用户名: 密码: 验证码:
高压下几种有机分子晶体的相变和光学性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Phase Transitions and Optical Properties of Several Organic Molecular Crystals under High Pressures
  • 作者:王中平
  • 论文级别:博士
  • 学科专业名称:凝聚态物理
  • 学位年度:2006
  • 导师:丁泽军
  • 学科代码:070205
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2006-05-01
摘要
有机分子晶体是由离散分子通过非共价键合作用力(范德华作用力、电荷转移或者氢键作用力等)集合在一起形成的一类软且易压缩的固体。既在分子内存在强共价键相互作用,又在分子间具有弱相互作用,这使得分子晶体具有明显区别于共价或离子晶体的独特性质。压强是非常适合研究有机分子晶体的参量,这是因为,施加微小的力就可以造成分子间距较大的变化,引发晶体结构的重构。在高压作用下,氢键是有机分子晶体中最重要的分子问相互作用力,原子或分子间距的缩短引起物质结构(晶体结构、分子结构、原子排列方式)的变化,进而造成电子结构影响的其它物性的变化。电子云重叠程度的改变也将对分子轨道的排列产生影响,使整个体系的电子云密度发生变化,直接影响到有机分子晶体的光学和电子输运等性质。在压强作用下,有机分子晶体中分子间距减小的同时,分子间和分子内的排斥相互作用增强,使得分子内的不饱和的共价键变得不稳定,活化了反应物的分子。体系为达到较小的稳定化内能,可能发生分子内价键重排的高压化学反应。因此,增加压强可以进行无需催化剂和反应溶剂的有机固相反应,得到与常压反应产物所异的物理化学性质。本文中用拉曼光谱和荧光光谱研究了若干有机分子晶体,如苯甲酸、尿素和硫脲分子晶体,发现了压强作用下新的晶体结构和发光材料,在一定的压强下,本身不发光的物质变成了新的发光材料,而且在退压后材料保持其发光特性。全文共分为如下九章。
     第一章介绍了高压技术发展的历史,着重介绍了金刚石对顶砧技术,相关的传压介质和压标。综述了有机分子及其晶体的相关研究,以及高压下有机分子研究的最新进展,包括高压相变的研究、高压诱导固相化学反应,高压和超分子体系的研究,高压调谐的分子发光研究等。最后介绍了高压研究的意义和本文的设计思想。
     第二章中介绍了拉曼、荧光光谱测试的原理以及设备,最后详细叙述了高压实验测量的步骤。
     第三章中研究了高压下苯甲酸(C_6H_5COOH)晶体的拉曼和荧光光谱。测试结果显示,随着压强的升高,拉曼振动模式向高频移动键合力常数增大。通过晶格振动模式的变化推断,在0.6、3.7和11.1GPa可能出现由晶体结构或者晶体对称性的变化引起的相变。本身不发光的苯甲酸晶体在压强作用下发光强度逐渐增强,到11.1GPa时发光强度达到最大。随着压强从13.4GPa降低,其荧光强度先变强后逐渐降低,而且逐渐分为两个明显的发光峰,到常压后保持不变。在降压后其拉曼光谱没有恢复,说明在压强作用下发生了高压化学反应,产物随着压强降低逐渐形成。推断新产物是苯
Organic molecular crystals are soft, highly compressible solids, composed of dispersive molecules hold together by noncovalent interactions such as van der Waals forces, charge transfer and hydrogen bonding. This combination of strong intramolecular covalent bonds with weak intermolecular forces confers on organic molecular crystals unique properties that are often markedly different from those of covalent or ionic crystals. Pressure is an ideal parameter suited to the study of organic molecular crystals, as small variation of applied forces typically results in large changes in intermolecular separations, which often trigger dramatic reorganizations of crystal packing. Hydrogen bonding under pressure is one of the most important intermolecular interactions in organic molecular crystals. The shortening of the distances between atoms and molecules cause the changes of the structure of substance (crystal structure, molecular structure and the rearrangement of bonds). Furthermore the properties influenced by electronic structure will also be changed. The variations of the overlap degree of electronic cloud result in the arrangement change of molecular orbits. The optical and electronic properties of organic molecular crystals attribute directly to the changes of the density of electronic clouds. The distance between organic molecular crystals decrease with increasing pressure, and the repulsive intermolecular and intramolecular interactions increase. The unsaturated covalent bonds become instability, and can be broken under high pressures, activating the molecules. High pressure chemical reaction may take place in order to reach low inner energy and to stabilize the system. Organic chemical reaction occurs in crystal phase without catalyst and solvents with increasing pressure, leading to derive materials who property is different from that of normal products. In this thesis, we have investigated Raman and fluorescence spectra of several organic molecular crystals made of, such as, benzoic acid, urea and thiourea, new crystal structure and luminescent materials obtained from high pressure. A non-fluorescent material can be transformed into a strong luminescent material at certain high pressure, and the luminescent property can be maintained after releasing pressure. The thesis is made of following nine chapters.
    In Chapter One, we introduce the history of development of high pressure technique with emphasis on the technique of diamond anvil cell and the related to pressure transmitting medium and scaler of pressure calibration. It is given a review on the study about organic
引文
[1] E.V. Boldyreva. Russ. Chem. Bull., 53: 1369, 2004.
    [2] F.P. Bundy. Rev. Sec. Phys. Lett: Phys. Repor., 167: 133, 1988.
    [3] E.H. Abramson, J.M. Brown, and L.J. Slutsky. Annu. Rev. Phys. Chem., 50: 279, 1999.
    [4] R.J. Hemley. Annu. Rev. Phys. Chem., 51: 763, 2000.
    [5] R.G. Strem, W.A. Bassett, and G. Kinsland. Petrophysics. Wiley, London, 1976.
    [6] M.I. Eremets. High Pressure Experimental Methods. Oxford University Press, New York, 1996.
    [7] 丁泽军.高压物理实验技术.中国科学技术大学物理系固体微结构实验室,2003.
    [8] H.K. Mao. Annu. Rep. Geophys. Lab. Washington. D.C., 72: 552, 1973.
    [9] H.K. Mao. Annu. Rep. Geophys. Lab. Washington. D.C., 72: 554, 1973.
    [10] H.K. Mao. Annu. Rep. Geophys. Lab. Washington. D.C., 72: 557, 1973.
    [11] A. Jayaraman. Rev. Mod. Phys., 55: 65, 1983.
    [12] A. Jayaraman. Rev. Mod. Phys., 57: 1013, 1986.
    [13] G.C. Ulmer and H.E. Barnes. Hydrothermal experimental Techniques. Willey- Interscience, New York, 1987.
    [14] D.M. Adams and S.K. Sharma. J. Phys. E, 10: 680, 1977.
    [15] D.M. Adams and S.K. Sharma. J. Phys. E, 10: 838, 1977.
    [16] J.R. Ferraro. Vibrational Spectroscopy at High External Pressures. Academic Press, London, 1984.
    [17] R.A. Forman, G.J. Piermarini, J.D. Barnett, and S. Block. Science., 176: 284, 1972.
    [18] G.L. Piermarini and S. Block. J. Appl. Phys., 44: 5377, 1973.
    [19] G.L. Piermarini, S. Block, and R.A. Forman. J. Appl. Phys., 46: 2774, 1975.
    [20] H.K. Mao, P.M. Bell, J.W. Shaner, and D.J. Steinberg. J. Appl. Phys., 49: 3276, 1978.
    [21] J.A. Hedvall and M. Kasha. Z. Anorg. Allgem. Chem., 98: 57, 1916.
    [22] G.M. Schmidt. J. Chem. Soc., 1964: 2000, 1964.
    [23] H. Morawetz. Science., 152: 3723, 1966.
    [24] W.F. Sherman and P.P. Smulovitch. J. Chem. Phys., 52: 5187, 1970.
    [25] 赵永年、邹广田.高压物理学报,3:269,1989.
    [26] M. Ceppatelli, M. Santoro, R. Bini, and V. Schettino. J. Chem. Phys., 118: 1499, 2003.
    [27] Ph. Pruzan, J.C. Chervin, M.M. Thiery, J.P. Itie, J.M. Besson, J.P. Forgerit, and M. Revaut. J. Chem. Phys., 92: 6910, 1990.
    [28] L. Ciabini, M. Santoro, R. Bini, and V. Schettino. J. Chem. Phys., 116: 2928, 2002.
    [29] L. Ciabini, M. Santoro, R. Bini, and V. Schettino. Phys. Rev. Lett., 88: 855051, 2002.
    [30] R. Bini. Acc. Chem. Res., 37: 95, 2004.
    [31] M. Citroni, M. Cepptelli, R. Bini, and V. Schettino. J. Chem. Phys., 118: 1815, 2003.
    [32] M. Kessinger and J. Michl. Excited States and Photochemistry of Organic Molecules. VCH, New York, 1995.
    [33] V.I. Minkin, M.N. Glukhovtsev, and B.Y. Simkin. Aromaticity and Antiaromaticity. Wiley, New York, 1994.
    [34] M. Citroni, M. Cepptelli, R. Bini, and V. Schettin0. Science., 295: 2058, 2002.
    [35] D. McMorrow and M. Kasha. J. Phys. Chem., 88: 2235, 1984.
    [36] D.W. Firth, P.F. Barbara, and H.D. Trommsdroff. Chem. Phys., 136: 349, 1989.
    [37] N.P. Ernsting and B. Nikolus. Appl. Phys. B., 39: 155, 1986.
    [38] D.D. Pant, H.C. Joshi, P.B. Bisht, and H.B. Tripathi. Chem. Phys., 185: 137, 1994.
    [39] P.B. Bisht, H.B. Tripathi, and D.D. Pant. J. Photochem. Photobiol. A, 90: 103, 1995.
    [40] P.B. Bisht, H. Petek, K. Yoshihara,.and U. Nagashima. J. Chem. Phys., 103: 5290, 1995.
    [41] D.D. Pant, H.C. Joshi, and H.B. Tripathi. Edinburgh Istr. Fluorescence Bull., page 2, 1986.
    [42] A. Weller. Prog. React. Kinet., 1: 187, 1961.
    [43] T. Nishiya, S. Yamauchi, N. Hirota, M. Baba, and I. Hanazaki. J. Phys. Chem., 90: 5730, 1986.
    [44] J. Goodman and L.E. Brus. J. Amer. Chem. Soc., 100: 7472, 1978.
    [45] L. Heimbrook, J. E. Kenny, B.E. Kohler, and G.W. Socct. J. Phys. Chem., 87: 280, 1983.
    [46] J.L. Herek, S. Pedersen, L. Banares, and A.H. Zewail. J. Chem. Phys., 97: 9046, 1992.
    [47] P.B. Bisht, M. Okamoto, and S. Hirayama. J. Phys. Chem. B, 101: 8850, 1997.
    [48] T. Taguchi, S. Hirayama, and M. Okamoto. Chem. Phys. Lett., 231: 561, 1994.
    [49] K. Suzuki and M. Tsuchiya. Bull. Chem. Soc. Jpn., 44: 967, 1971.
    [50] M. Okamoto, F. Tanaka, and H. Teranishi. J.Phys. Chem., 90: 1055, 1986.
    
    [51] N.S. Isaacs. Liquid Phase High Pressure Chemistry. John Wiley & Sons, New York, lnd edition, 1981.
    
    [52] H.W. Offen. Organic Molecular Photophysics. John Wiley & Sons, New York, lnd edition, 1973.
    
    [53] K.Y. Law and J. Shoham. J. Phys. Chem., 98: 3114,1994.
    
    [54] S. Nagaoka and U. Nagashima. J. Phys. Chem., 95: 4006,1991.
    
    [55] H.W. Furumoto and H.L. Ceccon. IEEE. J. Quantum. Electron, 6: 262,1970.
    
    [56] K.K. Zhuravlev and M.D. McCluskey. J. Chem. Phys., 114: 5465, 2001.
    
    [57] H.G. Drickamer. Science, 156: 1183, 1967.
    
    [58] J. Crain, W.C.K. Poon, A. Cairns-Smith, and P.D. Hatton. J. Phys. Chem., 96: 8168, 1992.
    
    [59] J.M. Lehn. Supramolecular Chemistry. Concepts and Perspectives. VCH, Weinheim, 1995.
    
    [60] E.V. Boldyreva, T.P. Shakhtshneider, M.A. Vasilchenko, H. Ahsbahs, and H. Uchtmann. Acta. Crys. C, 56: 299, 2000.
    
    [61] E.V. Boldyreva, H. Ahsbahs, and D.Yu. Naumov. Acta. Crys. B, 54: 798, 1998.
    
    [62] E.V. Boldyreva, H. Ahsbahs, D.Yu. Naumov, and A. Kutoglu. Acta. Crys. C, 54: 1378, 1998.
    
    [63] A. Katrusiak. High. Press. Res., 6: 155, 1991.
    [64] C.C. Wilson. Z. Krustallogr., 215: 693, 2000.
    [65] T.N. Drebushchak and E.V. Boldyreva. Z Kristallogr., 219: 506, 2004.
    
    [66] E.V. Boldyreva, V.A. Drebushchak, T. D. Drebushchak, I.E. Paukov, Y.A. Kovalevskaya, and E.S. Shutova. J. Therm. Analy. Calorim., 73: 409,419, 2003.
    
    [67] C. Muril, S.M. Sharma, S. Karmaker, and S.K. Sikka. Physica. B, 339: 23, 2003.
    
    [68] E.V. Boldyreva, S.N. Ivashevskaya, H. Sowa, H. Ahsbahs, and H.P. Weber. Dokl. Chem., 396: 358, 2004.
    
    [69] P.W. Bridgman. J. Biol. Chem., 19: 511,1914.
    
    [70] G. Panick, R. Malessa, R. Winter, G. Gapp, K.J. Frye, and C.A. Royer. J. Mol. Biol, 275: 389, 1998.
    
    [71] G. Panick and R. Winter. Biochem., 39: 1862,1998.
    
    [72] H. Frauenfelder, N.A. Alberding, A. Ansari, D. Braunstein, B.R. Cowen, M.K. Hong, I.E.T. Iben, and J.B. Johnson et. al. J. Phys. Chem., 94: 1024,1990.
    [73] J. Eisenbaetter, A. Zenerino, and R. Winter. Magn. Reson. Chem., 38: 1024, 2000.
    [74] M. Zein and R. Winter. Phys. Chem. Chem. Phys., 2: 4545, 2000.
    [75] R. Winter and C. Czeslik. Z. Kristallogr., 215: 454, 2000.
    [76] P.H. Maccallum, R. Poet, and E.J. Milner-White. J. Mol. Biol., 248: 374,361, 1995.
    [77] F.H. Allen, C.A. Baalham, J.P.M. Lommerse, and P.R. Raithby. Acta. Crys. B, 54: 320, 1998.
    [78] D.R. Allan, S.J. Clark, R.M. Ibberson, S. Parsons, C.R. Pulham, and L. Sawyer. Chem. Commu., 60: 751,1999.
    [79] H.G. Drickamer. Ann. Rev. Phys. Chem., 33: 25, 1982.
    [80] Y. Li, B. Zhong, L.M. He, Sh.K. Wu, Y. Li, and G. Q. Yang. J. Phys.: Condes. Matter., 14: 10471, 2002.
    [81] Y. Li andL.M. He, B. Zhong, Y. Li, Sh.K. Wu, J. Liu, and G. Q. Yang. Chem. Phys. Chem., 5:124, 2004.
    [82] D.J. Mitchell, G.B. Schuster, and H.G. Drickamer. J. Chem. Phys., 70: 2443, 1979.
    [83] A. Grabowski. Chem. Phys. Lett., 36: 290, 1975.
    [84] P.E. Zinsli and M. El-Sayed. Chem: Phys. Lett., 36: 290, 1975.
    [85] G.L. Bendazolli, G. Orlandi, and P. Palmier. J. Chem. Phys., 67: 1948, 1977.
    [86] Y.H. Li and E.C. Lim. J. Chem. Phys., 65: 1219, 1976.
    [87] S.L. Madej, S. Okajima, and E.C. Lim. J. Chem. Phys., 65: 1219, 1976.
    [88] K.R. Hirsch and W.B. Holzapfel. J. Chem. Phys., 84: 2771, 1986.
    [89] M. Gauthier, Ph. Pruzan, J,C. Chervin, and J.M. Besson. Phys. Rev. B, 37: 2102, 1988.
    [90] H. Shimizu, K. Nagata, and S. Sasaki. J. Chem. Phys., 89: 2743, 1988.
    [91] M. Pope and E.S. Charles. Electronics Process in Organic Crystals and Polymers. Oxford University Press, New York, 2nd edition, 1999.
    [92] J.D. Wright. Molecular Crystals. Cambridge University Press, New York, 1987.
    [93] G.A. Sim, J.M. Robertson, and T.H. Goodwin. Acta. Crystallogr.
    [94] G. Klausberger, K. Furic, and L. Colombo. J. Raman. Spectrosc, 6: 277, 1977.
    [95] S.G. Stepanian, L.D. Reva, E.D. Radchenko, and G.G. Sheina. Vibratinal. spectroscopy, 11: 123.
    [96] H.T. Flakus and M. Chelmecki. Spectrochim. Acta. A., 58: 179, 2002.
    [97] S. Hayashi, M. Oobatake, R. Nakamura, and K. Machida. J. Chem. Phys., 94: 4446, 1991.
    [98] H.R. Zesmann and Z. Mielke. Chem. Phys. Lett., 186: 501.
    
    [99] S. Hayashi and N. Kimura. Bull. Inst. Chem. Res. Kyoto. Univ., 44: 335,1966.
    [100] S. Hayashi and J. Unemura. J. Chem. Phys., 60: 2630, 1974.
    [101] G. Bruno and L. Randaccio. Acta. Cryst. B, 36: 1171,1980.
    [102] R. Feld, M.S. Lehmann, K.W. Muir, and J.C. Speakman. Z Cryst., 157: 215,1986.
    [103] A.J. Horsewill, P.J. Mcdonald, and D. Vijayaraghavan. J. Chem. Phys., 100:1889,1994.
    [104] L. Ellman G, A. Burkhalter, and J. Ladou. J. Lab. Clin. Med., 57: 813, 1961.
    [105] R. Rusakowicz, G.Z. Byers, and P.A. Leemaker. J. Am.Chem. Soc, 93: 3263, 1971.
    [106] M. Kasha. Radiat. Res. Suppi, 2: 243, 1960.
    [107] S.K. Lower and M.A. Elsayed. Chem. Rev., 66: 199,1966.
    [108] H. Baba and M. Kitamura. J. Mol. Spectrosc, 41: 302,1972.
    [109] R. Roberto and A.C. Clarke. J. Phys. Chem., 82: 81,1978.
    [110] E.B. Wilson. Phys. Rev., 45: 706,1934.
    [111] R. Englman and J. Jortner. Mol. Phys., 18: 145, 1970.
    [112] T. Takemura and H. Bada. Bull. Chem. Soc. Jpn., 42: 2756, 1969.
    [113] M.A. Elsayed. J. Chem. Phys., 38: 2843,1963.
    [114] C. Ganguly S and N.K. Ghoudhury. J. Chem. Phys., 21: 554,1952.
    [115] C. Redit. J. Chem. Phys., 23: 1906, 1953.
    [116] P.W. Bridgman. Rev. Mod. Phys., 18: 1, 1946.
    
    [117] Yoshida M. Kakudate Y. Tanaka K. Fujiwara S. Aoki K., Usuba S. J. Chem. Phys., 89: 529,1988.
    
    [118] K. Aoki, Y. Kakudate, M. Yoshida, S. Usuda, and S. Fujiwara. J. Chem. Phys., 91: 778, 1989.
    
    [119] R.B. Aust, W.H. Bentley, and H.G. Drickamer. J. Chem. Phys., 41: 1856,1964.
    [120] S.L. Chaplot, A. Mierzejewski, and G.S. Pawley. Mol. Phys., 56: 115, 1985.
    [121] S.L. Chaplot and R. Mukhopadhyay. Phys. Rev. B, 33: 5099, 1986.
    [122] A.L. Soloman. Phys. Rev., 104: 1191,1956.
    
    [123] F. Denoyer, R. Currat, R. Blic, and A.P. Levanyuk. Incommensurate phase in Di electrics. North-Holland, Amsterdam, 2rd edition, 1986.
    
    [124] GJ. Goldsmith and J.G. White. J. Chem. Phys., 31: 1175, 1959.
    
    [125] H. Futama, Y. Shiozaki, A. Chiba, E. Tanaka, T. Mitsui, and J. Furuichi. Phys. Lett. A., 25: 8, 1967.
    [126] Y. Shiozaki. Ferroelectrics, 2: 245, 1971.
    [127] A.H. Moudden, E Denoyer, J.E Benoit, and W. Fitgerald. Solid. State. Commun., 28: 575, 1978.
    [128] C. Calvo. J. Chem. Phys., 33: 1271, 1960.
    [129] A. Bandy, G.L. Cessac, and E.R. Lippincott. Spectrochim. Acta. A., 28: 1807, 1972.
    [130] J.J. Rush. J. Chem. Phys., 47: 4278, 1967.
    [131] A. Bajarek, D. Parlinski, M. Sudnik, M. Hrynkieivicy, and J.A. Janik. Physica., 35: 469, 1969.
    [132] J.W. Elmsley and J.A.S. Smith. Trans. Faraday. Soc., 57: 893, 1233, 1961.
    [133] M. Elcombe and J.C. Taylor. Acta, Crst. A., 24: 410, 1968.
    [134] P.W. Bridgrnan. Proc. Am. Acad. Art Sci., 72: 227, 1937.
    [135] G.G. Leonidova. Fiz. Tverd. Tela, 5: 3430, 1963.
    [136] S.S. Kabalkina. Zh. Fiz. Khim., 35: 276, 1961.
    [137] K. Gesi. J. Phys. Soc. Jpn., 26: 107, 1967.
    [138] P. Figuiere, M. ghelfenstein, and H. Szwarc. Chem. Phys. Lett., 33: 99, 1975.
    [139] H. Orihara, T. Ishidate, and A. Sawada. J. Phys. Soc. Jpn,, 51: 1216, 1982.
    [140] T. Asahi, K. Hasebe, and A. Onodera. J. Phys. Soc. Jpn., 69: 2895, 2000.
    [141] P. Bleckmann, B. Schrader, W. Meier, H. Takahashi, and Bet. Bunsenges. Physik. Chem., 75: 1279, 1971.
    [142] B. Schrader, W. Meier, K. Gottlieb, H. Agatha,. H. Barentzen, and Bet. Bunsenges P. Bleckmann. Physik. Chem., 75: 1263, 1971.
    [143] G. Socrates. Infrared and Raman Characteristic Group: Frequencies, Tables and Charts. John-Wiley, Chichester, 3rd edition, 2001.
    [144] Z. Iqbal and C.W. Christoe. Chem. Phys. Lett., 37: 460, 1976.
    [145] H. Shimizu, Y. Nakamichi, and S. Sasaki. J. Raman. Spectrosc., 21: 703, 1990.
    [146] M.B. Kruger, Q. Williams, and R. Jeanloz. J. Chem. Phys., 91: 5910, 1989.
    [147] D.A. Pirmick, A.I. Katz, and R.C. Hanson. Phys. Rev. B., 39: 8677, 1989.
    [148] A.P. Ginsberg, J.L. Lundberg, and W.E. Silverthom. Inorg. Chem., 10: 2079, 1971.
    [149] A.R. Blake, W.T. Eeles, and P.P. Jennings. Trans. Frarday Soc., 60: 691, 1964.
    [150] S.F. Agnew, R.E. Mischke, and B.I. Swanson. J. Phys. Chem., 92: 4201, 1988.
    [151] J.J. Colman and W.C. Troger. J. Am. Chem. Soc., 117: 11270,. 1995.
    [152] R. Pcci and G. Piccitto. Molecular Systems Under High Pressure: Proceeding of the Ⅱ- Archimedes Workshop on Molecular Solids Under Pressure. North-Holland Pub, New. York., 1991.
    
    [153] A. Polian and M. Grimsdith. Phys. Rev. Lett., 52: 1312, 1984.
    
    [154] C. F. Larson and Q. Williams. Phys. Rev. B, 58: 8306, 1998.
    
    [155] S.J. Green. Chem. Phys., 95: 3888, 1991.
    
    [156] S. Kurtz and T.J. Perry. Appl. Phys., 39: 3798,1968.
    
    [157] K. Betzler, H. Hesse, and P.Loose. J. Mol. Struct., 47: 393, 1978.
    
    [158] J.M. Habout, S. Blit, W. Donaldson, and C.L.Tang. IEEE. J. Quantum. Electron., 15: 1176, 1979.
    
    [159] P.N. Prasad and D.R. Ulrich. Nonlinear Optical Electroactive properties of Polymers. Plenum, New. York., 1988.
    
    [160] P.N. Prasad and D.J. Williams. Introduction to Nonlinear Optical Effects in Molecules and Polymers. John Wiley, New. York., 1991.
    
    [161] D.S. Chemla and J. Zyss. Nonlinear Optical Properties of Organic Molecules and Crystals, volume I, II. Academic, New. York., 1987.
    
    [162] R.W.Munn and C.N. Iromside. Priciple and Applications of Non-linear Optical Materials. Chapman and Hall, London, 1993.
    
    [163] J.L. Bredas, C. Adant, P. Tackx, and A. Persoons. Chem. Rev., 94: 243,1994.
    
    [164] H.S. Nalma and S. Miyata. Nonlinear Optics of Organic Molecules and Polymers. CRC, Boca. Raton, 1997.
    
    [165] Y. Luo, H. Agren, P. Jorgensen, and K.V. Mikkelsen. Adv. Quantum. Chem., 26: 165, 1995.
    
    [166] R.D. Waldon and R.M. Badger. J. Chem. Phys., 18: 566,1950.
    
    [167] S. Swaminathan, B.M. Craven, and R.K. Mcmullan. Acta. Crystallogr. B, 40: 300,1984.
    
    [168] S. Swaminathan, B.M. Craven, M.A. Spackman, and R.F. Stewart. Acta. Crystallogr. B, 40: 98,1984.
    
    [169] A. Car and J. Donohue. Acta. Crystallogr. B, 17: 544,1964.
    
    [170] M. Tachibana, S. Horiuchi, J.S. Wang, and K. Kojima. J. Phys. D. Appl. Phys., 26: 145, 1993.
    
    [171] J. Lefebvre. Solid. State. Commun., 13: 1873, 1973.
    [172] R. Fouret B. Hennion R. Currat J. Lefebvre, M. More. J. Phys. C, 8: 2011, 1975.
    
    [173] R.L. Frost, J. Kristof, L. Rintoul, and J.T. Kloprogge. Spectrochim. Acta. A., 56: 1681, 2000.
    [174] A.L. Geddes and G.L. Bottger. J. Chem. Phys., 55: 1990, 1971.
    [175] T. Rajalakshmi, R.S. Qhalid Frareed, R. Dhanasekaran, P. Ramasamy, J. Thomas, and K. Srinivasan. Mater. Sci. Engi. B, 39:111, 1996.
    [176] R. Keuleers, H.O. Desseyn, B. Rousseau, and C.V. Alsenoy. J. Phys. Chem. A, 103: 4621, 1999.
    [177] E. R. Bernstein A. Yoshihara. J. Chem. Phys., 77: 5319, 1982.
    [178] A. Shukla, E.D. Issacs, D.R. Hamann, and P.M. Platzman. Phys. Rev. B, 64: 052101, 2001.
    [179] P.D. Godfrey, R.D. Brown, and A.N. Hunter. J. Mol. Struct., 413: 405, 1997.
    [180] R. Dovesi, M. Causa, R, Orlando, C. Roetti, and V.R. Saunders. J. Chem. Phys., 92: 7402, 1990.
    [181] R. Keuleers H. O. Desseyn B. Rousseau, C. V. Alsenoy. J. Phys. Chem. A., 102: 6540, 1998.
    [182] C. Gatti, V.R. Saunders, and C. Roetti. J. Chem. Phys., 101: 10686, 1994.
    [183] S.N. Vinogradov and R.H. Linnell. Hydrogen bonding. Van Nostrand Reinhold, New.York., 1971,
    [184] G.C. Pimentel, A.L. McClellan, and R. Hayward. Hydrogen bonding. W.H. Freeman, San Francisco, 1960.
    [185] L. Pauling, R.B. Corey, and H.R. Branson. Proc. Nat. Acad. Sci. USA., 27: 205, 1951.
    [186] J.L. Amau and P.A. Giuere. C.R. Acad. Sci. B(Paris), 268: 245, 1969.
    [187] R.L. Frost and S.J. Van der Gaast. Clay. Miner., 32: 471, 551, 587, 1997.
    [188] P.W. Bridgman. Proc. Amer. Acad. Arts. & Sci.,52: 91, 1916.
    [189] M.S. Miao, V.E. Van Doren, R. Keuleers, H.O. Desseyn, C.V. Alsenoy, and J.L. Martins. Chem. Phys. Lett., 346: 297, 2000.
    [190] H.O. Desseyn, K. Clou, R. Keuleers, R. Miao, V.E. Van Doren, and N. Blaton. Spectrochim. Acta. A., 57: 231, 2001.
    [191] H. P. Weber F. Toledano M. Bonin, W. G. Marshall. ISIS Facility Annual Report, page 34, 1998.
    [192] H.P. Weber, W.G. Marshall, and V. Dmitriev. Acta. Crst. A., 58: C174, 2002.
    [193] D. Gora and K. Parlinski. J. Chem. Phys., 113: 8138, 2000.
    [194] A.W. Pryor and P.L. Sanger. Acta. Crst. A., 26: 543, 1970.
    [195] V. Gutman. The Donor-Acceptor Approach to Molecular Interactions. Plenum Press, New. York, 1978.
    [196] S.H. Moon and H.G. Drickamer. J. Chem. Phys., 61: 48, 1974.
    
    [197] E.A. Silinsh and J.Q. Hans. Organic molecular Crystals-Their Electronic States, volume 16. Springer-Verlag, Berlin, 1980.
    
    [198] J. Medina, W.F. Sherman, and G.R. Wilkinson. J. Raman. Spectrosc, 12: 63,1982.
    [199] F. Bolduan, H.D. Hochheimer, and H.J Jodl. J. Chem. Phys., 84: 6997, 1986.
    [200] C. Shik, Yoo, and M. Nicol. J. Phys. Chem., 90: 6726, 1986.
    
    [201] A. Biancalana, E. Campani, G. Domenico, G. Gorini, G. Masseti, and M. Quaglia. J.Raman. Spectrosc, 24: 43, 1993.
    
    [202] D.L. Beveridge and H.H. Jaffé. J. Am. Chem. Soc.
    
    [203] A. Biancalana, E. Campani, G. Gorini, G. Masetti, and M. Quaglia. 7. Raman. Spectrosc, 23: 155,1992.
    
    [204] R.S. Cataliotti, S.M. Murgia, G. Paliani, A. Poletti, and M.Z. Zgierski. J. Raman Spectrosc, 16: 251, 1985.
    
    [205] R.S. Cataliotti, S.M. Murgia, G. Paliani, A. Poletti, and M.Z. Zgierski. J. Raman. Spectrosc, 16: 258, 1985.
    
    [206] K. Xi, S.K. Sharma, and D.W. Muenow. J. Raman. Spectrosc, 23: 601, 1992.
    [207] H. Hacker. Spectrochim. Acta., 21:1989,1965.
    
    [208] H. Rau. Studies in Organic Chemistry-Photochromism, Molecules and Systems, volume 40. Elsevier, Amsterdam, 1990.
    
    [209] T. Ikeda and O. Tsutsumi. Science., 268: 1893,1995.
    
    [210] T. Nagele, R. Hoche, W. Zinth, and J. Wachtveitl. Chem. Phys. Lett., 272: 489, 1997.
    
    [211] Z. Sekkat, J. Wood, and W. Knoll. J. Phys. Chem., 99: 17226, 1995.
    
    [212] C.J. Brown. Acta. Cryst., 21: 146, 1966.
    
    [213] J.A. Bouwstra, A. Schouten, and J. Kroon. Acta. Cryst. C, 39: 1121, 1983.
    
    [214] CJ. Finder, M.G. Newton, and N.L. Allinger. Acta. Cryst. B, 30: 411, 1974.
    
    [215] R. Williams and G. Heilmeier. J. Chem. Phys., 44: 638,1966.
    
    [216] D.K. Rout, R.P. Choudhary, and G.D. Nigam. Mol. Crys. Liq. Crys., 185: B151, 1988.
    
    [217] A.H. Kadhim and H.W. Offen. J. Am. Chem. Soc, 89: 1805,1967.
    
    [218] R. Zallen and M.L. Slade. Phys. Rev. B, 18: 5775,1978.
    
    [219] A. Gruger, L.N. Calve, P. Diazabo, and J. Fillaux. J. Chim. Phys., 69: 291,1972.
    
    [220] J.L. Houben, G. Masetti, E. Campani, and G. Gorini. J. Raman. Spectrosc, 13: 15, 1982.
    [221] A.C. Albrecht. J. Chem. Phys., 34: 1476, 1961.
    [222] F. Negri and G. Orlandi. J. Raman Spectrosc., 29: 501, 1998.
    [223] A. Biancalano, E. Campani, G.D. Domenico, G. Gorini, A. Iacoponi, and G. Masetti. Spectrochim. Acta., 55: 28,1999.
    [224] B.C. Norman, H.D. Lawrence, and E.W. Stephen, editors. Introduction to Infrared and Raman Spectroscopy, volume 2. Academic, New. York, 1975.
    [225] Y. Kanda and S. Imanishi. J. Sci. Research. Inst., 43: 17, 1949.
    [226] B. Kellerer, H. Hacker, and Brandmuller. J., Indian. J. Pure. Appl. Phys., 9: 903, 1971.
    [227] W.F. Sherman. J. Phys.: Condens. Matter., 15: 9, 1982.
    [228] J.F. Scott. Rev. Mod. Phys., 46: 83, 1974.
    [229] J. Lye, H.S. Freeman, and R.D. Cox. Dyes Pigments., 47: 53, 2000.
    [230] A.S. Cohen, E. Calkins, and C. Levene. Am. J. Pathol.., 35: 971, 1959.
    [231] T. Miura, C, Yamamiya, M. Sasaki, K. Suzuki, and H. Takeuchi. J. Raman. Spectrosc., 33: 530, 2002.
    [232] L.Y. Albeck, Z. Lange, J. Benchowsky, and G. Weizman. Science,, 275: 1462, 1997.
    [233] D.V.G.L.N. Rao, F.J. Aranda, Z. Rao, J.A. Chen, A.D.L. Kaplan, and M. Nakashima. J. Opt. Commun., 127: 193, 1996.
    [234] W. Sun, C.C. Byeon, M.M. Mckems, and C.M. Lawson. J. Appl. Phys. Lett., 73:1167, 1998.
    [235] G.P. Agarwal and R.W. Boyd. Contemporary Nonlinear Optics, Quantum Electronics. Priciples and Applications Series. Academic, New. York., 1992.
    [236] M.J.E. Sohn andG.D. Stucky. Materials for Nonlinear Optics. Chemical Perspectives, ACS Symposium Series 455. American. Chemical. Society., Washington. D.C., 1991.
    [237] T.F. Boggess and G.R. Allen. J. Opt. Eng., 32: 1063, 1993.
    [238] T.J. Xia, D.J. Haggan, A. Dogariu, A.A. Said, and E. Van. Stryland. J. Appl. Opt., 36: 4110, 1997.
    [239] D. Vincent and J.M. Cmickshank. J. App. Opt., 36: 7794, 1997.
    [240] S. Kumari, S.S. Geetha, P. Kumari, and C.I. Muneera. J. Mater. Sci Lett.., 21: 1339, 2002.
    [241] H.G. Drickamer. Accouts. Chem. Res.., 19: 329, 1986.
    [242] M. Nicol, M. Vernon,. and J.T. Woo. J. Chem. Phys., 63: 1992, 1975.
    [243] H.G. Drickamer and C.W. Frank. Electronic Transitions and the High Pressure Chemistry and Physics of Solids. Champon and Hall, London, 1973.
    [244] R. Lapouyade, K. Czeschka, W. Majenz, W. Rettig, E. Gilabert, and C. Rulliere. J., Indian. J. Pure. Appl. Phys., 96: 9643, 1992.
    [245] H. Puchtler, F. Sweat, and M. Levine. J. Histochem. Cytochem., 10: 355, 1962.
    [246] R. P. Linke. Virchows. Arch., 436: 439, 2000.
    [247] D. M. Hercules and F. E. Lytle. J. Amen Chem. Soc., 88: 4745, 1966.
    [248] R. D. Gerardi, N. W. Barnett, and S. W. Lewis. Anal. Chim. Acta., 378: 1, 1999.
    [249] Y.G. Ma, G.Y. Zhang, and C. M. Che. J. Amen Chem. Soc., 121: 3525, 1999.
    [250] K.M. Maness, H. Masui, and R.M. Wrightman. J. Amen Chem. Soc., 119: 3987, 1997.
    [251] K. Kalyanasundaram. Photochemistry of Polypridine and Porphin Complexes. Academic. Press, London., 1992.
    [252] J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski. J. Amen Chem. Soc., 107: 2998, 1985.
    [253] D. Avnir, S.B Dunn, and S. Ottolenghi. SupramolecularArchitechture:Synthesis Control in Thin Films and Solids. Americal. Chemical. Society., Washington. D.C., 1992.
    [254] J.I. Zink and S.B. Dunn. J.Cerem. Soc. Jpn., 99: 878, 1990.
    [255] A. Juris, B. Balzani, F. Barigelleti, S. Campagna, P. Belser, and A. Vonzelewsky. Coord. Chem. Rev., 84: 85, 1988.
    [256] T. Kajiwara, K. Hashimoto, T. Kawai, and T. SAkata. J. Phys. Chem., 86: 4516, 1982.
    [257] J. Wheeler and J.K. Thomas. J. Phys. Chem., 86: 4540, 1982.
    [258] J.K. Thomas and J. wheeler. J. Photochem., 28: 285, 1985.
    [259] P.V. Kamat and E.W. Ford. J. Phys. Chem., 93: 1405, 1989.
    [260] 陈友存、徐衡、任小明.无机化学学报,17:585,2001.
    [261] 夏虹、张成波、刘晓东、阚士董、马於光、沈家骢.发光学报,25:44,2004.
    [262] G.D. Hager and G.A. Crosby. J. Amer. Chem. Soc., 97: 7301, 7037, 1997.
    [263] F. Barigelletti, S. Juris, V. Balzani, P. Belser, and A. Von Zelewsky. J. Phys. Chem. A, 91: 1095, 1987.
    [264] H.B. Kim, N. Kitamura, and S. Tazuke. Chem. Phys. Lett., 143: 77, 1988.
    [265] H.B. Kim, N. Kitamura, and S. Tazuke. J. Phys. Chem., 94: 7401, 1414, 1990.
    [266] H.B. Kim, T. Hiraga, T. Uchida, N. Kitamura, and S. Tazuke. Coord. Chem. Rev., 97: 81, 1990.
    [267] G.H. Allen, R.P. White, D.P. Rillema, and T.J. Meyer. J. Amen Chem. Soc., 106: 2613, 1997.
    [268] N. Kitamura, M. Sato, H.B. Kim, R. Obata, and S. Tazuke. Inorg. Chem., 27: 651, 1988.
    [269] J.V. Caspar and T.J. Meyer. J. Amer Chem. Soc., 105: 5583, 1983.
    [270] E.A. Garcia, R.G. Fernandez, and M.E. DiazGarcia. Micro. Meso. Mater, 77: 235, 2005.
    [271] M. Kazunoil and M. Fumitoshi. Chem. Mater, 9: 2588, 1997.
    [272] Wai Yue Ng, Xiong Gong, and Wai Kin Chan. Chem. Mater, 11:1165, 1999.
    [273] J.P. Sauvage, J.P. Collin, J.C. Chambron, S. Guillerez, and C. Coudret. Chem. Rev., 94: 993, 1994.
    [274] K. Kalyanasundaran. Coord. Chem. Rev., 46: 159, 1982.
    [275] T.J. Meyer. Pure. Appl. Chem., 58:1193, 1986,
    [276] E.M. Kober, B.P. Sullivan, and T.J. Meyer. Inorg. Chem., 23: 2098, 1984.
    [277] D.C. Fisher and H.G. Drickamer. J. Chem. Phys., 54: 4825, 1971.
    [278] J.V. Caspar and T.J. Meyer. J. Amer. Chem.. Soc., 105: 5583, 1983.
    [279] H.B. Kim, N. Kitamura, and S. Tazuket. J. Phys. Chem., 94: 7401, 1990.
    [280] R.S. Lumpkin, E.M. Kober, L.A. Worl, Z. Murtaza, and T.J. Meyer. J. Phys. Chem., 94: 239, 1990.
    [281] J.R. Schoonover, C.J. Timpson, T.J. Meyer, and C.A. Bignozzi. Inorg. Chem., 31: 3185, 1992.
    [282] J.R. Schoonover, W.D. Bates, and T.J. Meyer. Inorg. Chem., 34: 6421, 1995.
    [283] P. Day and N, Sanders. J. Chem. Soc. A, 12: 1536, 1967.
    [284] W.R. Cherry and L.J. Henderson. Inorg. Chem., 23: 983, 1984.
    [285] T. Hiraga, N. Kitamura, H.B. Kim, S. Tazuke, and N. Moil. J. Phys. Chem., 93: 2940, 1989.
    [286] F. Barigelletti, A. Juris, V. Balzan, P. Belser, and A.V. Zelewsky. Inorg. Chem., 22: 3335, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700