用户名: 密码: 验证码:
反应激活型疾病诊断荧光探针及其它相关探针的设计、合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计、合成了三类基于反应激活的荧光探针,反应前后荧光团的电子云密度得到重新排列,使得反应前后可以产生两个不同波段的荧光发射峰,因此可以对检测对象实现比例检测,大大提高了检测的精度和可信度。
     1.设计、合成了N-乙酰转移酶II特异性荧光探针Amonafide。临床代谢研究发现,化合物amonafide在体内主要被N-乙酰基转移酶II催化代谢生成Acetyl-Amonafide。基于此,设计了化合物Amonafide作为N-乙酰转移酶II特异性荧光探针。化合物Amonafide和Acetyl-Amonafide在350 nm有共同的最大吸收峰,而发射波长分别在460 nm和580 nm,更重要的是代谢产物Acetyl-Amonafide的荧光量子产率高达0.74。酶水平和细胞水平实验进一步证明了探针Amonafide对NAT2的高选择性和灵敏性(1 nM)。并且成功地将探针Amonafide应用于HepG2细胞株内的N-乙酰转移酶II荧光成像检测,这为芳胺类药物的个性化给药奠定了基础。同时完成了分别针对N-乙酰转移酶I和N-乙酰转移酶II的长波长荧光探针的设计和部分合成工作。
     2.以4-氨基-1,8-萘酰亚胺为荧光团母体,通过异氰酸酯键与受体对硝基苄醇链接,设计了针对肿瘤乏氧的比率型荧光探针RHP。通过ICT原理,可以使反应后的最大荧光发射波长红移(475nm到550 nm)。详细研究了探针RHP对硝基还原酶(NTR)的荧光响应和动力学曲线,同时检测了内源性还原物质对探针的影响。实验结果进一步证明了探针RHP对硝基还原酶的高选择性。乏氧/有氧实验证明,当GrHy/GrAr和B1Hy/B1Ar的比值在45以上时,细胞即处于乏氧环境。探针RHP可以作为肿瘤乏氧诊断探针用于体内实体瘤的早期诊断。同时通过乏氧原理设计并合成了基于Amonafide的前药化合物。
     3.以苯并噻唑类化合物(HBTBC)为荧光团母体,设计了一类基于ESIPT的荧光探针。反应前后两种化合物的斯托克斯位移高达120 nm以上,且光谱交叉的区域少,设计的探针检测结果的可信度和准确度更高。以Tsuji-Trost烯丙基的氧化反应为基础设计了针对Pd(0)的荧光探针OHBT。当OHBT与Pd(0)反应后,最大发射波长由410 nm红移到550 nm,设计的探针对Pd(0)有着高度的选择性。同时通过滤纸对Pd(0)实现了固体荧光检测,并成功对Suzuki偶联反应产物中残留的Pd(0)进行了定量检测。
In the present work, three series of reaction-activated fluorescent probes were desiged and synthesized. Because of the rearrangement of fluorophore's electron density, probe and reaction product can produce two different wavelengths of fluorescence emission peak. Therefore, probe can detect the substrate in ratiometric way, which greatly improves the accuracy and reliability of the detection results.
     1. Based on the clinical metabolic study that Amonafide was mainly metabolized by N-acetyltransferase II to Acetyl-Amonafide, we designed and synthesized N-acetyltransferase II specific probe Amonafide. Both Amonafide and Acetyl-amonafide can be excited at 350 nm, but the maximum emission wavelength is at 580 nm and 460 nm respectively. The more important thing is that the metabolism product Acetyl-amonafide has a high fluorescence quantum yield (0.72). Through enzyme and cell experiments, it was also proved that the probe had high selectivity and sensitivity (1 nM) for N-acetyltransferase II. Next, the probe was successfully applied in HepG2 fluorescence imaging. These will lay the foundation of personalized medicine.
     2. Based on the hypoxia prodrug moiety of p-nitrobenzyl, a selective ratiometric fluorescent sensor (RHP) for the detection of microenvironment hypoxia was designed and synthesized. RHP can be selectively activated by bioreductive enzymes (NTR) and results in an evident blue to green fluorescent emission wavelength change in both solution phases and in cell lines, which might be the first fluorescent ratiometric probe for hypoxia in solid tumors. By hypoxia/aerobic experiments, it showed that when the GrHy/GrAr and BlHy/BlAr ratio value is above 45, the cells are in a hypoxic environment. RHP can be used as a probe for the diagnosis of hypoxia in early stage of solid tumors.
     Some prodrugs which based on amonafide and activated by hypoxia were also synthesized.
     3. Based on benzothiazole compounds (HBTBC), fluorescent probes of Pd (0) was designed and synthesized. Because of the Stokes shift value is up to 120 nm before and after the reaction, the detection resulted had higher reliability and accuracy.
     Pd (0) fluorescent probe (OHBT) was based on Tsuji-Trost allylic oxidative insertion reaction. After reaction between OHBT and Pd, the maximum emission wavelength was shifted from 410 nm to 550 nm. OHBT had a high selectivity to Pd(0). The Pd can also be detected by solid fluorescence through a given method. OHBT was successfully applied in residual Pd detection in the Suzuki reaction.
引文
[1]Xiao, Y. M.; Wu, Y. H.; Liu, J. P.; Li, Y. F.; Li, N.; Qin, Z. H., Study on the Molecular Recognization of Fungicide of Kresoxim-Methyl with beta-cyclodextrin and Its Derivatives. Spectrosc Spect Anal 2008,28, (10),2370-2374.
    [2]Sato, M.; Ito, Y; Arima, N.; Baba, M.; Sobel, M.; Wakao, M.; Suda, Y, High-Sensitivity Analysis of Naturally Occurring Sugar Chains, Using a Novel Fluorescent Linker Molecule. Journal of Biochemistry 2009,146, (1),33-41.
    [3]Son, T.; Han, B.; Jung, B. J.; Nelson, J. S., Fluorescent image analysis for evaluating the condition of facial sebaceous follicles. Skin Research and Technology 2008,14, (2), 201-207.
    [4]Thilaganathan, B.; Sairam, S.; Ballard, T.; Peterson, C.; Meredith, R., Effectiveness of prenatal chromosomal analysis using multicolour fluorescent in situ hybridisation. British Journal of Obstetrics and Gynaecology 2000,107, (2),262-266.
    [5]Garcia-Parajo, M. F.; Veerman, J. A.; Bouwhuis, R.; Vallee, R.; van Hulst, N. F., Optical probing of single fluorescent molecules and proteins. Chemphyschem 2001,2, (6), 347-360.
    [6]Ratcliff, R. M.; Chang, G.; Kok, T.; Sloots, T. P., Molecular diagnosis of medical viruses. Current Issues in Molecular Biology 2007,9,87-102.
    [7]Joseph R. Lakowicz, Priniciple of Fluorescence Spectroscopy, Third Edition, Springer, Uniersity of Maryland School of Medicine Baltimore, Maryland, USA
    [8]Zhou, Y.; Xu, Z.; Yoon, J., Fluorescent and colorimetric chemosensors for detection of nucleotides, FAD and NADH:highlighted research during 2004-2010. Chem Soc Rev 2011.
    [9]Xu, Z.; Kim, S. K.; Yoon, J., Revisit to imidazolium receptors for the recognition of anions:highlighted research during 2006-2009. Chemical Society Reviews 2010,39, (5), 1457-1466.
    [10]Martinez-Manez, R.; Sancenon, F., Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 2003,103, (11),4419-4476.
    [11]Kobayashi, H.; Ogawa, M.; Alford, R.; Choyke, P. L.; Urano, Y., New Strategies for Fluorescent Probe Design in Medical Diagnostic Imaging. Chemical Reviews 2010,110, (5),2620-2640.
    [12]Kolpashchikov, D. M., Binary Probes for Nucleic Acid Analysis. Chemical Reviews 2010, 110, (8),4709-4723.
    [13]te Velde, E. A.; Veerman, T.; Subramaniam, V.; Ruers, T., The use of fluorescent dyes and probes in surgical oncology. Ejso 2010,36, (1),6-15.
    [14]Moragues, M. E.; Martinez-Manez, R.; Sancenon, F., Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem Soc Rev 2011.
    [15]de Silva, A. P.; Gunaratne, H. Q.; Gunnlaugsson, T.; Huxley, A. J.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E., Signaling Recognition Events with Fluorescent Sensors and Switches. Chem Rev 1997,97, (5),1515-1566.
    [16]Halim, M.; Tremblay, M. S.; Jockusch, S.; Turro, N. J.; Sames, D., Transposing molecular fluorescent switches into the near-IR:development of luminogenic reporter substrates for redox metabolism. J Am Chem Soc 2007,129, (25),7704-7705.
    [17]de Silva, A. P.; Fox, D. B.; Moody, T. S.; Weir, S. M., The development of molecular fluorescent switches. Trends Biotechnol 2001,19, (1),29-34.
    [18]de Silva, A. P.; de Silva, S. S.; Goonesekera, N. C.; Gunaratne, H. Q.; Lynch, P. L.; Nesbitt, K. R.; Patuwathavithana, S. T.; Ramyalal, N. L., Analog parallel processing of molecular sensory information. J Am Chem Soc 2007,129, (11),3050-3051.
    [19]de Silva, A. P.; Moody, T. S.; Wright, G. D., Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst 2009,134, (12),2385-2393.
    [20]Tong, A. J.; Yamauchi, A.; Hayashita, T.; Zhang, Z. Y.; Smith, B. D.; Teramae, N., Boronic acid fluorophore/beta-cyclodextrin complex sensors for selective sugar recognition in water. Anal Chem 2001,73, (7),1530-1536.
    [21]Tanaka, K.; Miura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Rational design of fluorescein-based fluorescence probes, mechanism-based design of a maximum fluorescence probe for singlet oxygen. Journal of the American Chemical Society 2001,123, (11),2530-2536.
    [22]de Silva, A. P.; McClenaghan, N. D., Simultaneously multiply-configurable or superposed molecular logic systems composed of ICT (internal charge transfer) chromophores and fluorophores integrated with one-or two-ion receptors. Chemistry 2002,8, (21),4935-4945.
    [23]Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W., Structural changes accompanying i intramolecular electron transfer:Focus on twisted intramolecular charge-transfer states and structures. Chemical Reviews 2003,103, (10),3899-4031.
    [24]徐兆超,基于ICT萘酰亚胺阳离子比率荧光探针的研究,[学位论文],博士
    [25]Wang, J. B.; Qian, X. H.; Cui, J. N., Detecting Hg2+ ions with an ICT fluorescent sensor molecule:Remarkable emission spectra shift and unique selectivity. J Org Chem 2006, 71,(11),4308-4311.
    [26]Suzuki, Y.; Yokoyama, K., Design and synthesis of ICT-based fluorescent probe for high-sensitivity protein detection and application to rapid protein staining for SDS-PAGE. Proteomics 2008,8, (14),2785-2790.
    [27]Scheiner, S., Theoretical studies of excited state proton transfer in small model systems. Journal of Physical Chemistry A 2000,104, (25),5898-5909.
    [28]Agmon, N., Elementary steps in excited-state proton transfer. Journal of Physical Chemistry A 2005,109, (1),13-35.
    [29]Kim, S.; Seo, J.; Jung, H. K.; Kim, J. J.; Park, S. Y, White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Adv Mater 2005, 17, (17),2077-+.
    [30]吕风婷,高莉宁,房喻.基于激发态分子内质子转移的新一代荧光探针.化学进展.2005.17(5):773-779.
    [31]Rodembusch, F. S.; Leusin, F. P.; Medina, L. F. D.; Brandelli, A.; Stefani, V., Synthesis and spectroscopic characterisation of new ESIPT fluorescent protein probes. Photoch Photobio Sci 2005,4, (3),254-259.
    [32]Han, D. Y.; Kim, J. M.; Kim, J.; Jung, H. S.; Lee, Y. H.; Zhang, J. F.; Kim, J. S., ESIPT-based anthraquinonylcalix[4]crown chemosensor for In3+. Tetrahedron Letters 2010,51,(15),1947-1951.
    [33]Yang, X. F.; Qi, H. P.; Wang, L. P.; Su, Z.; Wang, G., A ratiometric fluorescent probe for fluoride ion employing the excited-state intramolecular proton transfer. Talanta 2009,80, (1),92-97.
    [34]Morales, A. R.; Schafer-Hales, K. J.; Yanez, C. O.; Bondar, M. V.; Przhonska, O. V.; Marcus, A. I.; Belfield, K. D., Excited State Intramolecular Proton Transfer and Photophysics of a New Fluorenyl Two-Photon Fluorescent Probe. Chemphyschem 2009, 10, (12),2073-2081.
    [35]Wei-Hua Chen, Yu Xing and Yi Pang,A Highly Selective Pyrophosphate Sensor Based on ESIPT Turn-On in Water, Organic letter, online
    [36]Hu, R.; Feng, J. A.; Hu, D. H.; Wang, S. Q.; Li, S. Y.; Li, Y.; Yang, G. Q., A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angew Chem Int Edit 2010,49, (29),4915-4918.
    [37]Nagano, T.; Yoshimura, T., Bioimaging of nitric oxide. Chemical Reviews 2002,102, (4), 1235-1269.
    [38]McQuade, L. E.; Lippard, S. J., Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form:fluorescent probes of reactive nitrogen species). Curr Opin Chem Biol 2010,14, (1),43-49.
    [39]Lim, M. H.; Wong, B. A.; Pitcock, W. H.; Mokshagundam, D.; Baik, M. H.; Lippard, S. J., Direct nitric oxide detection in aqueous solution by copper(II) fluorescein complexes. Journal of the American Chemical Society 2006,128,(44),14364-14373.
    [40]Lim, M. H.; Xu, D.; Lippard, S. J., Visualization of nitric oxide in living cells by a copper-based fluorescent probe. Nat Chem Biol 2006,2, (7),375-380.
    [41]Itoh, Y.; Ma, F. H.; Hoshi, H.; Oka, M.; Noda, K.; Ukai, Y.; Kojima, H.; Nagano, T.; Toda, N., Determination and bioimaging method for nitric oxide in biological specimens by diaminofluorescein fluorometry. Anal Biochem 2000,287, (2),203-209.
    [42]Kojima, H.; Hirotani, M.; Nakatsubo, N.; Kikuchi, K.; Urano, Y.; Higuchi, T.; Hirata, Y.; Nagano, T., Bioimaging of nitric oxide with fluorescent indicators based on the rhodamine chromophore. Anal Chem 2001,73, (9),1967-1973.
    [43]Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T., Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore-rational design of potentially useful bioimaging fluorescence probe. Journal of the American Chemical Society 2004,126, (10),3357-3367.
    [44]Kojima, H.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Hirata, Y.; Nagano, T., Fluorescent Indicators for Imaging Nitric Oxide Production. Angew Chem Int Ed 1999,38, (21), 3209-3212.
    [45]Gabe, Y.; Urano, Y.; Nagano, T., Rational design of highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore. Free Radical Bio Med 2003,35, S94-S94.
    [46]Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano, T., Highly sensitive near-infrared fluorescent probes for nitric oxide and their application to isolated organs. Journal of the American Chemical Society 2005,127, (11),3684-3685.
    [47]Yang, Y J.; Seidlits, S. K.; Adams, M. M.; Lynch, V. M.; Schmidt, C. E.; Anslyn, E. V.; Shear, J. B., A Highly Selective Low-Background Fluorescent Imaging Agent for Nitric Oxide. Journal of the American Chemical Society 2010,132, (38),13114-13116.
    [48]Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., A selective, cell-permeable optical probe for hydrogen peroxide in living cells. Journal of the American Chemical Society 2004,126, (47),15392-15393.
    [49]Miller, E. W.; Albers, A. E.; Pralle, A.; Isacoff, E. Y.; Chang, C. J., Boronate-based fluorescent probes for imaging cellular hydrogen peroxide. Journal of the American Chemical Society 2005,127, (47),16652-16659.
    [50]Albers, A. E.; Dickinson, B. C.; Miller, E. W.; Chang, C. J., A red-emitting naphthofluorescein-based fluorescent probe for selective detection of hydrogen peroxide in living cells. Bioorg Med Chem Lett 2008,18, (22),5948-5950.
    [51]Dickinson, B. C.; Chang, C. J., A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. Journal of the American Chemical Society 2008,130,(30),9638-+.
    [52]Srikun, D.; Miller, E. W.; Dornaille, D. W.; Chang, C. J., An ICT-Based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. Journal of the American Chemical Society 2008,130, (14),4596-+.
    [53]Dickinson, B. C.; Huynh, C.; Chang, C. J., A Palette of Fluorescent Probes with Varying Emission Colors for Imaging Hydrogen Peroxide Signaling in Living Cells. Journal of the American Chemical Society 2010,132, (16),5906-5915.
    [54]Srikun, D.; Albers, A. E.; Nam, C. I.; Iavaron, A. T.; Chang, C. J., Organelle-Targetable Fluorescent Probes for Imaging Hydrogen Peroxide in Living Cells via SNAP-Tag Protein Labeling. Journal of the American Chemical Society 2010,132, (12),4455-4465.
    [55]Dickinson, B. C.; Peltier, J.; Stone, D.; Schaffer, D. V.; Chang, C. J., Nox2 redox signaling maintains essential cell populations in the brain. Nat Chem Biol 2011,7, (2), 106-112.
    [56]Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T., Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. Journal of the American Chemical Society 2006,128, (33),10640-10641.
    [57]Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T., Novel fluorescent probes for singlet oxygen. Angew Chem Int Edit 1999,38, (19),2899-2901.
    [58]Jingjing Zhang, Syena Sarrafpour, Robert H. Pawle and Samuel W. Thomas III, Acene-linked conjugated polymers with ratiometric fluorescent response to 102, Chem. Commun.,2011,47,3445-3447, DOI:10.1039/COCC05770C
    [59]Yap, Y W.; Whiteman, M.; Cheung, N. S., Chlorinative stress:an under appreciated mediator of neurodegeneration? Cell Signal 2007,19, (2),219-228.
    [60]Sugiyama, S.; Okada, Y.; Sukhova, G. K.; Virmani, R.; Heinecke, J. W.; Libby, P., Macrophage myeloperoxidase regulation by granulocyte macrophage colony-stimulating factor in human atherosclerosis and implications in acute coronary syndromes. Am J Pathol 2001,158, (3),879-891.
    [61]Steinbeck, M. J.; Nesti, L. J.; Sharkey, P. F.; Parvizi, J., Myeloperoxidase and chlorinated peptides in osteoarthritis:potential biomarkers of the disease. J Orthop Res 2007,25, (9), 1128-1135.
    [62]Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T., Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. Journal of the American Chemical Society 2007,129, (34), 10324-
    [63]Sun, Z. N.; Liu, F. Q.; Chen, Y.; Tam, P. K. H.; Yang, D., A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 2008, 10, (11),2171-2174.
    [64]Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T., Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. Journal of the American Chemical Society 2007,129, (23),7313-7318.
    [65]Chen, G.; Yee, D. J.; Gubernator, N. G.; Sames, D., Design of optical switches as metabolic indicators:New fluorogenic probes for monoamine oxidases (MAO A and B). Journal of the American Chemical Society 2005,127, (13),4544-4545.
    [66]Albers, A. E.; Rawls, K. A.; Chang, C. J., Activity-based fluorescent reporters for monoamine oxidases in living cells. Chem Commun 2007, (44),4647-4649.
    [67]Denu, J. M.; Lohse, D. L.; Vijayalakshmi, J.; Saper, M. A.; Dixon, J. E., Fluorogenic substrates for beta.-D-galactosidases and phosphatases derived from fluorescein (3,6-dihydroxyfiuoran) and its mono-methyl ether.. Proc Natl Acad Sci USA 1996,93, 2493-2498.
    [68]Huang, Z.; Wang, Q. P.; Ly, H. D.; Gorvindarajan, A.; Scheigetz, J.; Zamboni, R.; Desmarais, S.; Ramachandran, C.,3,4-fluorescein diphosphate:A sensitive fluorogenic and chromogenic substrate for protein tyrosine phosphatases. J Biomol Screen 1999,4, (6),327-334.
    [69]Welte, S.; Baringhaus, K. H.; Schmider, W.; Muller, G.; Petry, S.; Tennagels, N., 6,8-Difluoro-4-methylumbiliferyl phosphate:a fluorogenic substrate for protein tyrosine phosphatases. Anal Biochem 2005,338, (1),32-38.
    [70]Mizukami, S.; Watanabe, S.; Kikuchi, K., Development of Ratiometric Fluorescent Probes for Phosphatases by Using a pK(a) Switching Mechanism. Chembiochem 2009, 10, (9),1465-1468.
    [71]Kim, T. I.; Kang, H. J.; Han, G.; Chung, S. J.; Kim, Y., A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chem Commun 2009, (39), 5895-5897.
    [72]Huang, S. T.; Peng, Y. X.; Wang, K. L., Synthesis of a new long-wavelength latent fluorimetric indicator for analytes determination in the DT-Diaphorase coupling dehydrogenase assay system. Biosens Bioelectron 2008,23, (12),1793-1798.
    [73]Huang, S. T.; Lin, Y. L., New latent fluorophore for DT diaphorase. Org Lett 2006,8, (2), 265-268.
    [74]Fujikawa, Y.; Urano, Y.; Komatsu, T.; Hanaoka, K.; Kojima, H.; Terai, T.; Inoue, H.; Nagano, T., Design and Synthesis of Highly Sensitive Fluorogenic Substrates for Glutathione S-Transferase and Application for Activity Imaging in Living Cells. Journal of the American Chemical Society 2008,130,(44),14533-14543.
    [75]Liu, B.; Tian, H., A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem Commun 2005, (25),3156-3158.
    [76]Zhang, X.; Xiao, Y.; Qian, X., A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed 2008,47, (42),8025-8029.
    [77]Shiraishi, Y.; Sumiya, S.; Hirai, T., A coumarin-thiourea conjugate as a fluorescent probe for Hg(II) in aqueous media with a broad pH range 2-12. Org Biomol Chem 2010,8, (6), 1310-1314.
    [78]Jou, M. J.; Chen, X.; Swamy, K. M.; Kim, H. N.; Kim, H. J.; Lee, S. G.; Yoon, J., Highly selective fluorescent probe for Au3+ based on cyclization of propargylamide. Chem Commun 2009, (46),7218-7220.
    [79]黄军海,萘酰亚胺和罗丹明类重金属离子探针的设计、合成与性能研究,[学位论文]博士
    [80]Sun, M.; Shangguan, D.; Ma, H. M.; Nie, L. H.; Li, X. H.; Xiong, S. X.; Liu, G. Q.; Thiemann, W., Simple Pb-II fluorescent probe based on Pb-Ⅱ-catalyzed hydrolysis of phosphodiester. Biopolymers 2003,72, (6),413-420.
    [81]Lee, M. H.; Van Giap, T.; Kim, S. H.; Lee, Y. H.; Kang, C.; Kim, J. S., A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem Commun 2010,46, (9),1407-1409.
    [82]Kim, S. Y.; Hong, J. I., Chromogenic and fluorescent chemodosimeter for detection of fluoride in aqueous solution. Org Lett 2007,9, (16),3109-3112.
    [83]Kim, T. H.; Swager, T. M., A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. Angew Chem Int Edit 2003,42, (39),4803-4806.
    [84]Yang, X. F., Novel fluorogenic probe for fluoride ion based on the fluoride-induced cleavage of tert-butyldimethylsilyl ether. Spectrochim Acta A 2007,67, (2),321-326.
    [85]Hein, D. W.; Doll, M. A.; Fretland, A. J.; Leff, M. A.; Webb, S. J.; Xiao, G. H.; Devanoboyina, U. S.; Nangju, N. A.; Feng, Y., Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidem Biomar 2000,9, (1), 29-42.
    [86]Hein, D. W., Molecular genetics and function of NAT1 and NAT2:role in aromatic amine metabolism and carcinogenesis. Mutat Res-Fund Mol M 2002,506,65-77.
    [87]Wormhoudt, L. W.; Commandeur, J. N. M.; Vermeulen, N. P. E., Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-Transferase, and epoxide hydrolase enzymes:Relevance to xenobiotic metabolism and toxicity. Crit Rev Toxicol 1999,29, (1),59-124.
    [88]Nicholson, J. K.; Connelly, J.; Lindon, J. C.; Holmes, E., Metabonomics:a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 2002,1, (2),153-161.
    [89]Brockton, N.; Little, J.; Sharp, L.; Cotton, S. C., N-Acetyltransferase polymorphisms and colorectal cancer:A HuGE review. Am J Epidemiol 2000,151, (9),846-861.
    [90]Le Marchand, L.; Hankin, J. H.; Wilkens, L. R.; Pierce, L. M.; Franke, A.; Kolonel, L. N.; Seifried, A.; Custer, L. J.; Chang, W.; Lum-Jones, A.; Donlon, T., Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. Cancer Epidem Biomar 2001,10, (12),1259-1266.
    [91]Marcus, P. M.; Hayes, R. B.; Vineis, P.; Garcia-Closas, M.; Caporaso, N. E.; Autrup, H.; Branch, R. A.; Brockmoller, J.; Ishizaki, T.; Karakaya, A. E.; Ladero, J. M.; Mommsen, S.; Okkels, H.; Romkes, M.; Roots, I.; Rothman, N., Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk:A case-series meta-analysis of a gene-environment interaction. Cancer Epidem Biomar 2000,9, (5), 461-467.
    [92]Clayton, T. A.; Lindon, J. C.; Cloarec, O.; Antti, H.; Charuel, C.; Hanton, G.; Provost, J. P.; Le Net, J. L.; Baker, D.; Walley, R. J.; Everett, J. R.; Nicholson, J. K. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature 2006,440, (7087),1073-1077.
    [93]Hunter, D. J.; Khoury, M. J.; Drazen, J. M., Letting the genome out of the bottle-Will we get our wish? New Engl J Med 2008,358, (2),105-107.
    [94]Clayton, T. A.; Baker, D.; Lindon, J. C.; Everett, J. R.; Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. P Natl Acad Sci USA 2009,106, (34), 14728-14733.
    [95]Lee, S. Y.; Lee, K. A.; Ki, C. S.; Kwon, O. J.; Kim, H. J.; Chung, M. P.; Suh, G. Y.; Kim, J. W., Complete sequencing of a genetic polymorphism in NAT2 in the Korean population. Clin Chem 2002,48, (5),775-777.
    [96]Lin, H. J.; Han, C. Y.; Lin, B. K.; Hardy, S., Slow acetylator mutations in the human polymorphic N-acetyltransferase gene in 786 Asians, blacks, Hispanics, and whites: application to metabolic epidemiology. Am J Hum Genet 1993,52, (4),827-834.
    [97]Doll, M. A.; Hein, D. W., Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes. Anal Biochem 2001,288, (1),106-108.
    [98]Brans, R.; Laizane, D.; Khan, A.; Blomeke, B., N-acetyltransferase 2 genotyping:an accurate and feasible approach for simultaneous detection of the most common NAT2 alleles. Clin Chem 2004,50, (7),1264-1266.
    [99]Hillman, M. A.; Wilke, R. A.; Caldwell, M. D.; Berg, R. L.; Glurich, I.; Burmester, J. K., Relative impact of covariates in prescribing warfarin according to CYP2C9 genotype. Pharmacogenetics 2004,14, (8),539-547.
    [100]Andres, H. H.; Klem, A. J.; Szabo, S. M.; Weber, W. W., New spectrophotometric and radiochemical assays for acetyl-CoA:arylamine N-acetyltransferase applicable to a variety of arylamines. Anal Biochem 1985,145, (2),367-375.
    [101]Laurieri, N.; Crawford, M. H. J.; Kawamura, A.; Westwood, I. M.; Robinson, J.; Fletcher, A. M.; Davies, S. G.; Sim, E.; Russell, A. J., Small Molecule Colorimetric Probes for Specific Detection of Human Arylamine N-Acetyltransferase 1, a Potential Breast Cancer Biomarker. Journal of the American Chemical Society 2010,132, (10), 3238-+.
    [102]MF, B.; A., R., Naphthalimides as anti-cancer agents:synthesis and biological activity. Curr Med Chem Anticancer Agents 2001,1 (3),237-255.
    [103]Brana, M. F.; Cacho, M.; Garcia, M. A.; de Pascual-Teresa, B.; Ramos, A.; Acero, N.; Llinares, F.; Munoz-Mingarro, D.; Abradelo, C.; Rey-Stolle, M. F.; Yuste, M., Synthesis, antitumor activity, molecular modeling, and DNA binding properties of a new series of imidazonaphthalimides. J Med Chem 2002,45, (26),5813-5816.
    [104]Wang, H.; Vath, G. M.; Gleason, K. J.; Hanna, P. E.; Wagner, C. R., Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Biochemistry 2004,43, (25),8234-8246.
    [105]Reisner, E.; Arion, V. B.; Keppler, B. K.; Pombeiro, A. J. L., Electron-transfer activated metal-based anticancer drugs. Inorg Chim Acta 2008,361, (6),1569-1583.
    [106]Kizaka-Kondoh, S.; Inoue, M.; Harada, H.; Hiraoka, M., Tumor hypoxia:A target for selective cancer therapy. Cancer Sci 2003,94, (12),1021-1028.
    [107]Denny, W. A., Prodrug strategies in cancer therapy. Eur J Med Chem 2001,36, (7-8), 577-595.
    [108]Xu, G.; McLeod, H. L., Strategies for enzyme/prodrug cancer therapy. Clin Cancer Res 2001,7,(11),3314-3324.
    [109]Gray, L. H., Conger, A. D., Ebert, M., Hornsey, S.& Scott, O. C. Concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol.1953,26,638-648.
    [110]Thomlinson, R. H.& Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br. J. Cancer 1955,9,539-549.
    [111]Brown, J. M.; William, W. R., Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 2004,4, (6),437-447.
    [112]Owen, M. R.; Stamper, I. J.; Muthana, M.; Richardson, G. W.; Dobson, J.; Lewis, C. E.; Byrne, H. M., Mathematical modelling predicts synergistic anti-tumor effects of combining a macrophage-based, hypoxia-targeted, gene therapy with chemotherapy. Cancer Res 2011.
    [113]Greco, O.; Scott, S., Tumor hypoxia and targeted gene therapy. Int Rev Cytol 2007,257, 181-212.
    [114]Monge, A.; Martinez-Crespo, F. J.; Lopez de Cerain, A.; Palop, J. A.; Narro, S.; Senador, V.; Marin, A.; Sainz, Y.; Gonzalez, M.; Hamilton, E.; et al., Hypoxia-selective agents derived from 2-quinoxalinecarbonitrile 1,4-di-N-oxides.2. J Med Chem 1995,38, (22), 4488-4494.
    [115]Cowen, R. L.; Williams, K. J.; Chinje, E. C.; Jaffar, M.; Sheppard, F. C.; Telfer, B. A.; Wind, N. S.; Stratford, I. J., Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy:reversing tumor radioresistance and effecting cure. Cancer Res 2004,64, (4),1396-1402.
    [116]Greco, O.; Marples, B.; Joiner, M. C.; Scott, S. D., How to overcome (and exploit) tumor hypoxia for targeted gene therapy. J Cell Physiol 2003,197, (3),312-325.
    [117]Hodgkiss, R. J., Use of 2-nitroimidazoles as bioreductive markers for tumour hypoxia. Anti-Cancer Drug Design 1998,13,687-702.
    [118]Hodgkiss, R. J.; Jones, G.; Long, T.; J. Parrick; Stratford, M. R. L.; Wilson, G. D., Flow cytometric evaluation of hypoxic cells in solid experimental tumours using fluorescence immunodetection. British Journal of Cancer 1991,63,119-125.
    [119]Hodgkiss, R. J.; Jones, G. W.; Long, A.; Middleton, R. W.; Parrick, J.; Stratford, M. R.; Wardman, P.; Wilson, G. D., Fluorescent markers for hypoxic cells:a study of nitroaromatic compounds, with fluorescent heterocyclic side chains, that undergo bioreductive binding. J Med Chem 1991,34, (7),2268-2274.
    [120]Hodgkiss, R. J.; Middleton, R. W; Parrick, J.; Rami, H. K.; Wardman, P.; Wilson, G. D., Bioreductive fluorescent markers for hypoxic cells:a study of 2-nitroimidazoles with 1-substituents containing fluorescent, bridgehead-nitrogen, bicyclic systems. J Med Chem 1992,35, (10),1920-1926.
    [121]刘燕,恶性肿瘤诊断用新型荧光探针的研究[学位论文]博士
    [122]Liu, Y.; Xu, Y. F.; Qian, X. H.; Liu, J. W.; Shen, L. Y.; Li, J. H.; Zhang, Y. X., Novel fluorescent markers for hypoxic cells of naphthalimides with two heterocyclic side chains for bioreductive binding. Bioorgan Med Chem 2006,14, (9),2935-2941.
    [123]戴敏,新型硝基杂环类肿瘤乏氧特异性荧光探针的研究[学位论文]硕士
    [124]Liu, Y.; Xu, Y.; Qian, X.; Xiao, Y.; Liu, J.; Shen, L.; Li, J.; Zhang, Y, Synthesis and evaluation of novel 8-oxo-8H-cyclopenta[a]acenaphthylene-7-carbonitriles as long-wavelength fluorescent markers for hypoxic cells in solid tumor. Bioorg Med Chem Lett 2006,16, (6),1562-1566.
    [125]Dai, M.; Zhu, W. P.; Xu, Y F.; Qian, X. H.; Liu, Y.; Xiao, Y.; You, Y., Versatile nitro-fluorophore as highly effective sensor for hypoxic tumor cells:Design, imaging and evaluation. JFluoresc 2008,18, (2),591-597.
    [126]Zhu, W.; Dai, M.; Xu, Y.; Qian, X., Novel nitroheterocyclic hypoxic markers for solid tumor:synthesis and biological evaluation. Bioorg Med Chem 2008,16, (6),3255-3260.
    [127]Adler-Abramovich, L.; Perry, R.; Sagi, A.; Gazit, E.; Shabat, D., Controlled assembly of peptide nanotubes triggered by enzymatic activation of self-immolative dendrimers. Chembiochem 2007,8, (8),859-862.
    [128]Kiyose, K.; Hanaoka, K.; Oushiki, D.; Nakamura, T.; Kajimura, M.; Suematsu, M.; Nishimatsu, H.; Yamane, T.; Terai, T.; Hirata, Y.; Nagano, T., Hypoxia-Sensitive Fluorescent Probes for in Vivo Real-Time Fluorescence Imaging of Acute Ischemia. Journal of the American Chemical Society 2010,132, (45),15846-15848.
    [129]Zhang, G. Q.; Palmer, G. M.; Dewhirst, M.; Fraser, C. L., A dual-emissive-materials design concept enables tumour hypoxia imaging. Nat Mater 2009,8, (9),747-751.
    [130]Lakowicz, J.R. Principles of Fluorescence Spectroscopy, Springer Maryland,3rd edn., 2006, pp.9-12
    [131]DeLuca, M. R.; Kerwin, S. M., The para-toluenesulfonic acid-promoted synthesis of 2-substituted benzoxazoles and benzimidazoles from diacylated precursors. Tetrahedron 1997,53, (2),457-464.
    [132]John B. Wright, The Chemistry of the Benzimidazoles, Chem. Rev.,1951,48 (3), pp 397-541
    [133]A.W. Addison, T.N. Rao and C.G. Wahlgren, "Syntheses of Some Benzimidazole-and Benzothiazole-Derived Ligand Systems and Their Precursory Diacids", The Journal of Heterocyclic Chemistry,1983,20,1481-1484
    [134]Ambacheu, K. D.; Pleshakov, V. G.; Baath, B. S.; Zvolinskii, V. P.; Kharlamova, M. D.; Obynochnii, A. A.; Prostakov, N. S., Chemistry of 2-substituted benzimidazoles. I. 5-amino-2-methyl(aryl, arylalkyl, pyridyl)benzimidazoles. Khim Geterotsikl+ 2000, (4), 493-500.
    [135]Shieh, W. C.; Dell, S.; Repic, O., 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and microwave-accelerated green chemistry in methylation of phenols, indoles, and benzimidazoles with dimethyl carbonate. Org Lett 2001,3, (26),4279-4281.
    [136]Dennison S M, Guharay J, Sengupta P K. Spectrochimica Acta Part A,1999,55: 903.
    [137]GUO Yang-xue, LI Xiang-ping, LIU Gui-qin, et al(郭阳雪,李向平,刘桂琴, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2005,25(12):2016.
    [138]Dennison, S. M.; Guharay, J.; Sengupta, P. K., Excited-state intramolecular proton transfer (ESIPT) and charge transfer (CT) fluorescence probe for model membranes. Spectrochim Acta A 1999,55, (5),1127-1132.
    [139]Lim, S. J.; Seo, J.; Park, S. Y., Photochromic switching of excited-state intramolecular proton-transfer (ESIPT) fluorescence:A unique route to high-contrast memory switching and nondestructive readout. Journal of the American Chemical Society 2006, 128, (45),14542-14547.
    [140]LeGourrierec, D.; Kharlanov, V. A.; Brown, R. G.; Rettig, W., Excited-state intramolecular proton transfer (ESIPT) in 2-(2'-hydroxyphenyl)-oxazole and-thiazole. JPhotoch Photobio A 2000,130, (2-3),101-111.
    [141]Grando, S. R.; Pessoa, C. M.; Gallas, M. R.; Costa, T. M. H.; Rodembusch, F. S.; Benvenutti, E. V., Modulation of the ESIPT Emission of Benzothiazole Type Dye Incorporated in Silica-Based Hybrid Materials. Langmuir 2009,25, (22),13219-13223.
    [142]Lochbrunner, S.; Szeghalmi, A.; Stock, K.; Schmitt, M., Ultrafast proton transfer of 1-hydroxy-2-acetonaphthone:Reaction path from resonance Raman and transient absorption studies. J Chem Phys 2005,122, (24),
    [143]Lochbrunner, S.; Wurzer, A. J.; Riedle, E., Ultrafast excited-state proton transfer and subsequent coherent skeletal motion of 2-(2'-hydroxyphenyl)benzothiazole. J Chem Phys 2000,112, (24),10699-10702.
    [144]Shynkar, V. V.; Klymchenko, A. S.; Kunzelmann, C.; Duportail, G.; Muller, C. D.; Demchenko, A. P.; Freyssinet, J. M.; Mely, Y., Fluorescent biomembrane probe for ratiometric detection of apoptosis. Journal of the American Chemical Society 2007,129, (7),2187-2193.
    [145]Tanaka, K.; Kumagai, T.; Aoki, H.; Deguchi, M.; Iwata, S., Application of 2-(3,5,6-trifluoro-2-hydroxy-4-methoxyphenyl)benzoxazole and-benzothiazole to fluorescent probes sensing pH and metal cations. J Org Chem 2001,66, (22), 7328-7333.
    [146]Zeni, G.; Larock, R. C., Synthesis of heterocycles via palladium pi-olefin and pi-alkyne chemistry. Chemical Reviews 2004,104, (5),2285-2309.
    [147]Tietze, L. F.; Ila, H.; Bell, H. P., Enantioselective palladium-catalyzed transformations. Chemical Reviews 2004,104, (7),3453-3516.
    [148]Tenaglia, A.; Heumann, A., Palladium-catalyzed enantioselective organic transformations. Angew Chem Int Edit 1999,38, (15),2180-2184.
    [149]Nicolaou, K. C.; Bulger, P. G.; Sarlah, D., Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem Int Edit 2005,44, (29),4442-4489.
    [150]Nyarko, E.; Hara, T.; Grab, D. J.; Habib, A.; Kim, Y.; Nikolskaia, O.; Fukuma, T. Tabata, M., In vitro toxicity of palladium(II) and gold(III) porphyrins and their aqueous metal ion counterparts on Trypanosoma brucei brucei growth. Chem-Biol Interact 2004, 148, (1-2),19-25.
    [151]Grills, I. S.; Martinez, A. A.; Hollander, M.; Huang, R. W.; Goldman, K.; Chen, P. Y.; Gustafson, G. S., High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J Urology 2004,171, (3), 1098-1104.
    [152]WATAHA, J. C.; HANKS, C. T., Biological effects of palladium and risk of using palladium in dental casting alloys. Journal of Oral Rehabilitation 1996,23, (5), 309-320.
    [153]Liu, T. Z.; Leeb, S. D.; Bhatnagar, R. S., Toxicity of palladium Toxicology Letters 1979, 4, (6),469-473.
    [154]Konigsberger, K.; Chen, G. P.; Wu, R. R.; Girgis, M. J.; Prasad, K.; Repic, O.; Blacklock, T. J., A practical synthesis of 6-[2-(2,5-dimethoxyphenyl)ethyl]-4-ethylquinazoline and the art of removing palladium from the products of Pd-catalyzed reactions. Org Process Res Dev 2003,7, (5),733-742.
    [155]Welch, C. J.; Albaneze-Walker, J.; Leonard, W. R.; Biba, M.; DaSilva, J.; Henderson, D.; Laing, B.; Mathre, D. J.; Spencer, S.; Bu, X. D.; Wang, T. B., Adsorbent screening for metal impurity removal in pharmaceutical process research. Org Process Res Dev 2005, 9, (2),198-205.
    [156]Song, F. L.; Garner, A. L.; Koide, K., A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanism. Journal of the American Chemical Society 2007,129, (41),12354-+.
    [157]Garner, A. L.; Koide, K., Studies of a fluorogenic probe for palladium and platinum leading to a palladium-specific detection method. Chem Commun 2009, (1),86-88.
    [158]Garner, A. L.; Song, F. L.; Koide, K., Enhancement of a Catalysis-Based Fluorometric Detection Method for Palladium through Rational Fine-Tuning of the Palladium Species. Journal of the American Chemical Society 2009,131, (14),5163-5171.
    [159]Jun, M. E.; Ahn, K. H., Fluorogenic and Chromogenic Detection of Palladium Species through a Catalytic Conversion of a Rhodamine B Derivative. Org Lett 2010,12, (12), 2790-2793.
    [160]Adamczyk, M.; Grote, J., Synthesis of probes with broad pH range fluorescence. Bioorg Med Chem Lett 2003,13,(14),2327-2330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700