential approach to identify the target cell for glucosyl jasmonate-type leaf-closing factor, by using fluorescencelabeled probe compounds. Tetrahedron, 2006, 62 (37): 8805-8813
    [22]. Tang Y, He F, Yu M H, Feng F D, An L L, Sun H, Wang S, Li Y L, Zhu D B. A reversible and highly selective fluorescent sensor for mercury(Ⅱ) using poly(thiophene)s that contain thymine moieties. Macromol Rapid Commun, 2006, 27, 389-392
    [23].庄峙厦,李伟,陈曦等.光纤化学生物传感技术在海洋环境监测中的应用.海洋技术,2002,21(1):27-33
    [24]. Metivier R, Leray I, Valeur B. A highly sensitive and selective fluorescent molecular sensor for Pb (Ⅱ) based on a calix [4] arene bearing four dansyl groups. Chem. Commun, 2003, 8: 996-997
    [25]. Fernandez-Sanchez J F, Segura-Carretero A, Cruces-Blanco C. The development of solid surface fluorescence characterization of polycyclic aromatic hydrocarbons for potential screening tests in environmental samples. Talanta, 2003,60: 287-293
    [26]. Geddes C D, Douglas P, Moore C P, Wearc T J, Egerton P L. New fluorescent indolium and quinolinium dyes for applications in aqueous halide sensing. Dyes and Pigment, 1999,43: 59-63
    [27]. Niu C G, Guan A L, Zeng G M, Liu Y G, Li Z W. Fluorescence water sensor based on covalent immobilization of chalcone derivative. Anal Chim Acta, 2006, 577: 264-270
    [28]. Prasanna de Silva A, Nimal Gunaratne H Q, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, Rice T E. Signaling recognition events with fluorescent sensors and switches, Chem Rev, 1997,97: 1515-1524
    [29]. Rossov V. G, Proceedings of SPIE .1995,2790, 79-85
    [30].杨冰,李瑛等.有机荧光材料研究进展.化学研究与应用,2003,15(1):11-16
    [31].祁秀秀,路建美,张正彪.共缩聚聚酰胺酸与聚酰亚胺的微波辐射合成及荧光性能,高分子材料科学与工程,7(20):210-213
    [32].博·格日勒图,敖登高娃.水溶性荧光高分子乙烯基咔唑-丙烯酸共聚物的合成及荧光测试.应用化学,1994,11(2):110-112
    [33]. Hirayama F. Intramolecular excimer formation. I. Diphenyl and triphenyl alkanes. J Chem Phys, 1965,42:3163-3171
    [34].洪瀚,刘向前,杜福胜,周鹏,李福绵.含C-(60)聚乙基乙烯基醚的合成及其荧光行为.高分子学报,1999,(1):123-125
    [35]. Mendelsohn A S, Torkelson J M, Monia O D. Fluorescence nonradiative energy transfer in bulk polymer and miscible and phase-separated polymer blends: a quantitative analysis including correlation effects. J Polym Sci (B), 1994, 32: 2667-2681
    [36]. Itoh Y, Inoue M, Takahashi T, Hachimori A, Suzuki S. Alternating copolymers consisting of arylalkyl methacrylactes. I. Fluorescence properties of poly (arylalkyl methacrylate-alt-styrene) in organic solution. J Polym Sci A, 1995, 33: 1069-1074
    [37]. Yang J S, Swager T M. Fluorescent porous polymer films as TNT chemosensors :electronic and structural effects.J Am Chem Soc, 1998, 120: 11864-11873
    [38]. Sattigeri J A, Shiau C W, Hsu C C, Yeh F F, Liou S, Jin B Y, Luh T Y. Remarkable enhancement of second order nonlinear optical properties of polynorbornenes having pendant chromophores. Use of hyper-rayleigh scattering to estimate the tacticity of rigid rod polymers. J Am Chem Soc, 1999,121: 1607-1608
    [39]. Fomine S, Pineda A, Ogawa T, Perez R and Sotelo M. Novel polymers containing fluorescein moieties. Polym J, 1995,27 (7): 712-728
    [40]. Lee S A, Yamashita T, Horie K. Photoconductivity of a polyimide with an alicyclic diamine xharge carrier photo generation in the mixed layer packing arrangement. J Polym Sci(B), 1998, 36: 1433-1442
    [41].李善君,纪才圭,李橦,程极济.高分子光化学原理及应用(第二版),上海:复旦大学出版社,2003
    [42].吴世康.高分子光化学导论-基础和应用,北京:科学出版社,2003
    [43].陈国珍,黄贤智,郑朱梓,许金钩,王尊本.荧光分析法(第二版),北京:科学出版社,1990
    [44]. Guillet J. Polymer photophysics and photochemistry. New York: Cambridge University Press, 1985
    [45]. Bernard J. Efficient quenching of the fluorescence of binaphthyl-based amphiphiles by iodine. Spectrochim. Acta, Part A: Mole Biomole Spectro. 1993,49 (2): 173-182
    [46]. A(?)k M, Celebi N, Onganer Y. Fluorescence quenching of fluorescein with molecular oxygen in solution. J Photochem PhotobiolA: Chem, 2005,170 (2): 105-111
    [47]. Bharathibai J B, Thirumurugan A, Dinesh A R, Anandan C, Rajam K S. Optical oxygen sensor coating based on the fluorescence quenching of a new pyrene derivative. Sens Actuat B: Chem, 2005,104(1): 15-22
    [48]. Sana S K, Krishnamoorthy G, Dogra S K. Fluorescence quenching of 2-aminofluorene by cetylpyridinium chloride, iodide ion and acrylamide in non-ionic micelles: Tweens. J Photochem PhotobiolA: Chem, 1999,121 (3): 191-198
    [49]. Adenier A, Aaron J J. A spectroscopic study of the fluorescence quenching interactions between biomedically important salts and the fluorescent probe merocyanine 540. Spectrochim. Acta, Part A: Mole Biomole Spectro, 2002, 58 (3): 543-551
    [50]. Rodrguez J G., Martn-Villamil R, Lafuente A. π-Extended conjugate phenylacetylenes. Synthesis of 4-[(E) and (Z)-2-(4-ethenylphenyl)ethenyl]pyridine. Dimerization, quatemation and formation of charge-transfer complexes. Tetrahedron, 2003, 59 (7): 1021-1032
    [51]. Chen Z K, Lee N H S, Cao Y. New Phenyl-Substituted PPV derivatives for polymer light-emitting diodes-Synthesis, characterization and structure-property relationship study. Macromolecules, 2003, 36 (4): 1009-1020
    [52]. Hua J L, Meng F S, Tian H. Synthesis and characterization of new highly soluble and thermal-stable perylene-PPV copolymers containing triphenylamine moiety. Euro Polym J, 2006, 42 (10): 2686-2694
    [53]. Huang J W, Bai S J. Layer effects of photovoltaic heterojunction of fully conjugated heterocyclic aromatic rigid-rod polymer poly-p-phenylenebenzobisoxazole. J Polym Sci Part B: Polym Phy, 2007,45 (8): 988-993
    [54].郭沛瑛,王山峰,雷晖,吴平平,韩哲文.共轭刚性苯并二(?)唑类聚合物的合成及其光物理性能研究.高分子学报,2005,1(1):86-92
    [55]. Kim Y H, Jung S Y, Kwon S K. Synthesis and characterization of new blue-light-emitting polymers based on PPP and PPV having fluorene pendant at vinyl bridge. J Polym Sci Part A: Polym Chem, 2006,44 (16): 4923-4931
    [56]. Rodriguez J G, Esquivias J, Rubio L. Synthesis of conjugated 2 and 2,5-(ethenyl) and (ethynyl)phenylethynyl thiophenes: fluorescence properties. Tetrahedron, 2006,62 (13): 3112-3122
    [57]. Mart(?)nez-M(?)ez R, Sancenon F. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev, 2003,103 (11): 4419 -4476
    [58].武照强,孟令芝.荧光聚合物研究进展.化学进展,2007,9:1381-1392
    [59]. Qaqish R B, Amiji M M. Synthesis of a fluorescent chitosan derivative and its application for the study of chitosan-mucin interactions. Carbohydr Polym, 1999, 38 (2): 99-107
    [60]. T(?)mmeraas K, Strand S P, Tian W, Kenne L, V(?)rum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001, 336 (4): 291-296
    [61]. Guo X, Lu J, Li H, Yao S, Wang L. Synthesis and coordination of oxyquinolyl end-functionalized polystyrene by atom transfer radical polymerization. J Appl Polym Sci, 2005, 97: 2067-2071
    [62]. Klok H A, Becker S, Schuch F, Pakula,T, Mullen K. Fluorescent star-shaped polystyrenes: " core-first" synthesis from perylene-based ATRP initiators and dynamic mechanical solid-state properties. Macrom Chem Phys, 2002, 203 (8): 1106-1113
    [63]. Liu X Q, Du F S, Li Z C, Li F M. Vinyl monomers bearing chromophore moieties and their polymers. VII. Synthesis, photochemical, and initiation behavior of acrylic monomers bearing phenothiazine oxide moieties and their polymers. J App Polym Sci, 1998, 70 (6): 1191-1199
    [64]. Tao Y, Doat Bourllud A, Lam J. Organic light emitting diodes based on end-substituted oligo (phenylenevinylene)s. Thin Solid Film, 2000, 363 (1): 298-301
    [65]. Campo L F., Correa D S., de Araujo M A., Stefani V. New fluorescent monomers and polymers displaying an intramolecular proton-transfer mechanism in the electronically excited state (ESIPT), 1. Synthesis of benzazolylvinylene derivatives and its copolymerization with methyl methacrylate (MMA). Macromol Rapid Commun, 2000, 21 (12): 832 -836
    [66]. Campo L F, Rodembusch F S, Stefani V. New fluorescent monomers and polymers displaying an intramolecular proton-transfer mechanism in the electronically excited state (ESIPT). Ⅳ. Synthesis of acryloylamide and diallylamino benzazole dyes and its copolymerization with MMA . J Appl Polym Sci, 2006, 99: 2109 -2116
    [67]. Nguyen C A, Allemann E, Schwach G, Doelker E, Gurny R. Synthesis of a novel fluorescent poly(D, L-lactide) end-capped with 1-pyrenebutanol used for the preparation of nanoparticles. Eur J Pharm Sci, 2003,20: 217-222
    [68]. 唐廷基,叶宇,李子臣,杜福胜,张昕,李福绵.用荧光方法研究端基为芘的聚苯乙烯在溶液中的聚集行为.化学学报,2002,60(5):931-938
    [69]. Mertoglu M, Laschewsky A, Skrabania K, Wieland C. New water soluble agents for reversible addition-fragmentation chain transfer polymerization and their application in aqueous solutions. Macromolecules, 2005, 38 (9): 3601-3614
    [70]. Zhou N, Lu L, Zhu J, Yang X, Wang X, Zhu X, Zhang Z. Synthesis of polystyrene end-capped with pyrene via reversible additione fragmentation chain transfer polymerization. Polymer, 2007,48: 1255-1260
    [71]. Chen M, Ghiggino K P, Mau A W H, Sasse W H. F, Thang S H, Wilson G J. Amphiphilic acenaphthylene-maleic acid light-harvesting alternating copolymers: reversible addition-Fragmentation chain transfer synthesis and fluorescence. Macromolecules, 2005, 38 (8): 3475-3481
    [72]. Grabchev I, Bojinov V. Synthesis and characterisation of fluorescent polyacrylonitrile copolymers with 1, 8-naphthalimide side chains. Polym Degrad Stabil, 2000,70 : 147-153
    [73] Bojinov V, Grabchev I. A new method for synthesis of 4-allyloxy-1, 8-naphthalimide derivatives for use as fluorescent brighteners. Dyes and Pigments, 2001,51: 57- 61
    [74]. Grabchev I, Bojinov V. Photophysical and photochemical properties of blue fluorescent polystyrene.J. Photochem Photobio A: Chem, 2001,139: 157-160
    [75]. Grabchev I, Bojinovb V , Petkovc C. Synthesis and photophysical properties of polymerizable 1, 8-naphthalimide dyes and their copolymers with styrene. Dyes and Pigments, 2001,51:1-8
    [76]. Patrick L G F, Whiting A. Synthesis of some polymerisable fluorescent dyes. Dyes and Pigments, 2002, 55: 123-132
    [77]. Patrick L G F, Whiting A. Synthesis and application of some polycondensable fluorescent dyes. Dyes and Pigments, 2002, 52: 137-143
    [78]. Grabchev I, Chovelon J M, Qian X. A copolymer of 4-N, N-dimethylaminoethylene-A'-allyl-l, 8-naphthalimide with methylmethacrylate as a selective fluorescent chemosensor in homogeneous systems for metal cations. J Photochem Photobio A: Chem, 2001, 142: 73-78
    [79]. Grabchev I, Chovelon J M. Synthesis and functional properties of green fluorescent poly(methylmethacrylate) for use in liquid crystal systems. Polym Adv Technol, 2003, 14: 601-608
    [80]. Bojinov V B, Grabchev I K. Novel functionalized 2-(2-hydroxyphenyl)- benzotriazole -benzo[de]isoquinoline-l,3-dione fluorescent UV absorbers Synthesis and photostabilizing efficiency. J Photochem Photobiol, A, 2005, 172: 308-315
    [81]. Bojinov V , Panova I , Grabchev I. Novel adducts of a 2-(2-hydroxyphenyl)-benzotriazole and a blue emitting benzo[de]isoquinoline-l,3-dione for “one-step” fluorescent brightening and stabilization of polymers.Polym Degrad Stabil, 2005, 88:420-427
    [82].Du F S, Li Z C, Li F M.Vinyl monomers bearing chromophore moieties and their polymers.XI.Synthesis and photochemical behavior of carbazole-containing methacrylic monomers and their polymers.J Polym Sci Part A:Polym Chem, 2000,38 (4):679-688
    [83].Du F S, Zhou Y, Li Z C, Li F M, Vinyl monomers bearing chromophore moieties and their polymers.XⅡ.Synthesis and fluorescence behavior of vinyloxy monomers having 1,8-naphthalimide moiety with different spacer lengths and their polymers.Polym Advan Technol, 2000,11 (8-12):798-804
    [84].Li F M, Gao Q Y, Du F S.Vinyl monomers bearing chromophore moieties and their polymers.IX.Initiation and photochemical behavior of water and liposoluble acrylic monomers having pyrimidinyl moiety and their polymers.JApp Polym Sci, 2000, 76 (1):19-28
    [85].Albertus P H J S, Emiel P, Meijer E W, Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine)dendrimers.J Am Chem Soc, 2000, 122:4489-4495
    [86].Ravindranath R, Ajikumar P K, Hanafiah N B M, Knoll W, Valiyaveettil S.Synthesis and characterization of luminescent conjugated polymer-silica composite spheres.Chem Mater, 2006,18(5):1213-1218
    [87].Dinakaran K, Hsiao S M, Chou C H, Shu S L, Wei K H.Synthesis and characterization of an efficiently fluorescent poly(phenylenevinylene)possessing pendant dendritic phenyl groups.Macromolecules, 2005, 38 (25):10429-10435
    [88].Pilston R L, McCullough R D.Toward highly fluorescent polythiophenes:head-to-tail coupled copolymers of 3-(methoxyethoxyethoxymethyl)thiophene and 3-(perfluoroalkyl)thiophene.Synthetic Met, 2000,111-112:433-436
    [89].Lere-Porte J P, Moreau J J E., Serein-Spirau F, Torreilles C, Righi A, Sauvajol J L, Brunet M.Synthesis, orientation and optical properties of thiophene-dialkoxyphenylene copolymers.J.Mater Chem, 2000, 10:927-932
    [90].Ramey M B, Reynolds J R.Amplified fluorescence quenching and electroluminescence of a cationic poly(p-phenylene-co-thiophene)polyelectrolyte.Macromolecules, 2005, 38 (2):234-243.
    [91].Melucci M, Barbarella G, Gigli G.Poly(α-vinyl-ω-alkyloligothiophene)side-chain polymers.Synthesis, fluorescence, and morphology.Macromolecules, 2004, 37 (15):5692-5702
    [92].Sali S, Grabchev I, Chovelon J M , Ivanova G.Selective sensors for Zn cations based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides.Spectrochimica Acta Part A, 2006,65:591-597
    [93].Cagnoli R, Mucci A, Parenti F, Schenetti L, Borsari M, Lodi A, Ponterini G.A poly(alkylsulfany)thiophene functionalized with carboxylic groups.Polymer, 2006,47:775-784
    [94].Huang H M, Wang K M, Tan W H, An D L, Yang X H, Huang S S, Zhai Q G, Zhou L J, Jin Y Design of a modular-based fluorescent conjugated polymer for selective sensing.Angew Chem IntEd, 2004,43:5635-5638
    [95].Guan X L, Liu X Y, Su Z X.The Preparation and photophysical behaviors of fluorescent chitosan bearing fluorescein:potential biomaterial as temperature/pH probes.J Appl Polym Sci,2007, 104 (6):3960-3966
    [96].Disney M D , Zheng J , Swager T M, Swager T M, Seeberger P H.Detection of bacteria with carbohydrate-functionalized fluorescent polymers.J Am Chem Soc, 2004, 126 (41):13343-13346
    [97].Costa T, Miguel M G, Lindman B, Schillen K, Lima J C, Seixas de Melo J.Self-assembly of a hydrophobically modified naphthalene-Labeled poly(acrylic acid)polyelectrolyte in water:organic solvent mixtures followed by steady-state and time-resolved fluorescence.J Phys Chem B,2005, 109 (8):3243-3251
    [98].Itoh Y, Shirai H.Amphiphilic copolymers with pendant carbazolylalkyl groups.Effect of polymer structure on retardation of self-quenching.Polym Adv Technol, 2002, 13:40-45
    [99].Kim I B, Dunkhorst A, Bunz U H F.Nonspecific interactions of a carboxylate-substituted PPE with proteins.A cautionary tale for biosensor applications.Langmuir, 2005, 21 (17):7985-7989
    [100].Yusa S, Sakakibara A K, Yamamoto T, Morishima Y Fluorescence studies of pH-responsive unimolecular micelles formed from amphiphilic polysulfonates possessing long-chain alkyl carboxyl pendants.Macromolecules, 2002, 35 (27):10182-10188
    [101]. Maliakal A, Greenaway H, Shaughnessy B, Turro N J. Chain length dependent polymer end-end reaction rate constants in the reaction of polystyryllithium with a styrene-terminated fluorescent-labeled polystyrene. Macromolecules, 2003, 36 (16): 6075-6080
    [102]. Kimura M, Horai T, Hanabusa K, Shirai H, Fluorescence chemosensor for metal ions using conjugated polymers. Adv Mater, 1998,10: 459-462
    [103]. Kubo H, Yoshioka N, Takeuchi T. Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer. Org Lett, 2005, 7 (3): 359-362
    [104]. Kanekiyo Y, Sato H, Tao H. Saccharide sensing based on saccharide-induced conformational changes in fluorescent boronic acid polymers. Macromol Rapid Commun, 2005, 26: 1542-1546
    [105].沈永行.从室温到1800℃全程测温的蓝宝石单晶光纤温度传感器.光学学报,2000,20(1):83-87
    [106]. Iwai K, Matsumura Y, Uchiyama S , Prasanna de Silva A. Development of fluorescent microgel thermometers based on thermo-responsive polymers and their modulation of sensitivity range. J. Mater Chem, 2005, 15: 2796 -2800
    [107]. Uchiyama S, Matsumura Y, Prasanna de Silva A, Iwai K.. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers. Anal Chem, 2004, 76 (6): 1793-1798
    [108]. Uchiyama S, Matsumura Y, Prasanna de Silva A, Iwai K. Fluorescent molecular thermometers bBased on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans. Anal Chem, 2003, 75 (21): 5926-5935
    [109]. KimJ M, Chang T E , Kang J H, Park K H, Han D K, Ahn K D. Photoacid-induced fluorescence quenching: A new strategy for fluorescent imaging in polymer films. Angew Chem Int Ed, 2000, 39: 1780-1782
    [110]. Lee C W, Yuan Z Z, Ahn K D, Lee S H. Color and Fluorescent imaging of t-BOC-protected quinizarin methacrylate polymers. Chem Mater, 2002, 14(11): 4572-4575
    [111]. Haag R. Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed, 2004, 43 (3): 278-283
    [112]. Chen D , Jiang H L, Zhu K J. Synthesis, characterization and degradation of a novel class of fluorescent poly[1,3-bis(p-carboxyphenoxy) propane: p-(carboxyethylformamido)benzoic anhydride] (P (CPP: CEFB)). Eur Potym J, 2005,41: 107-113
    [113]. Fan J, Jiang H L , Chen D , Zhu K J. The effect of substitution levels on the luminescent and degradation properties of fluorescent poly(ester-anhydride)s. J Appl Polym Sci, 2006, 100: 1214-1221
    [114]. Wu Z Q, Yang Su, Liao W Y, Meng L Z. Novel amphiphilic fluorescent graft copolymer: Synthesis, characterization and encapsulation of a hydrophobic agent. Chin. J Polymer Sci, 2006 24(3): 315-321,
    [115]. Jiang J Q, Tong X, Zhao Y. A new design for light-breakable polymer micelles. J Am Chem Soc, 2005,127 (23): 8290-8291
    [116]. Boisde P M, Meuly C. Kirk-Othmer Encycl Chem Technal. New York: John Wiley & Sons, Inc, 1993,7:647
    [117]. Moeckli P. Preparation of some new red fluorescent 4-cyanocoumarin dyes. Dyes and Pigments, 1980, 1:3-15
    [118].马德强.化工百科全书.北京:化学工业出版社,1998,18:1047
    [119]. Amendola V, Fabbrizzi L, Mangano C, Miller H, Pallavicini P, Perotti A, Taglietti A. Signal amplification by a fluorescent indicator of a pH-driven intramolecular translocation of a copper(Ⅱ) Ion. Angew Chem Int Ed, 2002,41 (14): 2553-2556
    [120]. Schwander H, Ullmann H P. 5th ed. Weinheim: VCH Verlagsges. 1991, A11: 27
    [121]. Raue R. Ullmann. 5th ed. Weinheim: VCH Verlagsges. 1991, A15: 151-164
    [122].王贤丰,曲杨,顾梵.香豆素类激光染料研究的进展.精细石油化工,1999,1:49-52
    [123].黄春辉,李富友,黄岩谊.光电功能超薄膜.第一版,北京:北京大学出版社,2001,262
    [124].朱为宏,田禾,朱世琴.有机分子电致发光材料进展.化学进展,2002,14(1):18-23
    [125]. Lu Z Y, Yuan T S, Chen Y L, Wei X Q, Zhu W G, Xie M G Synthesis of a novel blue light-emitting polymer material bearing coumarin pendants. Chin Chem Lett. 2002, 13: 674-677
    [126]. Sherman W R, Robins E. Fluorescence of substituted 7-hydroxycoumarins. Anal Chem, 1968,40:803-805
    [127]. Wheelock C E. The fluorescence of some coumarins. J Am Chem Soc, 1959, 81 (6): 1348-1352
    [128]. Zhou X, Nimoth J B, Pfeiffer M, Maennig B, Drechsel J, Werner A, Leo K. Inverted transparent multi-layered vacuum deposited organic light-emitting diodes with electrically doped carrier transport layers and coumarin doped emissive layer. Synth Met, 2003,138 (1-2): 193-196
    [129]. Lee M T, Yen C K, Yang W P, Chen H H, Liao C H, Tsai C H, Chen C H. Efficient Green Coumarin Dopants for Organic Light-Emitting Devices. Organic Letters. 2004, 6(8): 1241-1244;
    [130]. Ciamician G, Silber P. BerDtsch Chem Ges Berlin, 1902,35: 4128
    [131]. Krauch C H, Farid S, Schenck G O. Photo-C_4-Cyclodimerisation von Cumarin. Chem Ber, 1966,99(2): 625-633
    [132]. Brett T J, Alexander J M, Stezowski J J. Chemical insight from crystallographic disorder-structural studies of supramolecular photochemical systems. Part 3. The P-cyclodextrin-7-hydroxy-4-methylcoumarin inclusion complex: direct observation of photodimerization by X-ray crystallography. J Chem Soc Perkin Trans. 2,2000, 6: 1105-1111
    [133]. Bourson J, Borrel M N, Valeur B. Ion-responsive fluorescent compounds: Part 3. Cation complexation with coumarin 153 linked to monoaza-15-crown-5. Analytica Chimica Acta, 1992, 257(2): 189-193
    [134]. Li L D, Wei Y, Tong A J. Study on cation recognition properties of 4-methene-6, 7-dimethoxycoumarin-monoaza-18-crown-6. Analytica Chimica Acta, 2001,427 (1): 29-37
    [135]. Wang J B, Qian X H, Cui J N. Detecting Hg~(2+) ions with an ICT fluorescent sensor molecule: remarkable emission spectra shift and unique selectivity. J Org Chem, 2006, 71 (11): 4308-4311
    [136]. Mizukami S, Nagano T, Urano Y, Odani A, Kikuchi K. A fluorescent anion sensor that works in neutral aqueous solution for bioanalytical application. J Am Chem Soc, 2002, 124 (15): 3920-3925
    [137]. Plater M John, Greig I, Helfrich M H, Ralston S H. The synthesis and evaluation of o-phenylenediamine derivatives as fluorescent probes for nitric oxide detection. J Chem Soc, Perkin Trans J, 2001, 20: 2553-2559
    [138]. Chujo Y, Sada K, Saegusa T. Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation. Macromolecules, 1990,23: 2693-2697
    [139]. Chen Y, Geh J L. Copolymers derived from 7-acryloyloxy-4-methylcoumarin and acrylates: 1. Copolymerizability and photocrosslinking behaviours. Polymer, 1996, 37: 4473-4480
    [140]. Chen Y, Chou C F J. Reversible Photodimerization of coumarin derivatives dispersed in poly(vinyl acetate). J Polym Sci Part A: Polym Chem, 7995, 33: 2705-2714
    [141]. Jackson P O, Neill M O, Duffy W L, Hindmarsh P, Kelly S M, Owen G J. An investigation of the role of cross-linking and photodegradation of side-chain coumarin polymers in the photoalignmen to liquid crystals. Chem Mater, 2001, 13: 694-703
    [142]. Fang Y, Whitaker C, Weslowski B, Chen M S, Naciri J, Shashidhar R. Synthesis and photodimerization in self-assembled monolayers of 7-(8-trimethoxysilyloctyloxy)coumarin. J Mater Chem, 2001,11: 2992-2995
    [143]. Li W J, Lynch V, Thompson H, Fox M A. Self-assembled monolayers of 7-(10-thiodecoxy) coumarin on gold: Synthesis, characterization, and photodimerization. J Am Chem Soc, 1997, 119 (31): 7211-7217
    [144]. Kovska A T, Kim C, Marshall K L, Mourey T H, Chen S H. Photoalignment of a Nematic Liquid Crystal Fluid and Glassy-Nematic Oligofluorenes on Coumarin-Containing Polymer Films. Macromolecules, 2006, 39 (20): 6983-6989
    [145]. Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature, 1996, 381: 212-215
    [146]. Ballesteros O G, Maretti L, Sastre R, Scaiano J C. Kinetics of cap separation in nitroxide-regulated "living" free radical polymerization: Application of a novel methodology involving a prefluorescent nitroxide switch. Macromolecule, 2001, 34 (18): 6184-6187
    [147]. Tian Y Q, Kong X X, Nagase Y, Iyoda T. Photocrosslinkable liquid-crystalline block copolymers with coumarin units synthesized with atom transfer radical polymerization. J Polym Sci Part A: Polym Chem. 2003,41 (14): 2197-2205
    [148]. Chen M, Ghiggino K P, Mau A W H, Rizzardo E, Sasse W H. F, Thang S H, Wilson G J. Synthesis of functionalized RAFT agents for light harvesting macromolecules. Macromolecules, 2004, 37 (15), 5479-5481
    [149]. Liu C M, Bao R, Qiu J J, Hu F, Xu Y, Zhao C, Zhou Y. Coumarin end-capped polystyrene by ATRP and photodimerization reaction. Polym Bull, 2006, 57 (2): 139-149
    [150]. Hong S W, Jo W H. A fluorescence resonance energy transfer probe for sensing pH in aqueous solution.Polymer, 2008,49 (19): 4180-4187
    [151]. Dibbern-Brunclli D, Oliverira M G Temperature dependence of the photobleaching process of fluorescein in poly(vinyl alcohol). J Photochem Photobiol A: Chem, 1995, 851 (3): 285-289
    [152].葛凤燕,闫喜龙,潘惠英,周小丽,陈立功.荧光素类探针在生物分析中的研究进展.分析化学,2005,33(8):1199-1024
    [153]. Bissell R A, Prasanna de Silva A, Nimal Gunaratne H Q, Mark Lynch P L, Maguire G E M. Samankumara Sandanayake K R A. Molecular fluorescent signalling with "fluor-spacer-receptor" systems: approaches to sensing and switching devices via supramolecular photophysics. Chem Soc Rev, 1992,21: 187-195
    [154]. Nolan E M, Lippard S J. A "turn-on" fluorescent sensor for the selective detection of mercuric ion in aqueous media. J Am Chem Soc, 2003, 125: 14270-14271
    [155]. Swamy K M K, Kwon S K, Lee H N, Kumar S M S, Kim J S, Yoon J Y. Fluorescent sensing of pyrophosphate and ATP in 100% aqueous solution using a fluorescein derivative and Mn~(2+). Tetrahedron Letters, 2007,48 (49): 8683-8686
    [156]. Mikhail T, Sergei Fomine. Synthesis of polynorbornene containing fluorescein moiety. Polym J, 1995, 27 (12): 1173-1179
    [157]. Song L, van Gijlswijk R P M, Young I T, Tanke-Cytometry H J. Influence of fluorochrome labeling density on the photobleaching kinetics of fluorescein in microscopy. Cytometry, 1997, 27 (3): 213-223
    [158]. Fomine S, Sotelo M. Novel polymers containing fluorescein moieties. Polym J, 1995, 27 (7): 712-718
    [159]. He F, Tang Y, Wang S, et al., Fluorescent amplifying recognition for DNA G-Quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection. J Am Chem Soc, 2005, 127: 12343-123469
    [160]. He F, Tang Y L,Yu M H, Wang S, Li Y L, Zhu D B. Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv Fund Mater, 2006, 16: 91-94
    [1].宋明,马会民,黄月仙,梁树权.聚乙烯醇分析.化学通报,1996,(9):27-32
    [2].北京有机化工厂研究所,聚乙烯醇的性质和应用.纺织工业出版社.1979
    [3].严瑞瑄.水溶性高分子.化工工业出版社,2000
    [4].木村悟隆,佐腾理英,宫下美晴.甲壳素/PVA共混物分子间相互作用的光谱研究.纤维学会志,1997,53(9):409-412
    [5]. Lee K Y, Ha W S, Park W H. Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials, 1995,16(16): 1211-1215
    [6].张韵慧,李宁,许建辰,肖莉.聚乙烯醇在中药新剂型中的应用.中国中药杂志,2004,29(2):101-103
    [7]. Ryoichi Morita, Ritsuko Honda, Yoshiteru Takahashi. Development of oral controlled release preparations, a PVA swelling controlled release system (SCRS). J Controlled Release, 2000, 63 (3): 297-304
    [8].杜嘉英,尚会建,许保云,郑学明.聚乙烯醇在医疗中的应用进展.河北工业科技,2005,22(1):52-54.
    [9]. Tanaka T, Suzuki M, Kulanuki N. Properties of silk fibroin/ Poly(vinyl alcohol) blend solution and peculiar structure found in heterogeneous blend films. Polym Int, 1997, 42 (1): 107-111
    [10]. Tsukada, Masuhiro, Freddi. Structure and compatibility of poly(vinyl alcohol)-silk fibroin (PVA/SF) blend films. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32 (2): 243-248
    [11]. Wolf N E, Pressley R J. Maser optical action in Eu~(3+) containing organic matrix. Appl Phy Lett, 1963,2(8): 152-154
    [12]. Dibbern-Brunclli D, Atvars T D Z. Study of miscibility of poly(vinyl acetate) and poly(vinyl alcohol) blends by fluorescence spectroscopy. J Appl Polym Sci 1995,55: 889-902
    [13]. Talhavini M, Corradini W, Atvars T D Z. The role of the triplet state on the photobleaching processes of xanthene dyes in a poly(vinyl alcohol) matrix. J Photochem Photobiol A: Chem, 2001, 139(2-3): 187-197
    [14]. Mieloszyk J, Drabent R, Sio'dmiak J. Phosphorescence and fluorescence of poly(vinyl alcohol) films.J Appl Polym Sci, 1987,34: 1577-1580
    [15].张宁,唐世华,刘育.水溶性杯芳烃-铽((?))-聚乙烯醇胶膜的荧光特性.稀土,2003,24,1-4
    [16].钟敏,韩高荣.ZnS/PVA纳米复合薄膜的制备与表征.真空科学与技术,2004,24(5):393-396
    [17]. Talhavini M, Atvars T D Z. Dye-polymer interactions controlling the kinetics of fluorescein photobleaching reactions in poly(vinyl alcohol). JPhotochem Photobiol A: Chem, 1998, 114 (1): 65-73
    [18]. Gibson GKJ, Packham D I. Chelating polymers derived from poly(vinyl alcohol) and cellulose. J Appl Chem, 1966,16: 50-53
    [19]. Talhavini M, Atvars T D Z. Photostability of xanthene molecules trapped in poly(vinyl alcohol) (PVA) matrices. J Photochem Photobiol A: Chem, 1999, 120 (2): 141-149
    [20]. Guan X L, Liu X Y, Su Z X, Liu P. The preparation and photophysical behaviors of temperature/PH sensitive polymer materials bearing fluorescein. React Funct Polym, 2006, 66: 122-1239
    [21]. Frenette M, Coenjarts C, Scaiano JC. Mapping acid-catalyzed deprotection in thin polymer films: fluorescence imaging using prefluorescent 7-hydroxycoumarin probes. Macro Rapid Commn, 2004,25:1628-1631
    [22]. Moylan C R. Molecular hyperpolarizabilities of coumarin dyes. J Phys Chem, 1994, 98: 13513-13516
    [23]. Tian Y Q, Akiyama E, Nagase Y, Kanazawa A, Tsutsumi O, Ikeda T. Liquid crystalline coumarin polymers, 1. Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties. Macromol Chem Phys. 2000,201: 1640-1652
    [24]. Kwon Oh J, Sto"eva V, Rademacher J, Farwaha R, Winnik MA. Synthesis, characterization, and emulsion polymerization of polymerizable coumarin derivatives. J Polym Sci Part A: Polym Chem. 2004,42: 3479-3489
    [25]. Bardez E, Boutin P, Valeur B. Photoinduced biprotonic transfer in 4-methylumbelliferone. Chem Phys Lett. 1992,191: 142-148
    [26]. Seixas de Melo J, Macnita A L. Three interconverting excited species: experimental study and solution of the general photokinetic triangle by time-resolved fluorescence. Chem Phys Lett. 1993,204:556-562
    [27]. Seixas de Melo J, Becker R S, Ma(?)nita A L. Photophysical behavior of coumarins as a function of substitution and Solvent: experimental evidence for the existence of a lowest lying 1 (n, π) state. J Phys Chem. 1994, 98: 6054-6058
    [28]. Setsukinai K, Urano Y, Kikuchi K, Higuchi T, Nagano T. Fluorescence switching by O-dearylation of 7-aryloxycoumarins. Development of novel fluorescence probes to detect reactive oxygen species with high selectivity. J Chem Soc Perkin Trans. 2 ,2000, 2453-2457
    [29]. Seixas de Melo J, Femandes P F. Spectroscopy and photophysics of 4-and 7-hydroxycoumarins and their thione analogs. J Mol Struct. 2001,565-566: 69-78
    [30]. Desai SM, Trivedi KN. Synthesis of 3-substitutedaminopropoxy-20-hydroxycoumarin derivatives as possible b-Blockers. J Indian Chem Soc. 1989, 66: 415-417
    [31]. Kristoffer T, Varum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001, 336 (4): 291-296
    [32].赵藻藩,周性尧,张悟铭,赵文宽.仪器分析.北京:高等教育出版社,1997
    [33].陈永丽,李隆弟,童爱军.香豆素-1的荧光介质效应.光谱学与光谱分析,1997,17(2):20-24
    [34]. Suratwala T, Gardlund Z, Davidson K, Uhlmann D R, Watson J, Peyghambarian N. Silylated coumarin dyes in sol-gel hosts. 1. Structure and environmental factors on fluorescent properties. Chem Mater. 1998, 10: 190-198
    [35]. Martins-Franchetti S M, Altvars T D Z. Study of low density polyethylene-poly(vinyl chloride) blend secondary relaxations by photoluminescence. Eur Polym J. 1995, 31 (5): 467-474
    [1].曾玉彬,傅绍斌.大港油田孔店采油污水排放处理的研究.工业水处理2000,20(7):25-27
    [2].罗健辉,卜若颖,王平美,白凤鸾,张颖,杨静波,刘玉章.驱油用抗盐聚合物KYPAM的应用性能,油田化学,2002,19(1):64-67
    [3].姜涛,陈新钢.三次采油用聚丙烯酰胺研究进展.精细石油化工进展,2000,1(6):30-32
    [4]. Lurie M, Rebhun M. Effect of properties of polyelectrolytes on their interaction with particulates and soluble organics. Water Science and Technology. 1997, 36 (4): 93-101
    [5]. Bolto B A, Dixon D R, Gray S R, Ha C, Harbour P J, Le N, Ware A J. The use of soluble organic polymers in waste treatment. Water Science and Technology. 1996, 34 (9): 117-124
    [6].李亨枝,叶润来,林伟镜,曹国栋,黄国贤,王国强.聚丙烯酰胺在净水生产中的应用.中国给水排水.1999,15(9):52-54
    [7].李焕文.聚丙烯酰胺在选煤厂煤泥水处理中的应用.煤炭技术,2004,23(9):23-24
    [8].杨燕,王志杰,戴忠国.聚丙烯酰胺在造纸中的应用.西南造纸,2003,2:24-26
    [9].王平,宋建国.聚丙烯酰胺在造纸中的应用.黑龙江造纸,2003,1:38-39
    [10].徐福贵,董晓臣.聚丙烯酞胺疏水缔合衍生物研究进展.化学推进剂与高分子材料,2003,11(21):25-29
    [11]. Ka(?) g(?)z H, (?)zg(?)m(?) S, Murat Orbay. Preparation of modified polyacrylamide hydrogels and application in removal of Cu(Ⅱ) ion. Polymer, 2001,42 (18): 7497-7502
    [12]. Xia Y Q, Guo T Y, Song M D, Zhang B H, Zhang B L. Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules, 2005,6 (5): 2601-2606
    [13]. Singh B, Chauhan G S, Sharma D K, Chauhan N. The release dynamics of salicylic acid and tetracycline hydrochloride from the psyllium and polyacrylamide based hydrogels (Ⅱ). Carbohydr Polym, 2007, 67 (4): 559-565
    [14]. Kumaresh S Soppimath, Anandrao R Kulkarni, Tejraj M. Aminabhavi. Chemically modified polyacrylamide-g-guar gum-based crosslinked anionic microgels as pH-sensitive drug delivery systems: preparation and characterization. J Contro Release, 2001, 75 (3): 331-345
    [15]. Shen L L, Cao X J. Synthesis of thermo-sensitive polyacrylamide derivatives for affinity precipitation and its application in purification of lysozyme. Biochem EnginJ, 2007, 33 (1): 66-71
    [16]. Richa R, Gysel H, Schneider J. Mobility of fluorescent polyacrylamide derivatives in water-acetone mixtures. Macromolecules, 1987, 20 (6): 1407-1411
    [17]. Nishijima Y, Teramoto A, Yamamoto M, Hiratsuka S. Studies of micro-brownian motion of a polymer chain by the fluorescence polarization method. I. Fluorescent conjugates of polyacrylamide. J Polym Sci Part B: Polym Phy, 1967, 5(1): 23-35
    [18]. Teranishi K, Nishiguchi T. Cyclodextrin-bound 6-(4-methoxyphenyl) imidazo 1,2-α]pyrazin-3(7H)-ones with fluorescein as green chemiluminescent probes for superoxide anions. Anal. Biochem, 2004, 325 (2): 185-195
    [19]. Yang W C, Schmerr M J, Yeung E S. Capillary Electrophoresis-based noncompetitive immunoassay for the prion protein using fluorescein-labeled protein A as a fluorescent probe. Anal Chem, 2005, 77 (14): 4489-4494
    [20]. Tommeraas K, Strand S P, Tian W, Kenne L, Varum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001,336 (4): 291-296
    [21]. Chokshi H P, Carlson R G, Givens R S, Lunte S M, Toyo'oka T. Analyst, 1993 118: 257-363
    [22]. Wilde G, Gorier G P, Willnecker R, Fecht H J. Calorimetric, thermomechanical, and rheological characterizations of bulk glass-forming Pd_(40)Ni_(40)P_(20). J Appl Phys, 2000, 87 (3): 1141-1152
    [23]. Machado J C, Silva G G, Soares L S. Positron annihilation and differential scanning calorimetry investigations in poly(methylmethacrylate)/low molecular weight poly(ethylene oxide) polymer blends. J Polym Sci Part B: Polym Phys, 2000, 38 (8): 1045-1052
    [24]. Grabchev I, Guittonneau S. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1,8-naphthalimides. J Photoch Photobio A: Chem. 2006, 179 (1-2): 28-34
    [25]. Grabchev I, Chovelon J M, Petkov C. An iron(Ⅲ) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-l,8-naphthalimide. Spectrochim Acta Part A
    2008,69(1): 100-104
    [26]. Lewis 0 G. Physical Constants of Linear Homopolymers, Springer-Verlag, Berlin, 1968: 57
    [27]. Flemming G R, Knight A W E. Picosecond fluorescence studies of xanthene dyes. J Am Chem Soc, 1977, 99 (13): 4306-4311
    [28]. Carpenter M A, Willand C S, Penner T L, Williams D J, Mukamel S. Aggregation in hemicyanine dye Langmuir-Blodgett films: ultraviolet-visible absorption and second harmonic generation studies. JPhys Chem, 1992, 96 (7): 2801-2804
    [29]. Buwalda R T, Engberts J B F N. Aggregation of dicationic surfactants with methyl orange in aqueous solution. Langmuir, 2001, 17 (4): 1054-1059
    [30]. Pereira R V, Gehlen M H. Fluorescence of acridinic dyes in anionic surfactant solution. Spectrochimica Acta Part A, 2005, 61 (13-14): 2926-2932
    [31]. Gangola P, Joshi N B, Pant D D. Excimer emission in 9-aminoacridine hydrochloride. Chem Phys Letts, 1981,80 (3): 418-421
    [32]. De S, Das S, Girigoswami A. Environmental effects on the aggregation of some xanthene dyes used in lasers. Spectrochimica Acta Part A. 2005,61 (8): 1821-1833
    [33].王煜,晋卫军.用于识别金属离子的超分子荧光/磷光传感器.化学进展,2003,15(3):178-185
    [34]. Brugnara C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin Chem, 2003,49: 1573-1578
    [35]. Egan T J, Hunter R, Kaschula C H, Marques H M, Misplon A, Walden J. Structure-function relationships in aminoquinolines: Effect of amino and chloro groups on quinoline-hematin complex formation, inhibition of β-hematin formation, and antiplasmodial activity. J Med Chem, 2000,43(2): 283-291
    [1]. Li Z Z, Niu C G, Zeng G M, Liu Y G, Gao P F, Huang G H, Mao Y A. A novel fluorescence ratiometric pH sensor based on covalently immobilized piperazinyl-1, 8-napthalimide and benzothioxanthene. Sensor Actual B, 2006, 114 (1): 308-315
    [2]. Bojinov V B, Konstantinova T N, Fluorescent 4-(2, 2, 6, 6-tetramethylpiperidin-4-ylamino) -1, 8-naphthalimide pH chemosensor based on photoinduced electron transfer. Sensor Actuat B, 2007, 123 (2): 869-876
    [3]. Grabchev I, Chovelon J M. New blue fluorescent sensors for metal cations and protons based on 1, 8-naphthalimide. Dyes and Pigments, 2008, 77 (1): 1-6
    [4]. Ji J, Rosenzweig Z. Fiber optic pH/Ca~(2+) fluorescence microsensor based on spectral processing of sensing signals. Anal Chim Acta, 1999, 397: 93-102
    [5]. Levitsky I, Krivoshlykov S G, Grate J W. Rational design of a nile red/polymer composite film for fluorescence sensing of organophosphonate vapors using hydrogen bond acidic polymers. Anal. Chem, 2001,73: 3441-3448
    [6]. DiCesare N, Pinto M R, Schanze K S, Lakowicz J R. Saccharide detection based on the amplified fluorescence quenching of a water-Soluble poly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir, 2002,18, 7785-7787
    [7]. He F, Tang Y, Wang S, Li Y L, Zhu D B. Fluorescent amplifying recognition for DNA G-Quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection.J Am Chem Soc, 2005,127,12343-12346
    [8]. Zhu S S, Carroll P J, Swager T M. Conducting polymetallorotaxanes: A supramolecular approach to transition metal ion sensors. J Am Chem Soc, 1996,118 (36): 8713-8714.
    [9]. Kimura M, Horai T, Hanabusa K, Shirai H. Fluorescence Chemosensor for Metal Ions Using Conjugated Polymers. Adv. Mater. 1998,10 (6): 459462
    [10]. Hoshiyama M, Kubo K, Igarashi T, Sakurai T. Complexation and proton dissociation behavior of 7-hydroxy-4-methylcoumarin and related compounds in the presence of P-cyclodextrin. J Photoch PhotobioA: Chem, 2001, 138 (3): 227-233
    [11]. Grabchev I, Chovelon J M, Bojinov V, New green fluorescent polyvinylcarbazole copolymer with 1,8-naphthalimide side chains as chemosensor for iron cations.Polym Advan Technol, 2004,15 (7):382-386
    [12].Bissell R A, Prasanna de Silva A, Nimal Gunaratne H Q, Mark Lynch P L, Maguire G E M,Samankurnara Sandanayake K R A.Molecular fluorescent signaling with “fluor-spacer-receptor” systems:Approaches to sensing and switching devices via supramolecular photophysies.Chemical Society Reviews, 1992,21 (3):187-195
    [13].Valeur B, Leray I.Design principles of fluorescent molecular sensors for cation recognition.Coord Chem Rev, 2000,205(1):3-40
    [14].Desvergne J P, Czarnik A W, Chemosensors of ion and molecule recognition.NATO ASI Series, Kluwer, Dordrecht, 1997
    [15].Prasanna de Silva A, Fox D B, Huxley A J M, McClenaghan N D, Roiron J.Metal complexes as components of luminescent signalling systems Coordin.Chem.Rev.1999, 185-186:297-306
    [16].Chattopadhyay N, Mallick A, Sengupta S.Photophysical studies of 7-hydroxy-4-methyl-8-(4'-methylpiperazin-l'-yl)methylcoumarin:A new fluorescent chemosensor for zinc and nickel ions in water.J Photoch PhotobioA:Chem, 2006, 177 (1)55-60
    [17].Bardez E, Boutin P, Valeur B.Photoinduced biprotonic transfer in 4-methylumbelliferone.Chem Phys Lett, 1992, 191 (1-2):142-148
    [18].Seixas de Melo J, Macanita A L.Three interconverting excited species:experimental study and solution of the general photokinetic triangle by time-resolved fluorescence.Chem Phys Lett,1993, 204 (5-6):556-562
    [19].Seixas de Melo J, Becker R S, Macanita A L.Photophysical behavior of coumarins as a function of substitution and solvent:experimental evidence for the existence of a lowest lying (n,π~*)state.J Phys Chem, 1994, 98 (24):6054-6058
    [20].Setsukinai K, Urano Y, Kikuchi K, Higuchi T, Nagano T.Fluorescence switching by O-dearylation of 7-aryloxycoumarins.Development of novel fluorescence probes to detect reactive oxygen species with high selectivity.J Chem Soc Perk T.2000, 2:2453-2457
    [21].Seixas de Melo J, Fernandes P F.Spectroscopy and photophysies of 4- and 7-hydroxycoumarins and their thione analogs.J Mol Struct, 2001, 565-566:69-78
    [22]. Xiao Y, Qian X H. Novel highly efficient fluoro-ionophores with a perieffect and strong electron-dona-ting receptors: TICT-promoted PET and signaling response to transition metal cations with low back-ground emission. Tetrahedron Letters, 2003,44 (10): 2087-2091
    [23] Tahtaoui C, Parrot I, Klotz P, Guillier F, Galzi J L, Hibert M, Ilien B. Fluorescent pirenzepine derivatives as potential bitopic ligands of the human Ml muscarinic receptor. J Med Chem, 2004, 47 (17): 4300-4315
    [24]. T(?)mmeraas K, Strand S P, Tian W, Kenne L, V(?)rum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001, 336 (4): 291-296
    [25]. Demas J N, Crosby G A. Measurement of photoluminescence quantum yields. J Phys Chem. 1971, 75(8): 991-1024
    [26]. Grabchev I, Guittonneau S. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1, 8-naphthalimides. J Photoch PhotobioA: Chem, 2006,179 (1-2): 28-34
    [27]. Hou Y, Wang S, Shen E, Wang E, Xiao D, Li Y, Xu L, Hu C. A novel three-dimensional metal-organic network, Zn_2(btec)(pipz)(H_2O) (btec = 1, 2, 4, 5-benzenetetracarboxylate, pipz = piperazine), with blue fluorescent emission. Inorg Chim Acta, 2004, 357 (1): 3155-3161
    [28]. Callana J F, Prasanna de Silva A, Magria D C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61 (36): 8551-8588
    [29].王煜,晋卫军.用于识别金属离子的超分子荧光/磷光传感器.化学进展,2003,15(3),178-185
    [30] Chovelon J M, Grabchev I. A novel fluorescent sensor for metal cations and protons based of bis-1, 8-naphthalimide. Spectrochimica Acta Part A, 2007, 67 (1): 87-91
    [1].严瑞宣.水溶性高分子.北京:化学工业出版社,1998:674-685
    [2].汪立德.聚乙烯吡咯烷酮及其应用的进展.现代化工,1995,5:21-25
    [3].苗蔚荣,陈萍.聚乙烯吡咯烷酮的发展概况.燃料工业,1995,32(4):27-28
    [4].陈厚,王成国,崔传生,蔡华(?).丙烯腈与N-乙烯基吡咯烷酮在H_2O/DMSO混合溶剂中共聚反应动力学研究.功能高分子学报,2002,15(4):457-460
    [5].刘郁杨,范晓东,邵颖惠.N-异丙基丙烯酰胺N-乙烯基毗咯烷酮水凝胶的研究.功能高分子学报,2000,13(4):380-384
    [6].何尚锦,贾启燕,石可瑜,丽娜,杜宗杰,张保龙.N-乙烯基-2-吡咯烷酮-丙烯酸共聚物/聚乙二醇半互穿网络水凝胶的合成及其药物释放性能.应用化学,2002,8:742-745
    [7].崔英德,易国斌,廖列文.聚乙烯吡咯烷酮的合成与应用.北京:科学出版社,2001:1-1
    [8]. Haaf F, Sanner A, Straub F. Polymers of N-vinylpyrrolidone: synthesis, characterization and uses.PolymJ, 1985, 17(1): 143-152
    [9]. Bandyopadhyay P, Rodriguez F. Interaction of poly(vinylpyrrolidone) with phenoliccosolutes. Polymer, 1972, 13 (3): 119-123
    [10]. Maruthamuthu M, Sobhama M. Hydrophobic interaction in the binding of polyvinylpyrrolidone. J Polym Sci Polym Chem Ed, 1979, 17 (10): 3159-3167
    [11]. Gong S L, Li C, Zhang Z , HuangW H, Lu X J, He Y B. Novel water-soluble fluorescent polymer containing recognition units: Synthesis and interactions with PC12 cell. European Polymer Journal, 2005,41 (9): 1985-1992
    [12]. Wu Z Q, Meng L Z. Novel amphiphilic fluorescent graft copolymers: synthesis, characterization, and potential as gene carriers. Polym Adv Technol, 2007, 18: 853-860
    [13]. Frenette M, Coenjarts C, Scaiano J C. Mapping acid-catalyzed deprotection in thin polymer films: fluorescence imaging using prefluorescent 7-hydroxycoumarin probes. Macromol Rapid Commun, 2004, 25 (18): 1628-1631
    [14]. Tian Y Q, Akiyama E, Nagase Y, Kanazawa A, Tsutsumi O, Ikeda T. Liquid crystalline coumarin polymers, 1. Synthesis and properties of side-group liquid crystalline polymers with coumarin moieties. Macromol Chem Phys, 2000,201 (14): 1640-1652
    [15]. Oh K J, St(?)eva V, Rademacher J, Farwaha R, Winnik M A. Synthesis, characterization, and emulsion polymerization of polymerizable coumarin derivatives. J Polym Sci A: Polym Chem, 2004,42(14): 3479-3489
    [16]. T(?)mmeraas K, Strand S P, Tian W, Kenne L, V(?)rum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001, 336 (4): 291-296
    [17]. Demas J N, Crosby G A. Measurement of photoluminescence quantum yields. J Phys Chem. 1971, 75(8): 991-1024
    [18]. Grabchev I, Chovelon J M, Petkov C. An iron(Ⅲ) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1, 8-naphthalimide. Spectrochim Acta Part A, 2008, 69 (1): 100-104
    [19]. Grabchev I, Guittonneau S. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1, 8-naphthalimides. J Photoch PhotobioA: Chem, 2006, 179 (1-2): 28-34
    [20]. Callana J F, Prasanna de Silva A, Magria D C. Luminescent sensors and switches in the early 21st century. Tetrahedron, 2005, 61 (36): 8551-8588
    [21].王煜,晋卫军.用于识别金属离子的超分子荧光/磷光传感器.化学进展,2003,15(3):178-185
    [22]. Chovelon J M, Grabchev I. A novel fluorescent sensor for metal cations and protons based of bis-1, 8-naphthalimide. Spectrochimica Acta Part A, 2007, 67 (1): 87-91
    [1]. Yang J X, Wang X L, Wang X M, Xu L. The synthesis and spectral properties of novel 4-phenylacetylene-1, 8-naphthalimide derivatives. Dyes and Pigments, 2005, 66 (1): 83-87
    [2]. Yang J X, Wang X L, Wang X M, Xu L. Studies on the synthesis and spectral properties of novel 4-benzofuranyl-1, 8-naphthalimide derivatives. Dyes and Pigments, 2005, 67 (1): 27-33
    [3]. Kolosov D, Adamovich V, Djurovich P, Thompson M E, Adachi C. 1, 8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. J Am Chem Soc, 2002,124 (33): 9945-9954
    [4]. Wang P F, Xie Z Y, Tong S W, Wong O Y, Lee C S, Wong N B, Hung L S, Lee S T. A novel neutral red derivative for applications in high-performance red-emitting electroluminescent devices. Chem Mater, 2003,15 (9): 1913-1917
    [5] Zhu W H, Fan L Q, Yao R, Wu F, Tian H. Naphthalimide incorporating oxadiazole: Potential electroluminescent materials with high electron affinity. Synthetic Metals, 2003, 137 (1-3): 1129-1130
    [6]. Kukhta A, Kolesnik E, Taoubi M, Drozdova D, Prokopchuk N. Polynaphthalimide is a new polymer for organic electroluminescence devices. Synthetic Metals, 2001,119 (1-3): 129-130
    [7].邹应萍,谭松庭,赵斌.有机电致发光材料的研究进展.液晶与显示,2004,19(3):191-197
    [8].李群沈永.1,8-萘酰亚胺类荧光增白剂的合成和性能研究.燃料工业,1990,27(5):27-29
    [9]. Grabtchev I, Philipova Tz. Synthesis of 1, 8-naphthalic anhydride derivatives for use as fluorescent brightening agents for polymeric materials. Dyes and Pigments, 1995, 27 (4): 321-325
    [10].赵同丰,赵德丰,于华云.1,8-萘酰亚胺类荧光材料的进展.燃料工业,1997,34(1):8-15
    [11]. Grabchev I, Betcheva. R. Copolymerization and photostabilization of methyllmeth- acrylate 1, 8-naphthalimide fluorescent brighteners. J Polym SciA: Polym Chem, 2001, 142 (1): 73-78
    [12]. Grabchev I, Chovelon J M, Qian X A. Copolymer of 4- N, N- dimethylaminorthylene- N- allyl-1, 8-naphthalimide with Ethlmethacrylate as a Selective Fluorescent Chemosensor in Homogeneous Systems for Metal Cations. J Polym Sci A: Polym Chem, 2003, 158 (1): 37-43
    [13].孙德帅,张中一,刘馨,江峰.茶酰亚胺类高聚物色素研究进展.塑料助剂,2008,67:12-16
    [14]. Grabchev I. Photophysical characteristics of polymerizable 1, 8-naphthalimide dyes and their copolymers with styrene or methylmethacrylate. Dyes and Pigments, 1998, 38 (4): 219-226
    [15]. Grabchev I, Meallier P, Konstantinova T, et al. Synthesis of Some Unsaturated 1, 8- naphthalimide Dyes. Dyes and Pigments, 1995,28 (1): 4146
    [16]. Guthrie J T, Konstantinova T, Ginova E. Polymers of acrylonitrile and the naphthalimide derivatives of some fluorescent dyes. Dyes and Pigments, 1998,34 (4): 287-296
    [17]. Konstantinova T, Spirieva A, Petkova T. The synthesis, properties and application of some 1, 8- naphthalimide dyes. Dyes and Pigments, 2000,45 (2): 125-129
    [18]. Bojinov V, Konstantinova T. Synthesis of polymerizable 1, 8-naphthalimide dyes containing hindered amine fragment. Dyes and Pigments, 2002, 54 (3): 239-245
    [19]. Grabchev I, Bojinov V. Synthesis and characterisation of fuorescent polyacrylonitrile copolymers With 1, 8-naphthalimide side chains. Polymer Degradation and Stability, 2000, 70 (2): 147-153
    [20] Bojinov V, Grabchev I. Synthesis of new polymerizable 1, 8- naphthalimide dyes containing a 2-hydroxyphenyl benzotriazole fragment. Polymer Degradation and Stability, 2003, 59 (1-3): 277-283
    [21].周义锋,李中军,李富友,王显威.1,8-萘酰胺衍生物的合成及光谱学性质研究.安阳师范学院学报,2004,2:7-10
    [22]. Bojinov V, Panova I, Grabchev I. Novel adducts of a 2-(2-hydroxyphenyl) - benzotriazole and a blue emitting benzo [de]isoquinoline- 1,3- dione for "one- step "fluorescent brightening and stabilization of polymers. Polymer Degradation and Stability, 2005, 88 (3): 420-427
    [23]. Patrick L G F, Whiting A. Synthesis and application of some polycondensable fluorescent dyes. Dyes and Pigments, 2002, 52 (2): 137-143
    [24].闫晓莉,徐朝俦,郑敏,白凤莲.两种萘酰亚胺类化合物及其聚合物荧光性质的研究感光科学与光化学,2000,18(2):112-120
    [25]. 陈明强,胡莹玉,严宏宾,沈永嘉.含可聚合基团的萘酰亚胺衍生物的合成.有机化学2001,21(4):294-298
    [26]. Bojinov V, Grabchev I. Photophysical and Photochemical Properties of Blue Fluorescent Polystyrene. J Polym Sci A: Polym Chem, 2001, 139 (2): 157-160
    [27]. T(?)mmeraas K, Strand S P, Tian W, Kenne L, V(?)rum K M. Preparation and characterisation of fluorescent chitosans using 9-anthraldehyde as fluorophore. Carbohydr Res, 2001, 336 (4): 291-296
    [28]. Demas J N. Crosby G A. Measurement of photoluminescence quantum yields. J Phys Chem. 1971, 75(8): 991-1024
    [29]. Grabchev I, Chovelon J M, Petkov C. An iron(Ⅲ) selective dendrite chelator based on polyamidoamine dendrimer modified with 4-bromo-1,8-naphthalimide. Spectrochim Ada Part A, 2008,69(1): 100-104
    [30]. Grabchev I, Guittonneau S. Sensors for detecting metal ions and protons based on new green fluorescent poly(amidoamine) dendrimers peripherally modified with 1, 8-naphthalimides. J Polym SciA: Polym Chem, 2006, 179 (1-2): 28-34
    [31]. Ramachandram B, Saroja G, Sankaran N B. Unusually high florescence enhancement of some 1, 8-naphthalimide derivatives induced by transition metal salts. J Phys Chem B, 2000, 104: 11824-11830
    [32]. 甘家安,陈孔常,田禾.新型1,8-萘酰亚胺衍生物的合成及其分子内光致电子转移.华东理工大学学报,2001,27(2A):217-220
    [33] Chovelon J M, Grabchev I. A novel fluorescent sensor for metal cations and protons based of bis-1, 8-naphthalimide. Spectrochimica Acta Part A, 2007, 67 (1): 87-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700