用户名: 密码: 验证码:
共沉淀制备铈掺杂钇铝石榴石荧光粉及其发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED具有能耗少、无污染等优点,被喻为第四代照明光源,具有广阔的应用前景。铈掺杂钇铝石榴石( Ce-doped Yttrium Aluminum Garnet, YAG:Ce )是制备白光LED的首选荧光粉。湿化学方法与固相法相比,降低了煅烧温度、缩短了煅烧时间。共沉淀法与其他湿化学方法相比,成本低廉、设备简单、易于大规模生产。因此,共沉淀法被广泛应用于制备荧光粉。但前人的研究主要集中在对荧光粉发光性能的分析,未系统探究沉淀工艺对荧光粉理化性能,特别是发光性能的影响。同时,为了满足不同照明环境要求,需要生产不同色坐标和色温的光源,这需要调节YAG:Ce荧光粉的发射波长,而稀土掺杂是一种有效的改变YAG:Ce发射波长的方法。表面包覆是一种常用的荧光粉后续处理工艺,包覆使荧光粉和外界隔离,可以大大改善荧光粉表面结构、有效降低表面缺陷,改进荧光粉的发光性能。
     本论文工作以共沉淀法制备YAG:Ce荧光粉为目标,研究了沉淀工艺条件对荧光粉理化性能的影响,探讨了稀土掺杂对荧光粉结构和发光性能的影响,并对制备的荧光粉体进行了包覆处理。主要研究内容及结论如下:
     (1)研究了沉淀剂对前驱体制备的影响,结果表明:碳酸氢铵作沉淀剂制备的前驱体分散性好,煅烧过程中直接转变为YAG相,没有杂相生成。讨论了沉淀剂浓度、沉淀和陈化温度以及陈化时间对化学计量比的影响,所得最佳工艺参数为:碳酸氢铵与总阳离子摩尔比>4,沉淀和陈化在室温下进行,沉淀结束后陈化8小时以上。分析了团聚产生的原因以及控制团聚的工艺措施。结果表明,在乙醇和水的混合溶液中进行沉淀,并在沉淀时加入适量的高分子表面活性剂,采用共沸蒸馏对粉体进行干燥,能改善粉体的分散性。
     (2)煅烧过程中保持铈为三价对提高粉体发光性能非常重要。因此,对还原方式进行了分析,研究认为,先在空气中合成YAG结构,然后在还原气氛中煅烧,能使铈充分还原。粉体荧光衰减过程由于受到表面效应影响,含有两个指数项,长指数项代表了体相Ce~(3+)的衰减,短指数项反映了表面Ce~(3+)的衰减。研究了不同助熔剂对荧光粉性能的影响。结果表明,BaF_2是最合适的助熔剂,最佳添加量为助熔剂与前驱体质量比1/10。对煅烧中的脱水、脱碳、晶化和晶粒生长过程进行了动力学分析,结果表明:脱水过程反应机理遵循Jander方程,对应的活化能为119.3 kJ/mol,Arrhenius频率因子自然对数lnA=24.6 s~(-1);脱碳过程对应的反应机理按Avrami-Erofeev方程(n=3),对应的活化能为222.59 kJ/mol,lnA=24.7 s~(-1)。晶化过程的表观晶化活化能为1115.18 kJ/mol。受扩散控制的晶粒生长活化能为226.06 kJ/mol。
     (3)研究了环境温度、镧系元素共掺杂对YAG:Ce粉体性能的影响。结果表明, YAG:Ce粉体的发光强度随着环境温度升高而减弱。当温度高于150K,开始出现明显的发光热猝灭。YAG:Ce衰减长时间项随着温度升高减小;衰减短时间项,随着温度的升高呈下降趋势,由于受到表面效应的影响中间出现小幅阶跃。Ce 1mol%取代Y时,发光强度达到最大,进一步增加铈的掺杂量导致浓度猝灭的发生。当Gd~(3+)取代Y~(3+)超过50 mol%时,导致GdAlO_3相的出现。当La~(3+)取代Y~(3+)超过20 mol%时,YAG结构完全消失,只存在LaAlO_3相。随着Gd、La掺杂量的增加,发射波长向长波长移动,发射光谱中红色成分增加,蓝色成分减少。
     (4)研究了溶胶凝胶包覆Al_2O_3和固相法包覆SiO_2。研究表明,溶胶凝胶法包覆Al_2O_3最佳工艺为:温度90℃以上;选择HNO_3作胶溶剂,最佳浓度为0.025mol/L。两种包覆都没有改变荧光粉的发射波长。Al_2O_3包覆使荧光粉发射强度略有下降,而SiO_2包覆使荧光粉发射强度一定程度上得到提高。
     本文的主要创新之处在于:以阳离子共沉淀为目标,提出了合理的沉淀工艺参数。探讨了环境温度对荧光粉发光性能的影响。研究表明,随着环境温度的升高,表面Ce~(3+)的衰减时间呈下降趋势,由于受到表面效应的影响中间出现小幅的阶跃。Gd、La掺杂使发射波长向长波长移动,发射光谱中红色成分增加,蓝色成分减少。用室温固相法进行了SiO_2包覆,SiO_2包覆荧光粉的发射强度一定程度上得到提高。上述研究为YAG:Ce荧光粉体的合成作了有意义的尝试和探讨,并为进一步的研究提供了理论依据。
White light emitting diodes (WLEDs) have the advantage of less energy consumption, no pollution, etc. WLEDs are called the forth generation lighting and have wide application prospect. Trivalent cerium activated yttrium aluminum garnet (YAG:Ce) is the primary phosphor for WLEDs. Recently, wet chemical method attracts more attention for preparation of phosphors, which has the advantage of reducing calcination temperature and shortening calcination time. Compared with other wet chemical methods, co-precipitation method has advantage of low cost, simple equipment and large scale production. Therefore, co-precipitation is a widely used method for preparation of phosphors. Previous research mostly focuses on luminescent properties of phosphor. The effect of Co-precipitation process on the physical, chemical and luminescent properties of phosphor is hardly systematically explored. For different lighting conditions, the phosphors owning different color coordinate and color temperature must be prepared. So, emission wavelength of YAG:Ce should be changed. Rare earth doping is an effective way to change emission wavelength. Coating process is an effective subsequent process. Film isolates phosphor from outside, eliminates the surface defects and improves the physical, chemical and luminescent properties of phosphor.
     This paper aims to develop YAG:Ce phosphor by co-precipitation and systematically researches effect of process conditions on the physical and chemical properties. The doping effect of rare earths on the physical, chemical and luminescent properties is explored. Meanwhile, coating treatment is applied to improve phosphor surface. Specific contents and main conclusions are shown as follows:
     (1) The influence of precipitant on the properties of YAG:Ce phosphor was investigated. The precursor has good dispersity, when selecting ammonia hydrocarbonate (AHC) as precipitant. The precursor directly transfers to YAG phase without appearance of other phases. Effect of concentration of precipitant, precipitation and aging temperature, aging time on the stoichiometry is discussed. The optimal process parameters are suggested. A molar concentration ratio between AHC and total cation is more than 4. Precipitation and aging temperature is room temperature (RT). Aging time is beyond 8h. The generation and control of agglomeration is analyzed. Ethanol–aqueous mixed solvents, adding polymeric surfactant and adopting heterogeneous azeortrope distillation (HAD) for drying precursor are constructive methods to reduce agglomeration.
     (2) Keeping Ce trivalence is a key circs during calcination. First, calcine the precursor in air. Then reduce the phosphor in reducing atmosphere. This procedure can reduce quadrivalent Ce sufficiently. The size of precursor comes into micron-size, when calcined above 1400℃. The luminescent decay contains two components, because of size effect. The long term reflects body Ce~(3+) luminescence, while the short term indicates surface Ce~(3+) luminescence. The most appropriate flux is BaF_2. The optimal added amount of BaF2 is 1/10 (mass ratios between fluxes and precursor). Systematic kinetic study is conducted on de-hydration, de-carbon, crystallization and crystal growth. The de-hydration fits the Jader function. The kinetics activity energy is 119.3 kJ/mol. Natural logarithm of Arrhenius frequency factor is lnA=24.6 s~(-1). The de-carbon accords with Avrami-Erofeev function (n=3). The kinetics activity energy is 222.59 kJ/mol. Natural logarithm of Arrhenius frequency factor is lnA=24.7 s~(-1). The apparent activity energy of crystallization is 1115.18 kJ/mol. Crystal growth coincides with the ninth order kinetic equation D 9 = kt = k 0 t exp( ? E / RT). The activity energy for crystal growth is 226.06 kJ/mol.
     (3) The effect of environmental temperature and lanthanide elements doping on the properties of YAG:Ce is investigated. The luminescence intensity decreases with the increase of environmental temperature, which is caused by the increase of the non-radiative relaxation rate. When environmental temperature increases above 150K, thermal quench effect is observed. The long decay component decreases with the increase of environmental temperature. While the short decay component shows intricate behavior, which results from effect of surface. The maximum emission intensity is obtained for 1mol% Ce additions. Concentration quench effect is observed when Ce amount increases beyond this limit. While Gd~(3+) doping concentration beyond 50 mol%, GdAlO_3 phase appears. When more than 20 mol% Y~(3+) is replaced by La~(3+), YAG phase completely disappears and LaAlO_3 phase emerges. As the doping concentration of Gd~(3+)and La~(3+) increases, the maximum emission band red shifts, while the emission intensity decreases. As increment of Gd and La doping, the red content in the emission spectra increases, while blue content decreases.
     (4) Coating phosphor with Al by the sol-gel route and with Si by the solid-state reaction at room temperature was studied. The optimal parameters for sol-gel route are temperature above 90℃, HNO_3 as peptizer, concentration of HNO_3 0.025mol/L. Al and Si coating treatment not change emission wavelength. Al coating slightly decreases the luminescent intensity. While, Si coating little increases the intensity.
     In this paper, the optimal parameters of co-precipitation are developed aimed at al cations coprecipitation. The effect of environmental temperature on the luminescent properties of YAG:Ce is investigated. The decay time of surface Ce~(3+) shows complex behavior, because of surface effect. The wavelength shows red shift, when YAG:Ce doped with Gd and La. The red content increases in the emission spectra of Gd and La doped YAG:Ce. Si coating using the solid-state reaction at room temperature makes the luminescent intensity slightly increases. These results provide instructive attempts of synthesizing YAG:Ce phosphor, and enrich the theoretical knowledge for further research.
引文
[1]Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Applied Physics Letters. 1994 64(13): 1687-1689
    [2]梁春广.半导体照明灯.半导体技术. 2000 25(1): 1-1
    [3]余德芳.新型的半导体光源—白光LED.世界电子元器件. 2000(3): 46-48
    [4]张成顺.白光二极管.中国. CN2428868Y. 2001
    [5]郝海涛.白光LED用荧光材料的制备及性能研究[硕士论文].太原:太原理工大学. 2006
    [6]孟继武,王燕辛,王晶,等.光转换白光LEDs的研究.光电子激光. 2003 14(6): 566-569
    [7]刘如熹,王健源,石景仁,等.钇铝石榴石型荧光粉及其制法与应用.中国. CN1397624A. 2003
    [8]方俊鑫,陆栋主.固体物理学(下册).上海:上海科学技术出版社. 1981
    [9]陈大华.现代光源基础.上海:学林出版社. 1987
    [10]李建宇.稀土发光材料及应用.北京:化学工业出版社. 2003
    [11]孙家跃,杜海燕.固体发光材料.北京:化工出版社. 2003
    [12]徐叙瑢.发光材料与显示技术.北京:化学工业出版社. 2003
    [13]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社. 2005
    [14]Chen S-J, Chen X-T, Yu Z, et al. Preparation and characterization of fine Sr2CeO4 blue phosphor powders. Solid State Communications. 2004 130(3-4): 281-285
    [15]Zhang J, Zhang Z, Tang Z, et al. Luminescent properties of Y2O3:Eu synthesized by sol-gel processing. Journal of Materials Processing Technology. 2002 121(2-3): 265-268
    [16]Yuan S, Yang Y, Fang B, et al. Effects of doping ions on afterglow properties of Y2O2S:Eu phosphors. Optical Materials. 2007 30(4): 535-538
    [17]Duault F, Junker M, Grosseau P, et al. Effect of different fluxes on the morphology of the LaPO4:Ce, Tb phosphor. Powder Technology. 2005 154(2-3): 132-137
    [18]Uematsu K, Toda K, Sato M. Preparation of YVO4:Eu3+ phosphor using microwave heating method. Journal of Alloys and Compounds. 2005 389(1-2): 209-214
    [19]徐叙瑢,苏勉曾.发光学与发光材料.北京:化学工业出版社. 2004
    [20]张克从,张乐惠.晶体生长科学与技术(下册).北京:科学出版社. 1997
    [21]Abell J S, Harris I R, Cockayne B, et al. Investigation of phase stability in the Y2O3-Al2O3 system. Journal of Materials Science. 1974 9(4): 527-537
    [22]Cockayne B. Uses and enigmas of the Al2O3-Y2O3 phase system. Journal of the Less-Common Metals. 1985 114(1): 199-206
    [23]Saito N, Matsuda S-i, Ikegami T. Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder. Journal of American Ceramic Society. 1998 81(8): 2023-2027
    [24]Zych E, Brecher C. Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic. Journal of Alloys and Compounds. 2000 300: 495-499
    [25]Zych E, Brecher C, Glodo J. Kinetics of cerium emission in a YAG:Ce single crystal: The role of traps. Journal of Physics Condensed Matter. 2000 12(8): 1947-1958
    [26]Weber M J. Nonradiative decay from 5d states of rare earths in crystals. Solid State Communications. 1973 12: 741-744
    [27]Raukas M, Basun S A, van Schaik W, et al. Luminescence efficiency of cerium doped insulators: the role of electron transfer processes. Applied Physics Letters. 1996 69(22): 3300-3302
    [28]Blasse G, Grabmaier B C. Luminescent Materials. Berlin: Springer-Verlag. 1994: 45-50
    [29]Lakshminarasimhan N, Varadaraju U V. White-light generation in Sr2SiO4:Eu2+, Ce3+ under near-UV excitation: A novel phosphor for solid-state lighting. Journal of the Electrochemical Society. 2005 152(9): 152-156
    [30]Braune B, Bogner G, Brunner H, et al. New developments in LED lighting by novel phosphors. 2003. San Jose, CA, United States: The International Society for Optical Engineering
    [31]刘如熹,石景仁.白光发光二级管用钇铝石榴石荧光粉配方与机制研究.中国稀土学报. 2002 20(6): 495-501
    [32]姚光庆,冯艳娥,段洁菲,等.氮化镓发光二极管蓝光转换材料的合成和发光性质.物理化学学报. 2003 19(3): 226-229
    [33]张书生,庄卫东,赵春雷,等.助熔剂对Y3Al5O12:Ce荧光粉性能的影响.中国稀土学报. 2002 20(6): 605-607
    [34]马林,胡建国,万国江,等. YAG:Ce发光材料合成的助熔剂研究.发光学报. 2006 27(3): 348-351
    [35]张华山,荆敏,韩辉,等.均相共沉淀法合成钇铝石榴石(YAG)纳米粉体的研究.材料科学与工程学报. 2004 22(6): 831-834
    [36]李霞,刘宏,王继扬,等.共沉淀制备Nd:YAG纳米粉体与机理探讨.功能材料. 2004 35(4): 501-503
    [37]Chen T-M, Chen S C, Yu C-J. Preparation and characterization of garnet phosphor nanoparticles derived from oxalate coprecipitation. Journal of Solid State Chemistry. 1999 144(2): 437-441
    [38]Li J-G, Ikegami T, Lee J-H, et al. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant. Journal of the European Ceramic Society. 2000 20(14-15):2395-2405
    [39]闻雷,孙旭东,马伟民.共沉淀制备YAG超细粉及透明陶瓷.功能材料. 2004 35(1): 89-91
    [40]Yuan F, Ryu H. Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2004 107(1): 14-18
    [41]Apte P, Burke H, Pickup H. Synthesis of yttrium aluminum garnet by reverse strike precipitation. Journal of Materials Research. 1992 7(3): 706-711
    [42]Xu G, Zhang X, He W, et al. The study of surfactant application on synthesis of YAG nano-sized powders. Powder Technology. 2006 163(3): 202-205
    [43]Lv Y, Wu X, Wu D, et al. Synthesis of barium fluoride nanoparticles by precipitation in ethanol-aqueous mixed solvents. Powder Technology. 2007 173(3): 174-178
    [44]Cai W, Li H, Zhang Y. Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the structural and textural properties ofα-Al2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007 295(1-3): 185-192
    [45]Shan H, Zhang Z. Preparation of nanometre-sized ZrO2-Al2O3 powders by heterogeneous azeotropic distillation. Journal of the European Ceramic Society. 1997 17(5): 713-717
    [46]吴湘伟,陈振华,黄培云.制备低团聚掺锑氧化锡超细粉体的新方法.中国粉体技术. 2005 11(1): 7-11
    [47]Li Z, Zeng J, Li Y. Solvothermal route to synthesize well-dispersed YBO3:Eu nanocrystals. Small. 2007 3(3): 438-443
    [48]Yin S, Shinozaki M, Sato T. Synthesis and characterization of wire-like and near-spherical Eu2O3-doped Y2O3 phosphors by solvothermal reaction. Journal of Luminescence. 2007 126(2): 427-433
    [49]Lam W M, Wong C T, Li Z Y, et al. Solvothermal synthesis of strontium phosphate chloride nanowire. Journal of Crystal Growth. 2007 306(1): 129-134
    [50]Ruan S-K, Zhou J-G, Zhong A-M, et al. Synthesis of Y3Al5O12:Eu3+ phosphor by sol-gel method and its luminescence behavior. Journal of Alloys and Compounds. 1998 275-277: 72-75
    [51]Ji H, Xie G, Lv Y, et al. A new phosphor with flower-like structure and luminescent properties of Sr2MgSi2O7: Eu2+, Dy3+ long afterglow materials by sol-gel method. Journal of Sol-Gel Science and Technology. 2007 44(2): 133-137
    [52]Lin K M, Lin C C, Hsiao C Y, et al. Synthesis of Gd2Ti2O7:Eu3+, V4+ phosphors by sol-gel process and its luminescent properties. Journal of Luminescence. 2007 127(2): 561-567
    [53]Manavbasi A, LaCombe J C. A new blue-emitting phosphor, SrZnO2:Pb2+, synthesized by the adipic acid templated sol-gel route. Journal of Luminescence. 2008 128(1): 129-134
    [54]Pechini M P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to from a Capacitor. USA. 3330697. 1967
    [55]Jia P Y, Lin J, Yu M. Pechini sol-gel deposition and luminescent properties of SrLa1-xRExGa3O7 (RE = Eu, Tb) phosphor films. Materials Research Bulletin. 2007 42(8): 1556-1564
    [56]Zhu N, Li Y, Yu X, et al. Synthesis and luminescent properties of YGG:Tb phosphors by Pechini method. Journal of Luminescence. 2007 122-123(1-2): 704-706
    [57]Wang Z, Liang H, Zhou L, et al. NaEu0.96Sm0.04(MoO4)2 as a promising red-emitting phosphor for LED solid-state lighting prepared by the Pechini process. Journal of Luminescence. 2008 128(1): 147-154
    [58]Serra O A, Cicillini S A, Ishiki R R. New procedure to obtain Eu3+ doped oxide and oxosalt phosphors. Journal of Alloys and Compounds. 2000 303-304: 316-319
    [59]Li X, Liu H, Wang J, et al. YAG:Ce nano-sized phosphor particles prepared by a solvothermalmethod. Materials Research Bulletin. 2004 39(12): 1923-1930
    [60]Chatterjee M, Naskar M K. Synthesis of yttrium-aluminum-garnet hollow microspheres by reverse-emulsion technique. Journal of the American Ceramic Society. 2006 89(4): 1443-1446
    [61]Zhang X, Zhuang W, Cui X, et al. Preparation of BaMgAl10O17:Eu2+ and its phase behavior in microemulsion system. Journal of Rare Earths. 2006 24(6): 736-739
    [62]Wang B, Zhou C C, Lu Z Y. Study on the synthesis of long afterglow nano-phosphors SrAl2O4:Eu, Dy by microemulsion method. Key Engineering Materials. 2007 336-338 I: 613-615
    [63]Kingsley J J, Suresh K, Patil K C. Combustion synthesis of fine particle rare earth orthoaluminates and yttrium aluminum garnet. Journal of Solid State Chemistry. 1990 88(2): 435
    [64]Zhang H, Su C, Han H, et al. Synthesis of neodymium-doped yttrium aluminum garnet (Nd:YAG) nano-sized powders by low temperature combustion. Journal of Rare Earths. 2005 23(3): 304-308
    [65]Sonekar R P, Omanwar S K, Moharil S V, et al. Combustion synthesis of narrow UVB emitting rare earth borate phosphors. Optical Materials. 2007 30(4): 622-625
    [66]Yao S, Chen D. Combustion synthesis and luminescent properties of a new material Li2(Ba0.99Eu0.01)SiO4:B3+ for ultraviolet light emitting diodes. Optics and Laser Technology. 2008 40(3): 466-471
    [67]Yin S, Chen D, Tang W. Combustion synthesis and luminescent properties of CaTiO3:Pr,Al persistent phosphors. Journal of Alloys and Compounds. 2007 441(1-2): 327-331
    [68]Ryu J H, Koo S M, Yoon J W, et al. Synthesis of nanocrystalline MMoO4 (M = Ni, Zn) phosphors via a citrate complex route assisted by microwave irradiation and their photoluminescence. Materials Letters. 2006 60(13-14): 1702-1705
    [69]Zhang P, Xu M, Zheng Z, et al. Rapid formation of red long afterglow phosphor Sr3Al2O6:Eu2+,Dy3+ by microwave irradiation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology. 2007 136(2-3): 159-164
    [70]Zhai Y, Liu Y, Liu Y. Synthesis of red-emitting phosphor Gd2O2S:Eu,Mg,Ti by the microwave radiation method and its long afterglow luminescent behavior. Chemical Journal on Internet. 2006 8(1): 7-16
    [71]Dirksen J A, Ring T A. Fundamentals of crystallization: Kinetic effects on particle size distributions and morphology. Chemical Engineering Science. 1991 46(10): 2389-2427
    [72]Randolph A D, Larson M A. Transient and steady state size sistributions in continuous mixed suspension crystallizer. AICHE J. 1962 8(5): 639-645
    [73]Leubner I H. Balanced nucleation and growth model for controlled crystal size distribution. Journal of Dispersion Science and Technology. 2002 23(4): 577-590
    [74]Nore P, Mersmann A. Batch preparation of barium carbonate. Chemical Engineering Science. 1993 48(17): 3083-3088
    [75]Wachi S, Jones A G. Mass transfer with chemical reaction and precipitation. Chemical Engineering Science. 1991 46(4): 1027-1033
    [76]Lindberg M, Rasmuson A C. Reaction crystallization in strained fluid films. Chemical Engineering Science. 2001 56(10): 3257-3273
    [77]Sondi I, Matijevic E. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. Journal of Colloid and Interface Science. 2001 238(1): 208-214
    [78]周英彦,高首山,李红霞,等.关于成核速率公式的研究(Ⅰ)液相胶粒成核速率公式的简化近似表达式.中国粉体技术. 2000 6(s1): 287-290
    [79]高首山,周英彦,李红霞,等.关于成核速率公式的研究(Ⅱ)液相胶粒成核速率公式及近似表达式的应用.中国粉体技术. 2000 6(s1): 291-294
    [80]Nielsen A E. Homogeneous nucleation in barium sulphate precipitation. Acta Cemica Scandinavica. 1961 15: 441-442
    [81]A.E. N. Kinetics of Precipitaion. Oxford: Pergamon Press. 1964
    [82]Sohnel O, Garside J. Precipitation: Basic principles and industrial applications. Oxford: Butterworth-Heinemann. 1992
    [83]Haishan D, Jinfan H. Molecular dynamics studies of the kinetics of phase changes in clusters: crystal nucleation of (Rbcl)108 clusters at 600, 550, and 500k. Journal of Solid State Chemistry. 2001 159(1): 10-18
    [84]Misra C,White E T. Kinetics of crystallization of aluminum trihydroxide from seeded caustic aluminate solutions. AIChE Symp Ser. 1971 67(110): 53-61
    [85]Tanimoto A, Kobayashi K, Fujita S. Overall crystallization rate of copper sulfate pentahydrate in an agitated vessel. Int Chem Eng. 1964 4(1): 153-159
    [86]Van Rosmalen G M, Van der Leeden M C, Gouman J. The growth kinetics of barium sulphate crystals in suspension: scale prevention(Ⅰ). Kristall und Technik. 1980 15: 1213-1222
    [87]Michaels A S, Colville A T. The Effect of Surface Active Agents on Crystal Growth Rate and Crystal Habit. J Phys Chem. 1960 64(13-19)
    [88]Bramley A S, Hounslow M J, Ryall R L. Aggregation during precipitation from solution. Kinetics for calcium oxalate monohydrate. Chemical Engineering Science. 1997 52(5): 747-757
    [89]Goodson M, Kraft M. An Efficient Stochastic Algorithm for Simulating Nano-Particle Dynamics. J Computational Physics. 2002 183(1): 210-232
    [90]Franke J, Mersmann A. Influence of the operational conditions on the precipitation process. Chemical Engineering Science. 1995 50(11): 1737-1753
    [91]Kim K D, Bae H J, Kim H T. Synthesis and growth mechanism of TiO2-coated SiO2 fine particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003 221(1-3): 163-173
    [92]Han J, Kumacheva E. Monodispersed silica-titanyl sulfate microspheres. Langmuir. 2001 17(25): 7912-7917
    [93]Kim K D, Bae H J, Kim H T. Synthesis and characterization of titania-coated silica fine particles by semi-batch process. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2003 224(1-3): 119-126
    [94]Pastoriza-Santos I, Koktysh D S, Mamedov A A, et al. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir. 2000 16(6): 2731-2735
    [95]Inaba H, Saitoh S, Kitahara T, et al. Development of particulate recording media with ultrathin magnetic layer. IEICE Transactions on Electronics. 1995 E78-C(11): 1536-1542
    [96]Nagai K, Ohishi Y, Ishiyama K, et al. Polymerization of surface-active monomers. III. Polymer encapsulation of silica gel particles by aqueous polymerization of quaternary salt of dimethylaminoethyl methacrylate with lauryl bromide. Journal of Applied Polymer Science. 1989 38(12): 2183-2189
    [97]Caruso F, Lichtenfeld H, Donath E, et al. Investigation of electrostatic interactions in polyelectrolyte multilayer films: Binding of anionic fluorescent probes to layers assembled onto colloids. Macromolecules. 1999 32(7): 2317-2328
    [98]Cui H, Hong G. Coating of Y2O3: Eu3+ with polystyrene and its characterizations. Journal of Materials Science Letters. 2002 21(1): 81-83
    [99]Ji T, Lirtsman V G, Avny Y, et al. Preparation, characterization, and application of Au-shell/polystyrene beads and Au-shell/magnetic beads. Advanced Materials. 2001 13(16): 1253-1256
    [100]张剑峰,郑强,高长有,等. Sol-gel法制备高分子-无机复合材料.功能材料. 2000 31(4): 357-360
    [101]Wei Y, Yeh J M, Jin D, et al. Composites of electronically conductive polyaniline with polyacrylate-silica hybrid sol-gel materials. Chemistry of Materials. 1995 7(5): 969-974
    [102]Embs F W, Thomas E L, Wung C J, et al. Structure and morphology of sol-gel prepared polymer-ceramic composite thin films. Polymer. 1993 34(22): 4607-4612
    [103]Luther-Davies B, Samoc M, Woodruff M. Comparison of the linear and nonlinear optical properties of poly(p-phenylenevinylene)/sol-gel composites derived from tetramethoxysilane and methyltrimethoxysilane. Chemistry of Materials. 1996 8(11): 2586-2594
    [104]Okubo M, Ahmad H. Effect of shell thickness on the temperature-sensitive property of core-shell composite polymer particles. Journal of Polymer Science, Part A: Polymer Chemistry. 1996 34(15): 3147-3153
    [105]Lin K F, Shieh Y D. Core-shell particles designed for toughening epoxy resins. I. Preparation and characterization of core-shell particles. Journal of Applied Polymer Science. 1998 69(10): 2069-2078
    [106]Quaroni L, Chumanov G. Preparation of polymer-coated functionalized silver nanoparticles [9]. Journal of the American Chemical Society. 1999 121(45): 10642-10643
    [107]Von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces. Journal of the American Chemical Society. 2001 123(31): 7497-7505
    [108]Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials. 1998 10(12): 901-915
    [109]Vestal C R, Zhang Z J. Atom transfer radical polymerization synthesis and magnetic characterization of MnFe2O4polystyrene core/shell nanoparticles. Journal of the American Chemical Society. 2002 124(48): 14312-14313
    [110]Liu C, Zou B, Rondinone A J, et al. Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. Journal of the American Chemical Society. 2000 122(26): 6263-6267
    [111]Gherardi P, Matijevic E. Interactions of precipitated hematite with preformed colloidal titania dispersions. Journal of Colloid and Interface Science. 1986 109(1): 57-68
    [112]Ung T, Liz-Marzan L M, Mulvaney P. Controlled method for silica coating of silver colloids. Influence of coating on the rate of chemical reactions. Langmuir. 1998 14(14): 3740-3748
    [113]Hall S R, Davis S A, Mann S. Cocondensation of organosilica hybrid shells on nanoparticle templates: a direct synthetic route to functionalized core-shell colloids. Langmuir. 2000 16(3): 1454-1456
    [114]Schroedter A, Weller H, Eritja R, et al. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Letters. 2002 2(12): 1363-1367
    [115]Van Bruggen, M P B. Preparation and properties of colloidal core-shell rods with adjustable aspect ratios. Langmuir. 1998 14(9): 2245-2255
    [116]Ung T, Liz-Marzan L M, Mulvaney P. Redox catalysis using Ag@SiO2 colloids. Journal of Physical Chemistry B. 1999 103(32): 6770-6773
    [117]Pastoriza-Santos I, Koktysh D S, Mamedov A A, et al. One-pot synthesis of Ag@TiO2 core-shell nanoparticles and their layer-by-layer assembly. Langmuir. 2000 16(6): 2731-2735
    [118]Guo X C, Dong P. Multistep coating of thick titania layers on monodisperse silica nanospheres. Langmuir. 1999 15(17): 5535-5540
    [119]Djuricic B, Pickering S, McGarry D. Coating of ceria-stabilized zirconia particles with alumina. Journal of Materials Science Letters. 1995 14(21): 1534-1535
    [120]Santra S, Tapec R, Theodoropoulou N, et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir. 2001 17(10): 2900-2906
    [121]崔洪涛.颗粒表面包覆的研究[博士论文].长春:中国科学院. 2002
    [122]Cui H, Hong G, Wu X, et al. Silicon dioxide coating of CeO2 nanoparticles by solid state reaction at room temperature. Materials Research Bulletin. 2002 37(13): 2155-2163
    [123]Cui H, Hong G, You H, et al. Coating of Y2O3:Eu3+ particles with alumina by a humid solid state reaction at room temperature. Journal of Colloid and Interface Science. 2002 252(1): 184-187
    [124]Radtchenko I L, Sukhorukov G B, Gaponik N, et al. Core-shell structures formed by the solvent-controlled precipitation of luminescent CdTe nanocrystals on latex spheres. Advanced Materials. 2001 13(22): 1684-1687
    [125]Li G J, Huang X X, Guo J K. Fabrication of Ni-coated Al2O3 powders by the heterogeneous precipitation method. Materials Research Bulletin. 2001 36(7-8): 1307-1315
    [126]张巨先,高陇桥,李发,等. Al2O3-Y2O3包覆碳化硅复合粒子的制备.无机材料学报. 1999 14(3): 380-384
    [127]陈小华,张高明,李宏健,等.碳纳米管的化学镀银及SEM研究.湖南大学学报(自然科学版). 1999 26(6): 16-20
    [128]Caruso F, Lichtenfeld H, Giersig M, et al. Electrostatic self-assembly of silica nanoparticle-polyelectrolyte multilayers on polystyrene latex particles. Journal of the American Chemical Society. 1998 120(33): 8523-8524
    [129]Caruso F, Susha A S, Giersig M, et al. Magnetic core-shell particles: preparation of magnetite multilayers on polymer latex microspheres. Advanced Materials. 1999 11(11): 950-952
    [130]Caruso F, Mohwald H. Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir. 1999 15(23): 8276-8281
    [131]Rogach A, Susha A, Caruso F, et al. Nano- and microengineering: three-dimensional colloidal photonic crystals prepared from submicrometer-sized polystyrene latex spheres pre-coated with luminescent polyelectrolyte/nanocrystal shells. Advanced Materials. 2000 12(5): 333-337
    [1]林树昌.分析化学:化学分析部分.北京:高等教育出版社. 2004
    [2]王中柱.分析化学实验.青岛:青岛海洋大学出版社. 1980
    [3]黄振国.纳米氧化钇粉体及透明氧化钇陶瓷的制备. [硕士论文]沈阳:东北大学. 2005
    [4]PVA-1788及PVA-1799溶解性能有何区别?在生成中如何进行溶解操作.化工进展. 1994(4): 50
    [5]涂星.纳米氧化钇的均匀沉淀法合成研究[硕士论文].广州:广东工业大学. 2004
    [6]徐亚源.化学测定混合氧化稀土中三氧化二铝.江西有色金属. 1999 13(2): 35-38
    [7]Li J G, Ikegami T, Lee J H, et al. Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant. Journal of the European Ceramic Society. 2000 20(14-15): 2395-2405
    [8]汤顺青.色度学.北京:北京理工大学出版社. 1990
    [9]房喻,王辉.荧光寿命测定的现代化方法与应用.化学通报. 2001(10): 631-636
    [10]邓杰,石军岩,施朝淑.同步辐射时间分辨荧光光谱技术.物理. 1999 28(4): 276-281
    [11]郝允祥,陈遐举,张保洲.光度学.北京:北京师范大学. 1988
    [12]张兴义.电子显示技术.北京:北京理工大学出版社. 1995
    [1]高瑞平,李晓光,施剑林.先进陶瓷物理与化学原理及技术.北京:科学出版社. 2001
    [2]Lange F F. Powder processing science and technology for increased reliability. Journal of the American Ceramic Society. 1989 72(1): 3-15
    [3]Horn R G. Surface forces and their action in ceramic materials. Journal of the American Ceramic Society. 1990 73(5): 1117-1135
    [4]徐刚.锆钛酸铅(PZT)及钛酸镧铋(BLT)的纳米粉体和一维纳米结构的合成、表征及其机理的研究[博士论文].杭州:浙江大学. 2004
    [5]Caponetti E, Saladino M L, Martino D C, et al. Luminescence properties of neodymium-doped yttrium aluminium garnet obtained by the Co-precipitation method combined with the mechanical process. Diffusion and Defect Data Pt.B: Solid State Phenomena. 2005 106: 7-16
    [6]Zhou Y, Lin J, Yu M, et al. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+ (Re=Ce,Sm,Tb) phosphors. Materials Letters. 2002 56: 628-636
    [7]Yuan F, Ryu H. Ce-doped YAG phosphor powders prepared by co-precipitation and heterogeneous precipitation. Materials Science and Engineering B. 2004 107: 14-18
    [8]Chen T M, Chen S C, Yu C J. Preparation and Characterization of Garnet Phosphor Nanoparticles Derived from Oxalate Coprecipitation. Journal of Solid State Chemistry. 1999 144(2): 437-441
    [9]Matsushita N, Tsuchiya N, Soc K A C. Precipitation and Calcination Processed for Yttrium Alminum Garnet Precursors Synthesized by the Urea Method. J Am Ceram Soc. 1999 82(8): 1977-1984
    [10]武汉大学化学系.稀土元素分析化学(上册).北京:科学出版社. 1981
    [11]张华山,荆敏,韩辉,等.均相共沉淀法合成钇铝石榴石(YAG)纳米粉末的研究.材料科学与工程学报. 2004 22(6): 831-834
    [12]王介强,陶文宏,高新睿,等.微波均相合成YAG纳米粉体及其可烧结性研究.无机材料学报. 2005 20(5): 1037-1042
    [13]李启厚,肖松文,刘志宏.湿法化学制粉中的粉末结构形貌控制研究进展.中国粉体技术. 1999 5(2): 21-23
    [14]张庆今,胡晓洪,杨敏.液相沉淀法制备TiO2超微粉末的影响因素分析.华南理工大学学报(自然科学版). 1996 24(7): 52-56
    [15]赵振国,程虎民,马季铭.共沉淀制备PbTiO3微粉控制晶粒大小方法的研究.高等学校化学学报. 1994 15(7): 1063-1067
    [16]Colomban P. Structure of oxide gels and glasses by infrared and raman scattering Part 1 Alumina. Journal of Materials Science 1989 24: 3002-3010
    [17]Apte P, Burke H, Pickup H. Synthesis of yttrium aluminum garnet by reverse strike precipitation. Journal of materials Research. 1992 7(3): 706-711
    [18]Holcombe Jr C E. Yttria hydroxy-salt binders. Journal of the American Ceramic Society. 1978 61(11-12): 481-486
    [19]Hayashi k, Toyoda S, Takebe H, et al. Phase transformation of alumina dervied from ammonium aluminum carbonate hydroxide(AACH). J Ceram Soc Japan. 1991 99(7): 550-555
    [20]Saito N, Matsuda S I, Ikegami T. Fabrication of transparent yttria ceramics at low temperature using carbonate-derived powder. Journal of the American Ceramic Society. 1998 81(8): 2023-2028
    [21]Foger K, Hoang M, Turney T W. Formation and thermal decomposition of rare-earth carbonates. Journal of Materials Science. 1992 27(1): 77-82
    [22]Bol A, Ageeth, Meijerink A. Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+: 1. Surface Passivation and Mn2+ Concentration. J Phys Chem B. 2001 105: 10197-10202
    [23]Wei Z-G, Sun L-D, Liao C-S, et al. Size dependence of luminescent properties for hexagonal YBO3:Eunanocrystals in the vacuum ultraviolet region. Journal of Applied Physics. 2003 93(12): 9783-9788
    [24]天津大学无机化学教研室编.无机化学.第二版.北京:高等教育出版社. 1992
    [25]《有色金属工业分析丛书》编辑委员会编.稀土分析北京:冶金工业出版社. 1995
    [26]吴炳乾.稀土冶金学.长沙:中南大学. 2001
    [27]霍地,孙旭东,修稚萌,等.制备工艺对超细氧化钇粉体形态与烧结性的影响.中国稀土学报. 2007 25(5): 566-572
    [28]张永成,陈沙鸥,栾伟娜,等.碳酸氢铵沉淀法制备纳米氧化铝粉体的性能与表征.硅酸盐通报. 2007 26(5): 901-904
    [29]陈同云.陈化温度及掺杂对分子筛负载SO42-/ZrO2-Co2O3固体超强酸性能影响的研究.分子催化. 2006 20(4): 311-315
    [30]李平,张萍,鲁彬,等.低温陈化法制备ε-Zn(OH)2晶体及其表征.化学研究与应用. 2004 16(1): 99-100
    [31]柳松.水溶液中碳酸铈的陈化过程.无机盐工业. 2007 39(8): 31-32
    [32]张亚文,严铮光,李昂,等.沉淀条件对稀土氧化物的比表面积和形貌的影响(Ⅱ)中国稀土学报. 2001 19(5): 471-473
    [33]Park H K, Moon Y T, Kim D K, et al. Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2. Journal of the American Ceramic Society. 1996 79(10): 2727-2732
    [34]Chen H I, Chang H Y. Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2004 242(1-3): 61-69
    [35]李亚栋,李成韦,郑化桂,等.混合溶剂中纳米级NiO的制备及表征.高等学校化学学报. 1997 18(12): 1921-1923
    [36]李懋强.从液相制备陶瓷超细粉料的原理和方法.粉体技术. 1998 4(1): 19-24
    [37]Lv Y, Wu X, Wu D, et al. Synthesis of barium fluoride nanoparticles by precipitation in ethanol-aqueous mixed solvents. Powder Technology. 2007 173(3): 174-178
    [38]武汉大学主编.分析化学.北京:高等教育出版社. 1995
    [39]Xu G, Zhang X, He W, et al. The study of surfactant application on synthesis of YAG nano-sized powders. Powder Technology. 2006 163(3): 202-205
    [40]Verwey E, Overbeek J T G. Theory of the Stability of Lyophobic Colloids. Amsterdam: Elservier. 1948
    [41]Heller W, Pugh T L. ``Steric Protection'' of Hydrophobic Colloidal Particles by Adsorption of Flexible Macromolecules. J Chem Phys. 1954 22: 1778-1779
    [42]许珂敬,杨新春,刘风春,等.高分子表面活性剂对氧化物陶瓷超微颗粒的分散作用.中国陶瓷. 1999 35(5): 15-18
    [43]Cai W, Li H, Zhang Y. Influences of processing techniques of the H2O2-precipitated pseudoboehmite on the structural and textural properties ofγ-Al2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2007 295(1-3): 185-192
    [44]Okubo T, Nagamoto H. Low-temperature preparation of nanostrctured zirconia and YSZ by sol-gel processing. J Mater Sci. 1995 30: 749-757
    [45]高岚.沉淀-共沸精馏法制备纳米CeO2及其煅烧动力学的研究Thesis [硕士论文].北京:北京化工大学. 2005
    [46]王金淑,周美玲,左铁镛,等. La2O3对Mo粉性能影响的研究.稀有金属材料与工程. 2002 31(2): 140-143
    [47]牛新书,许亚杰,孙瑞霞,等. Y掺杂纳米TiO2的合成及晶型转变过程.应用化学. 2002 19(9): 898-901
    [48]Qu H, Gao L, Feng C, et al. Preparation of nanoscale zirconia powder by heterogeneous azeotropic distillation processing. J Inorg Mater. 1994 9(3): 365-370
    [49]Tadokoro S K, Muccillo E N S. Physical characteristics and sintering behavior of ultrafine zirconia-ceria powders. Journal of the European Ceramic Society. 2002 22(9-10): 1723-1728
    [50]Li B, Zhang Y, Zhao Y, et al. A novel method for preparing surface-modified Mg(OH)2 nanocrystallines. Materials Science and Engineering: A. 2007 452-453: 302-305
    [1]李健宇.稀土发光材料及其应用.北京:化学工业出版社. 2003
    [2]Messier D R, Gazza G E. Synthesis of MgAl2O4 and Y3Al5O12 by thermal decomposition of hydrated nitrate mixture. Am Ceram Soc Bull. 1972 51(9): 692-694
    [3]Gusshkova V B, Krzhizhanovskaya V A, Egorova O N, et al. Interaction of yttrium and aluminum oxides. Inorg Mater. 1983 19(1): 80-84
    [4]Neiman A Y, Tkachenko E V, Kvichko L A, et al. Conditions and macromechanism of solid-phase synthesis of yttrium aluminates. Russ J Inorg Chem. 1980 25(9): 1294-1297
    [5]Yanagitani T, Yaji H, Ichikawa M. Production of fine powder of yttrium aluminum garnet. Jpn. 1998
    [6]张克从,张乐惠.晶体生长科学与技术(下册).北京:科学出版社. 1997
    [7]刘如熹,石景仁.白光发光二极管用钇铝石榴石萤光粉配方与机制研究.中国稀土学报. 2002 20(6): 495-501
    [8]张永强. SrAl2O4:Eu2+,Dy3+稀土蓄光材料的制备及性能研究Thesis [硕士论文].成都:电子科技大学. 2005
    [9]Guo H, Yang X, Xiao T, et al. Structure and optical properties of sol-gel derived Gd2O3 wave guide films. Applied Surface Science. 2004 230: 215-221
    [10]何南玲. YAG黄色荧光粉的合成与性能研究Thesis [硕士论文].重庆:重庆大学. 2006
    [11]吴海彬,王昌玲.白光LED封装材料对其光衰影响的实验研究.光学学报. 2005 25(08): 1091-1095
    [12]张希艳,卢利平.稀土发光材料.北京:国防工业出版社. 2005
    [13]张中太,张俊英.无机光致发光材料及应用.北京:化学工业出版社. 2005
    [14]Weber M J. Nonradiative decay from 5d states of rare earths in crystals. Solid State Commun. 1973 12: 41-744
    [15]Zhang W W, Zhang W P, Xie P B, et al. Optical properties of nanocrystalline Y2O3:Eu depending onits odd structure. J Colloid Interf Sci. 2003 262: 588-593
    [16]Kim J Y, You Y C, Jeon D Y, et al. Investigation of the characteristic changes on SrTiO3:Pr,Al,Ga phosphors during low voltage electron irradiation. Journal of Vacuum Science and Technology B: Microelectronics and Nanometer Structures. 2003 21(1 SPEC.): 536-539
    [17]Bol A A, Meijerink A. Luminescence quantum efficiency of nanocrystalline ZnS:Mn2+: 1. Surface passivation and Mn2+ concentration. Journal of Physical Chemistry B. 2001 105(42): 10197-10202
    [18]Chang S, Li S, Kan Y, et al. Synthesis and luminescent properties of Ce3+, Tb3+ Co-doped Zn4B6O13. Journal of Rare Earths(English Edition). 2002 6(20): 606-610
    [19]腾玉洁,黄竹坡.碱土金属卤磷酸盐光激励发光材料的研制.北京大学学报. 1992 28(4): 409-415
    [20]洪光言.无机固体化学.北京:科学出版社. 2002
    [21]Lo C L, Duh J G, Chiou B S, et al. Synthesis of Eu3+-activated yttrium oxysulfide red phosphor by flux fusion method. Materials Chemistry and Physics. 2001 71(2): 179-189
    [22]魏雅姝,张金朝,宋鹂. Y2O2S:Eu3+, Mg2+, Ti4+长余辉材料制备中烧结条件和助熔剂的影响.应用化学. 2005 22(12): 1342-1346
    [23]张玉军,尹衍升. B2O3对Eu2+,Dy3+共激活铝酸锶发光材料发光性能的影响.人工晶体学报. 2003 32(1): 20-23
    [24]徐进章,张志华,王育华. LaMgAl11O19:Tb的助熔剂法制备及其发光特性.稀有金属材料与工程. 2006 35(6): 950-953
    [25]孙曰圣,屈芸,肖监谋,等.草酸沉淀法制备细颗粒红色荧光粉Y2O3:Eu3+的发光特性.发光学报. 2004 25(4): 359-364
    [26]齐晓霞,赵军武.长余辉材料SrAl2O4:Eu2+,Dy3+的制备及发光性能研究.半导体光电. 2006 27(573-577)
    [27]刘利民,李其华,曾立华,等. Ba3La(BO3)3基质中Tb3+的光致发光.光谱实验室. 2005 22(5): 917-920
    [28]Cho J Y, Doa Y R, Huh Y-D. Analysis of the factors governing the enhanced photoluminescence brightness of Li-doped Y2O3:Eu thin-film phosphors. Applied Physics Letters. 2006 89: 131915
    [29]张朋越,向鑫,沈华翔,等. Li2CO3/K3PO4复合助熔剂对新型Y2O2S:0.09Ti长余辉磷光体发光性能的影响.发光学报. 2006 27(2): 169-173
    [30]唐永波,杨庆华,黄如喜,等.助熔剂BaF2在制备BaSi2O5:Pb2+过程中的机理.发光学报. 2006 27(5): 745-749
    [31]张书生,庄卫东,赵春雷,等.助熔剂对Y3Al5O12:Ce荧光粉性能的影响.中国稀土学报. 2002 20(6): 606-607
    [32]马林,胡建国,万国江,等. YAG:Ce发光材料合成的助熔剂研究.发光学报. 2006 27(3): 348-352
    [33]刘宏彬,郗英欣,宋晓平,等. Li2CO3-NaCl复合助熔剂对(Y,Gd)BO3:Eu荧光粉合成的影响.西安交通大学学报. 2005 39(6): 646-649
    [34]王飞,张金朝,宋鹂.助熔剂法合成Gd2O2S:Tb荧光粉.华东理工大学学报(自然科学版). 2006 32(8): 943-947
    [35]Popovici E J, Muresan L, Hristea-Simoc A, et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials. 2004 27(3): 559-565
    [36]崔黎黎,范慧俐,徐晓伟,等.硼酸在合成La-Yb-Er体系发光材料中作用的研究.人工晶体学报. 2006 35(6): 1262-1264
    [37]杨鼎宜,孙伟,刘志勇.钙矾石晶体热分解的动力学硅酸盐学报. 2007 35(12): 1641-1656
    [38]孙秋香,王丽娜,李鹏,等.水杨酸钴非等温热分解动力学研究.分析科学学报. 2007 23(4): 373-377
    [39]张梅,林勤,徐爱菊.热分析在偏钒酸铵热分解机构研究中的应用.现代科学仪器. 2007(3): 98-100
    [40]唐万军,陈栋华.二水草酸亚铁热分解反应动力学.物理化学学报. 2007 23(4): 605-608
    [41]吕佳娉,索掌怀.几种铈盐的热分解过程及非等温热分解动力学研究.烟台大学学报(自然科学与工程版). 2006 19(2): 117-124
    [42]Pan Y, Guan X, Feng Z, et al. Dehydration reaction of manganese(II) oxalate dihydrate in the solid state: New method in the study of non-isothermal kinetics. Journal of Thermal Analysis and Calorimetry. 1999 55(3): 877-884
    [43]仪建华,赵凤起,高红旭,等.柠檬酸铈的热分解机理及反应动力学.火炸药学报. 2007 30(4): 1-5
    [44]唐爱东,黄可龙,彭宏,等.硝酸高铈铵的热分解动力学研究.稀有金属材料与工程. 2004 28(6): 1024-1028
    [45]于伯龄,姜胶东.实用热分析.北京:纺织工业出版社. 1990: 168-172
    [46]Lu K. Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science & Engineering: R: Reports. 1996 16(4): 161-221
    [47]赵惠忠,张文杰,汪厚植.合成镁白云石中CaO和MgO晶粒生长动力学.耐火材料. 1996 30(2): 84-87
    [48]刘河洲.纳米TiO2的反胶束水解合成与热处理过程动力学及其应用研究[博士论文].上海:上海交通大学. 2000
    [49]宋晓岚,邱冠周,曲鹏,等.沉淀法合成纳米CeO2的晶粒生长动力学.稀有金属材料与工程. 2005 34(7): 1085-1088
    [1]黄春辉.稀土配位化学.北京:科学出版社. 1997
    [2]中国科学院化学学部,国家自然科学基金委化学科学学部.展望21世纪的化学.北京:化学工业出版社. 2000
    [3]Fu Z, Bu W. High efficiency green-luminescent LaPO4:Ce,Tb hierarchical nanostructures: Synthesis, characterization, and luminescence properties. Solid State Sciences. 2005
    [4]Jung K Y, Lee H W. Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis. Journal of Luminescence. 2007 126(2): 469-474
    [5]Zhang M F. Hydrothermal preparation and luminescence of LaF3:Ce, Tb, nano-sized phosphor. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis. 2007 27(2): 232-235
    [6]Li K, Shucai G, Guangyan H, et al. Relationship between Crystal Structure and Luminescence Properties of (Y0.96 - xLnxCe0.04)3Al5O12(Ln=Gd, La, Lu) Phosphors. Journal of Rare Earths. 2007 25(6): 692-696
    [7]Moriga T, Sakanaka Y, Miki Y, et al. Luminescent properties of (Y,Gd)3Al5O12:Ce phosphors prepared by citric-gel method. International Journal of Modern Physics B. 2006 20(25-27): 4159-4164
    [8]Abdullah M, Okuyama K, Lenggoro I W, et al. A polymer solution process for synthesis of (Y,Gd)3Al 5O12:Ce phosphor particles. Journal of Non-Crystalline Solids. 2005 351(8-9): 697-704
    [9]Deng Y, Fowlkes J D, Fitz-Gerald J M, et al. Combinatorial thin film synthesis of Gd-doped Y3Al 5O12 ultraviolet emitting materials. Applied Physics A: Materials Science and Processing. 2005 80(4): 787-789
    [10]Zhang S, Zhuang W, Zhao C, et al. Study on (Y, Gd)3(Al, Ga)5O12:Ce3+ phosphor. Journal of Rare Earths. 2004 22(1): 118-121
    [11]Zych E, Brecher C, Wojtowicz A J, et al. Luminescence properties of Ce-activated YAG optical ceramic scintillator materials. Journal of Luminescence. 1997 75(3): 193-203
    [12]Ludziejewski T, Moszyn ski M, Kapusta M, et al. Investigation of some scintillation properties of YAG: Ce crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1997 398(2-3): 287-294
    [13]陈俊锋,李赟,宋桂兰,等.光激发下Li6Gd(BO3)3:Ce晶体发光和衰减的温度依赖特性.无机材料学报. 2007 22(1): 25-29
    [14]Zych E, Brecher C. Temperature dependence of Ce-emission kinetics in YAG:Ce optical ceramic. Journal of Alloys and Compounds. 2000 300: 495-499
    [15]Lempicki A, Bartram R H. Effect of shallow traps on scintillation. Journal of Luminescence. 1999 81(1): 13-20
    [16]Zych E, Brecher C, Glodo J. Kinetics of cerium emission in a YAG:Ce single crystal: The role of traps. Journal of Physics Condensed Matter. 2000 12(8): 1947-1958
    [17]司伟,翟玉春.纳米Eu0.01Y1.90-xNdxOδ的光致发光特性及浓度猝灭研究.分子科学学报. 2007 23(4): 257-260
    [18]韩琳,宋峰,邹昌光,等. Tm3+离子掺杂的钨酸钇钠晶体中浓度猝灭效应的研究.物理学报. 2007 56(7): 4177-4193
    [19]陈哲,谢鸿,严有为. Eu掺杂浓度对BAM光谱特性的影响.光谱学与光谱分析. 2007 27(4): 657-659
    [20]Matsubara I, Paranthaman M, Allison S W, et al. Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties. Materials Research Bulletin. 2000 35: 217-224
    [21]Zhou Y, Lin J, Yu M, et al. Synthesis-dependent luminescence properties of Y3Al5O12:Re3+(Re=Ce,Sm,Tb) phosphors. Materials Letters. 2002 56: 628-636
    [22]亨著.颜色技术原理及其应用.北京:科学出版社1994
    [23]汤顺清.色度学.北京:北京理工大学出版社. 1990
    [24]关中素.荧光粉相对亮度测量的色修正.发光学报. 1994 15(3): 221-225
    [1]Dang T A, Chou C N. Electron spectroscopy for chemical analysis of cool white phosphors coated with SiO2 thin film. Journal of the Electrochemical Society. 1996 143(1): 302-305
    [2]Agrawal D C, Raj R, Cohen C. In-situ measurement of silica-gel coating on particles of alumina. Journal of the American Ceramic Society. 1990 73(7): 2163-2164
    [3]Oshio S, Kitamura K. Firing technique for preparing a BaMgAl10O17:Eu2+ phosphor with controlled particle shape and size. Journal of the Electrochemical Society. 1999 146(1): 392-399
    [4]Chau C N, Silloway T V, Salvi P W. Phosphor powder for coating lamp envelopes and method for preparation. EP Patent. No.0852255. 1998
    [5]Budd D K. Electroluminescent phosphor particles encapsulated with an aluminum oxide based multiple oxide coating. US Patent. No.5998047. 1999
    [6]Jean J H, Yang S M. Y2O2S:Eu red phosphor powders coated with silica. Journal of the American Ceramic Society. 2000 83(8): 1928-1934
    [7]李强,高濂,严东生.纳米Y2O3:Eu3+粉体的表面包膜处理.无机材料学报. 1999 14(1): 150-154
    [8]唐谊平.短碳纤维表面处理新工艺及其在铝基、铜基复合材料中的应用研究[博士论文].上海:上海交通大学. 2007
    [9]毕诗文.氧化铝生产工艺.北京:化学工业出版社. 2006
    [10]金志浩,高积强,乔冠军,等.工程陶瓷材料.西安:西安交通大学出版社. 2000
    [11]丁冬雁.表面涂覆硼酸铝晶须对6061Al基复合材料组织性能的影响[博士论文].哈尔滨:哈尔滨工业大学. 2000
    [12]Bulente, Yoldas. Hydrolysis of Aluminum Alkoxides and Bayerite Conversion. Jouranl of Applied Chemistry Biotechnology. 1973 23: 803-809
    [13]Petrovic R, Milonjic S, Jokanovic V. Influnence of synthesis parameters on the structure of boehmite sol particles. Powder Technology. 2003 133: 185-189
    [14]Gieselmann M J, Anderson M A. Effect of Ionic Strength on Boehmite Hydrogel Formation. Journal of the American Ceramic Society. 1989 72(6): 980-985
    [15]姚楠,熊国兴,张玉红,等.溶胶-凝胶法制备中孔分布集中的氧化物及混合氧化物催化材料.中国科学B. 2001 31(4): 355-363
    [16]胡亚微. PDP荧光粉的制备与包膜研究. [硕士论文].长春:吉林大学. 2005
    [17]王喜娜,敬承斌,赵修建,等.溶胶-凝胶法制备致密α-Al2O3涂层的研究.材料科学与工艺. 2005 13(1): 1-3
    [18]郑水林.超微粉体加工技术与应用.北京:化学工业出版社. 2005
    [19]杨志华,余萍,肖定全,等.利用无机盐制备γ-Al2O3粉体与薄膜的工艺技术研究.功能材料. 2004 35(4): 474-476
    [20]李月明,周健儿,顾辛勇,等.溶胶-凝胶法制备Al2O3纳米粉.中国陶瓷. 2002 38(5): 4-6
    [21]田秀淑,吕臣敏,王黔平.溶胶-凝胶法制备氧化铝系复合膜的研究进展.江苏陶瓷. 2006 39(1)
    [22]Pacewska B, Kesh M. Thermal transformations of the products of partial hydrolysis of hydrous aluminium nitrate. Journal of thermal analysis and calorimetry. 2004 75: 113-123
    [23]Pacewska B, Keshr M. Aluminium nitrate as a precursor of mesoporous aluminium oxides Journal of thermal analysis and calorimetry. 2003 74: 595-603
    [24]Li J, Pan Y, Xiang C. Low temperature synthesis of ultrafineα-Al2O3 powder by a simple aqueous sol–gel process. Ceramics International. 2006 32: 587-591
    [25]刘桂霞.稀土纳/微米颗粒的包覆技术与性能研究[博士论文].天津:天津大学. 2003
    [26]Sordelet D, Akinc M. Preparation of spherical, monosized Y2O3 precursor particles. Journal of Colloid and Interface Science. 1988 122(1): 47-59
    [27]Liu Q, Xu Z, Finch J A, et al. A novel two-step silica-coating process for engineering magnetic nanocomposites. Chemistry of Materials. 1998 10(12): 3936-3940
    [28]Liu G, Hong G, Sun D. Coating Gd2O3:Eu phosphors with silica by solid-state reaction at room temperature. Powder Technology. 2004 145(2): 149-153
    [29]田凡.游离二氧化硅含量的X线衍射测定计算方法.中南民族学院学报(自然科学版). 2001 20(1): 91-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700