用户名: 密码: 验证码:
大鼠孕期低水平铅暴露对子代学习记忆能力的影响及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅是人类认识和研究的最古老的毒物之一,是常见的环境和生活污染物,可通过呼吸道、消化道、皮肤粘膜等途径进入体内,造成人体多种器官系统的损害,尤其是中枢神经系统,是其毒性作用的主要靶器官之一。
     随着人们对铅毒危害认识的不断深入,采取各种保护措施,高水平铅暴露所致的损害已经逐渐减少,但是来自环境和生活中低水平的铅暴露仍然十分常见。其中儿童由于血脑屏障未发育成熟等原因,比成人对铅的神经毒性更为敏感,较低水平的铅暴露即可造成儿童中枢神经系统的功能障碍。对于低水平铅暴露所致的儿童铅损伤尤其是神经系统损伤及其机制的研究,成为当今公共卫生研究领域的一个热点。
     学习和记忆是神经系统所具有的基本功能,也是最重要机能之一。海马是学习记忆的关键部位,亦是铅作用的敏感靶部位。铅有很强的发育神经毒性,即使是低水平的铅暴露,发育中的中枢神经系统也很容易受到铅毒性的损害。胎儿和婴幼儿期是脑发育的关键时期,在该时期接触到铅后,铅可以通过胎盘向胎儿转运,并通过胎儿发育尚不完善的血脑屏障,进入胎儿中枢神经系统,并对中枢神经系统的生长发育造成损害,进而影响胎儿出生后的学习记忆能力。
     在儿童接触铅的众多途径中,母体孕期铅暴露对胎儿脑发育的影响是十分重要的一个方面。研究表明发育早期铅暴露(怀孕/哺乳)所产生的认知和神经行为缺陷,在停止铅暴露后可能会持续影响到成年阶段。胚胎阶段的器官发生期和出生前后一段时期是中枢神经系统发育最迅速、也最易受到外来毒物损害的时期,处于围产期的胎儿或婴幼儿接受铅暴露后神经系统所受的损害可能较其它时期更为严重。但母体孕期低水平铅暴露对其子代中枢神经系统的损害及其机理缺乏深入而系统的研究。本研究采取大鼠孕期低水平铅暴露的方式,测定其子代血铅和海马组织铅的含量,并观察其子代学习记忆机能力的变化,探讨这种变化与铅接触之间的关系,为彻底揭示铅中毒的机理、优生优育和预防并降低儿童学习记忆的损伤,提供科学依据。
     第一部分大鼠孕期低水平铅暴露对子代大鼠血液和海马组织铅含量的影响
     目的:建立大鼠孕期低水平铅暴露的动物模型,观测大鼠孕期铅暴露后子代血铅和海马铅含量的变化,为分析学习记忆能力的改变与体内铅含量的关系,揭示铅影响学习记忆的机理打下基础。
     方法:Wistar大鼠受孕后随机分为4组,3个处理组自怀孕第1天起分别给予醋酸铅含量为125、250和500mg/L的饮水,对照组给予无铅蒸馏水;仔鼠出生后母鼠正常饮水、饮食,仔鼠由母鼠喂养至断乳后与母鼠分笼饲养;仔鼠出生1d时取全脑、21d和60d时取海马组织,采用流动注射氢化物发生-原子吸收光谱法进行铅含量测定。
     结果:孕鼠接触不同剂量铅后,各剂量组1d、21d龄的仔鼠血铅、海马组织铅含量显著高于对照组仔鼠,差异有统计学意义(P<0.05,P<0.01),并且仔鼠血铅、海马组织铅含量与孕鼠铅暴露剂量之间有良好的剂量反应关系;至60d龄时,处理组和对照组仔鼠的血铅、海马组织铅含量无明显差异(P>0.05)。说明随着孕鼠铅暴露剂量的增加,进入仔鼠血液和海马组织内的铅也随之增加。
     结论:大鼠孕期低水平铅暴露,可使子代大鼠血液和脑组织中的铅含量增加,说明铅易于透过胎盘屏障和血脑屏障,引起子代血铅增高,并蓄积在脑组织中。宫内铅暴露后子代大鼠血铅和海马铅的增高至少可以持续到仔鼠的断乳期,至成熟期时,可下降至正常水平。
     第二部分大鼠孕期低水平铅暴露对子代大鼠学习记忆能力的影响
     目的:观察大鼠孕期铅暴露后对子代大鼠学习记忆能力的影响,并探讨这种改变与海马组织铅含量的关系,从而进一步判定铅对子代神经系统的毒性作用。
     方法:以Morris水迷宫、Y迷宫和避暗穿梭箱实验三种方法,观测仔鼠学习记忆能力的变化。
     结果:Morris水迷宫测试结果显示,各处理组21d和60d龄的仔鼠,连续4天训练期间,第2、3、4天时潜伏期均显著高于同期对照组仔鼠,差异有统计学意义(P<0.05, P<0.01)。避暗穿梭箱测试结果显示,各处理组21d和60d龄的仔鼠连续5天训练期间,主动回避次数低于同期对照组仔鼠,差异有统计学意义(P<0.05,P<0.01);而主动回避潜伏期和被动回避潜伏期均高于同期对照组仔鼠,差异有统计学意义(P<0.05 or P<0.01)。Y迷宫测试结果显示,各处理组21d和60d龄的仔鼠,获取记忆的能力、保持记忆的能力和记忆保持率均低于同期对照组仔鼠,差异有统计学意义(P<0.05,P<0.01)。
     综合分析海马铅含量和学习记忆能力之间的关系,海马组织铅含量越高,仔鼠的学习记忆能力越差;另外,各处理组仔鼠生长至成熟期(60d)时,血铅和海马铅含量已降至正常水平,但学习记忆能力仍显著低于对照组,未完全恢复,说明铅对仔鼠学习记忆能力的影响至少可持续到仔鼠的成熟期,学习记忆能力的恢复需要较长时间。
     结论:大鼠孕期低水平铅暴露,可以损害仔鼠的学习记忆能力,而且这种损害作用至少可以持续到仔鼠的成熟期;仔鼠的学习记忆能力与其海马组织的铅含量有关,铅含量越高,学习记忆能力受损越严重。
     第三部分大鼠孕期低水平铅暴露对子代大鼠学习记忆能力影响的机理研究
     目的:观察大鼠孕期铅暴露后,对子代大鼠海马组织细胞凋亡、胶质细胞、与生长相关因子情况的影响,并分析上述变化与仔鼠学习记忆能力受损的关系,探讨母体铅暴露对子代学习记忆能力影响的机理。
     方法:采用流式细胞技术和末端脱氧核糖核酸转移酶介导的缺口末端标记法(TUNEL),观察大鼠孕期铅暴露后仔鼠海马神经元细胞凋亡发生情况;免疫组织化学和Western blot技术检测海马星形胶质细胞胶质原纤维酸性蛋白(GFAP)表达的变化,原位杂交和荧光定量PCR技术检测海马星形胶质细胞GFAP mRNA表达的变化;免疫组织化学和Western blot技术检测海马细胞神经生长相关蛋白(GAP-43)和神经生长因子(NGF)蛋白表达的变化,原位杂交和荧光定量PCR技术检测海马细胞GAP-43和NGF mRNA表达的变化;分析上述指标变化与学习记忆能力受损之间的关系。
     结果:大鼠孕期低水平铅暴露对子代大鼠海马细胞凋亡的影响:流式细胞检测结果显示,各处理组1d、21d和60d龄的仔鼠,海马细胞凋亡率显著高于对照组,差异有统计学意义(P<0.05,P<0.01),并且各时间段细胞凋亡率与海马铅含量之间有良好的剂量反应关系;TUNEL法检测结果显示,1d龄的仔鼠,各处理组海马细胞凋亡指数均显著高于对照组,差异有统计学意义(P <0.05,P<0.01),21d和60d阶段,中、高剂量组海马细胞凋亡指数显著高于对照组(P <0.05,P<0.01),而低剂量组与对照相比未见显著性差异,各时间段仔鼠细胞凋亡指数与海马组织铅含量之间有良好的剂量反应关系;综合分析海马细胞凋亡与学习记忆能力之间的关系,海马细胞凋亡率或凋亡指数越高,仔鼠的学习记忆受损越严重,学习记忆能力越差。
     大鼠孕期低水平铅暴露对子代大鼠海马胶质细胞的影响:免疫组化和Western blot技术检测GFAP蛋白表达的结果显示,各处理组1d和21d龄的仔鼠,海马区GFAP免疫阳性反应阳性细胞平均数目、积分光密度和相对灰度值,显著高于同期对照组仔鼠(P <0.05,P<0.01),并与海马组织铅含量有良好的剂量反应关系,至60d时,未见显著性差异。原位杂交和荧光定量PCR技术检测GFAP mRNA表达的结果显示,各处理组1d和21d龄的仔鼠,海马GFAP mRNA阳性细胞数、积分光密度和△CT明显高于对照组,有显著性差异(P<0.05,P<0.01),在60d阶段,未见显著性差异;1天阶段海马组织铅含量与GFAP mRNA阳性细胞数目之间有良好的剂量反应关系,1d和21d阶段海马铅含量与GFAP mRNA积分光密度之间也有良好的剂量反应关系。综合分析海马细胞GFAP表达与学习记忆能力之间的关系,GFAP表达增强后仔鼠的学习记忆能力下降。
     大鼠孕期低水平铅暴露对子代大鼠海马生长相关因子的影响:免疫组化检测结果显示,各处理组1d龄的仔鼠,海马组织中GAP-43免疫组化反应物的面密度和积分光密度均显著降低,与对照组相比有显著性差异(P<0.05,P<0.01);21d阶段,中、高剂量组的面密度和积分光密度低于对照组,其差别有显著性(P<0.05,P<0.01),到60d阶段时,各剂量的面密度和积分光密度均无显著性差异;1d和21d阶段海马组织铅含量与GAP-43免疫组化面密度和积分光密度呈明显负相关。Western blot结果显示,各处理组1d和21d龄的仔鼠GAP-43蛋白表达明显低于对照组,具有显著性差异(P<0.05,P<0.01);至60d时,未见显著性差异。原位杂交结果显示,各处理组1d龄的仔鼠,GAP-43 mRNA表达的面密度、积分光密度均低于对照组,差别有显著性(P<0.05,P<0.01);21d阶段中、高剂量组的面密度和积分光密度低于对照组,差别有显著性(P<0.05,P<0.01),且和海马铅含量呈明显负相关;至60d时,各剂量组与对照组相比均无显著性差异。荧光定量PCR结果显示,各处理组1d和21d龄的仔鼠GAP-43 mRNA表达明显降低,与对照组相比具有显著性差异(P<0.01),仔鼠发育至60d时,各剂量组海马区GAP-43 mRNA表达与对照组比较未见显著性差异。
     免疫组化和Western blot检测仔鼠海马组织NGF的表达情况,发现各处理组1d和21d龄的仔鼠,NGF免疫组化反应物的面密度、积分光密度和相对灰度值均显著降低,与对照组相比有显著性差异(P<0.05,P<0.01),且与海马组织铅含量程明显负相关;到60d时,均未见显著性差异。原位杂交结果显示,各处理组1d龄的仔鼠,NGF mRNA阳性反应物颗粒的面密度积分光密度均低于对照组,差别有显著性(P<0.05,P<0.01);21d阶段中、高剂量组的面密度和积分光密度低于对照组,差别有显著性(P<0.05,P<0.01);1d和21d阶段海马组织铅含量与NGF mRNA面密度和积分光密度呈明显负相关;荧光定量PCR结果显示,各处理组1d和21d龄的仔鼠NGF mRNA表达显著降低,与对照组相比具有显著性差异(P<0.05,P<0.01);至60d时,未见显著性差异。
     综合分析GAP-43和NGF表达与仔鼠学习记忆能力的关系,发现随着海马铅含量的升高,海马组织GAP-43和NGF蛋白及mRNA表达下降,而仔鼠的学习记忆能力也随之降低。
     结论:大鼠孕期低水平铅暴露,可以导致仔鼠脑海马区神经细胞凋亡增加,且与海马铅含量呈正相关;可以使仔鼠脑海马区GFAP阳性的胶质细胞数目增多,GFAP蛋白和mRNA表达增加,且与海马铅含量呈正相关,GFAP表达的变化至仔鼠出生60天时消失。可以抑制仔鼠脑海马区GAP-43、NGF蛋白和mRNA表达,且这种抑制作用与海马铅含量呈正相关,蛋白和mRNA表达表达的变化至仔鼠出生60天时消失。提示大鼠孕期低水平铅暴露,可以通过诱导仔鼠海马区神经细胞凋亡、提高GFAP表达水平、降低GAP-43和NGF表达水平等机制,损伤子代的的学习记忆能力。
Lead, the most common environmental daily life pollutant, is one of the oldest of established environmental poisons. Lead can enter into the human’s body and contributes to the damages of functions of many organs and systems. The central nervous system(CNS), especially, is the most important target of lead-mediated toxicity.
     The adverse effects from high level lead exposure have been decreased with the deeply knowledgement about lead toxicity and the taking of various preventive measures. But the low level lead exposure from environment and daily life is quite common. Because of the developing immature of blood brain barrier, the children are more sensitive than that of the adult to lead induced insults. So even low level lead exposure can give rise to functional disorder in children. The damage from low level lead exposure to children, especially to CNS and the mechanism of lead actions, is the hot point in public health research areas.
     Learning and memory, the basic functions of CNS, is one of the most important functions of CNS. As the key structure for learning and memory, hippocampus is the sensitive target of lead toxicity. It is approved that lead have very strong developmental neurotoxicity, even low level lead exposure can damage the developmental CNS. It is the critical period for development of CNS in fetus and infant. If prenatal lead exposure occurred, lead can be transported from mother to fetus through placenta easily and it also can come into the CNS of fetus through the incomplete blood brain barrier and do harm to the developmental CNS. As a result, the offspring’s ability of learning and memory would be affected.
     Lead exposure during the gestation period is most responserble for the damage to the developing central nervous system of fetus caused by lead through various ways into the chhildrens’body. Previous studies indicate that impairment of later cognitive and neurobehavioral function result from lead exposure during early developing period(gestation/lactation) could persist long till to adult after the exposure has ceased. The developmental central nervous system (CNS) in organogenetic period and postnatal period are in a state of rapid growth, and more sensitive to toxic metals such as lead. Pb can make more serious damages to fetus and infant brains in prenatal stage than other stages. Despite intensive research, no consensus on the adverse effects and mechanisms of prenatal low level lead exposure to CNS in young offspring has resulted.
     In the present study we detected the Pb concentration in blood and content in the hippocampus in offspring rats after low level lead exposure during pregnancy. The changes of learning and memory in offspring rats were examined by Morris water maze test, shuttling and avoiding dark box test, and Y-type maze test. This study attempts to reveal the possible molecular mechanism of Pb induced neural development toxicity and provide the base of aristogenesis as well as prevent to the deficient of learning and memory of children.
     Part 1 The effects of prenatal low level lead exposure on the content of lead in blood and hippocampus of offspring rats.
     Objective: To establish the animal model of low level lead exposure during pregnancy, and to detect the changes of Pb concentration in blood and hippocampus in offspring rats and analyze the possible relationship between the Pb exposure and the deficient of learning and memory of offspring rats. This study in part provided the base data for revealing the possible mechanism of Pb to reduce the ability of learing and memory.
     Methods: The pregnant Wistar rats are housed separately and randomly divided into 4 groups and provided with doubly distilled water in the control group and 125、250、500mg/L lead acetate solution via drinking water in three exposured groups respectively during the pregnancy. The content of lead in blood and hippocampus of 21-day and 60-day old offsprings were measured by flow-injection hydride generation-atomic absorption spectrometry. At 1-day old offspring, the hippocampus was instead by whole brain.
     Results: The blood and hippocampus lead concentrations of 1-day old and 21-day old offsprings in the three lead exposed groups were significantly increased compared with the control group (P<0.05, P<0.01), and there was a good dose-response relationship between blood/hippocampus lead concentrations and the maternal exposure dosage. The concentration of Pb in blood and hippocampus of 60-day old offspring was no significantly difference in the lead exposed group compared with control group(P>0.05)。This result suggested that the concentration of Pb in blood and hippocampus of offspring rats increased following the increase of the maternal exposure dosage during pregnancy period.
     Conclusion: Prenatal exposure to low level lead make the lead concentrations of blood and hippocampus of the offspring significantly increased compared with the control group, and the increasing changes could continue to weaning at least. When the pups were mature, the concentration of Pb in blood and hippocampus decreased to normal levels.
     Part 2 The effects of prenatal low level lead exposure on learning and memory of offspring rats.
     Objective: To explore the effects prenatal low level lead exposure on learning and memory of offspring rats, and analyze the relationship between the impairments of learning /memory and lead concentrations in hippocampus. In this part, we want to observe the toxic effects of lead to CNS of offsprings rats.
     Methods: The learning and memory ability of the offspring rats were tested by the Morris water maze, Y-type maze, shuttling and avoiding dark box respedtivelty.
     Results: In Morris water maze test, the time to find the platform for 21-day old and 60-day old offspring in the three lead exposed groups significantly increased compared with the control group during the 4 days training (P<0.05, P<0.01). In the shuttling and avoiding dark box test, the times of initiative avoiding(TOIA) for 21-day and 60-day old offspring in the three lead exposed groups were significantly decreased, while the latency of the initiative avoiding(LOIA) and latency of the passive avoiding(LOPA) were significantly increased compared with the control group (P<0.05, P<0.01). In Y-type maze test, the ability of learning(A) and memory(B) and the memory retaining rate(C) for 21-day and 60-day old offspring in the three lead exposed groups were significantly decreased compared with control group(P<0.05, P<0.01).
     In this part we could found that the higher the Pb contents in hippocampus, the worse the ability of learning and memory of offspring rats. Especially, the deficits of learning and memory of soospring at mature stage(60-day old) in trearment group were still lower than that of control, while the Pb contents in hippocampus had decreased to a normal level. This results indicated the effect of lead to learning and memory could ontinue to the maturation period, and the recovery of the learning and memory might be need a long periods.
     Conclusion: Prenantal exposure to low level lead impaired the learning and memory ability of the offspring of the rats, and this kind of influence will continue till the offsprings’maturity. The deficits degrees of learning and memory were corelated with Pb contents in hippocampus of offspring rats. Part 3 The mechanism of prenatal low level lead exposure to learning and memory in young offspring
     Objective: To explore the effects of prenatal low level lead exposure to cell apoptosis, glial cells and neuron development of hippocampus of offspring rats. We are interested in the role of apoptosis as well as whether some neuronal specific genes, such as that encoding glial fibrillary acidic protein (GFAP), growth associated protein (GAP-43) and nerve growth factor (NGF), have changes in transcription and/or transcription level in rats after low levels Pb exposure.
     Methods: PI labeled apoptosis detection by flow cytometry and Terminal deoxynucleotidyl transferase mediated d-UTP nick end labeling(TUNEL) were utilized to detect the hhippocampal cell apoptosis. The GFAP, GAP-43 and NGF protein expression in hippocampus were observed by immunohistochemistry and western blot, respectively. The GFAP, GAP-43 and NGF mRNA expression in hippocampus were observed by in situ hybridization and real-time PCR.
     Results: (1) The effects of prenatal low levels lead exposure on apoptosis of hippocampal cell in offspring rats.
     The apoptosis rates in hippocampus for 1-day old, 21-day old and 60-day old offspring examined by flow cytometry in each treatment group were significantly higher than that of control respectively(P<0.05, P<0.01), and there was a good dose-response relationship between apoptosis rates and the Pb concentration in hippocampus. The apoptosis index by TUNEL for 1-day old offspring in each treatment groups were significantly higher than that of control(P<0.05, P<0.01). For 21-day old and 60-day old offspring, the apoptosis index in medium and high dosage treatment groups were significantly higher than that of control group(P<0.05, or P<0.01), and showed a good dose-response relationship. There were positive correlation between apoptosis of hippocampus in offsprings and the deficits of learning and memory.
     (2) The effects of prenatal low levels lead exposure on astrocyte of hippocampus in offspring rats.
     Immunohistochemistry and Western blot showed that the protein expression of GFAP(include positive cell number, IOD and relative gray value) in hippocampus of 1-day old and 21-day old offspring in each treatment group were significantly higher than that of control(P<0.05, P<0.01), and there was a good dose-response relationship. But there were no significant difference at 60-day old offsprings. In situ hybridization and real time PCR showed that mRNA expression of GFAP(include positive cell number, IOD and△CT ) in hippocampus of 1-day old and 21-day old offspring in each treatment group were significantly higher than that of control(P<0.05, P<0.01), but no significant difference at 60-day old offspringa. The result above indicated that the promotion of GFAP protein and mRNA expression followed by the deficits of learning and memory ability of offsprings.
     (3) The effects of prenatal low levels lead exposure on neuron development of hippocampus in offspring rats.
     Immunohistochemistry showed showed that the GAP-43 protein expression(include area density and IOD) in hippocampus of 1-day old offspring in each treatment group were significantly lower than that of control(P<0.05, P<0.01). At 21-day, the value of area density and IOD in medium and high dosage treatment groups were decreased in hippocampus compared with the control group (P<0.05, P<0.01), and there were no significant difference at 60-day old offsprings. There was a good negactive dose-response relationship between the GAP-43 protein expression and lead in hippocampus, respectively. Western blot showed that the GAP-43 protein expression in hippocampus of 1-day old and 21-day old offspring in treatment groups singnificantly decreased compared with control, respectively(P<0.05, P<0.01), and there were no significant difference at 60-day old offsprings. In situ hybridization showed that the GAP-43 mRNA expression(include area density and IOD) in hippocampus of 1-day old offspring in each treatment group were significantly lower than that of control(P<0.05, P<0.01). At 21-day, the value of area density and IOD in medium and high dosage treatment groups were decreased in hippocampus compared with the control group (P<0.05, P<0.01), and there was a good negective dose-response relationship respectively, and there were no significant difference at 60-day old offsprings. Real time PCR showed that the GAP-43 mRNA expression in hippocampus of 1-day old and 21-day old offspring in treatment groups singnificantly decreased compared with control, respectively(P<0.05, P<0.01), and there were no significant difference at 60-day old offsprings.
     Immunohistochemistry and Western blot showed that the NGF protein expression(include area density, IOD and relative gray value) in hippocampus of 1-day old offspring in each treatment group were significantly lower than that of control(P<0.05, P<0.01), and there was a good negactive dose-response relationship between the NGFprotein expression and lead in hippocampus, respectively. There weas no significant difference at 60-day old offsprings. In situ hybridization showed that the NGF mRNA expression(include area density and IOD) in hippocampus of 1-day old offspring in each treatment group were significantly lower than that of control(P<0.05, P<0.01). At 21-day, the value of area density and IOD in medium and high dosage treatment groups were decreased in hippocampus compared with the control group (P<0.05, P<0.01), and there was a good negective dose-response relationship respectively, and there were no significant difference at 60-day old offsprings. Real time PCR showed that the NGF mRNA expression in hippocampus of 1-day old and 21-day old offspring in treatment groups singnificantly decreased compared with control, respectively(P<0.05, P<0.01), and there were no significant difference at 60-day old offsprings. The result above indicated that the decrease of GAP-43,NGF protein and mRNA expression could reduce the learning and memory ability of offsprings.
     Conclusion: It demonstrates that Pb could induce apoptosis in hippocampus, and increase the GFAP mRNA and protein expression as well as decrease the neuron outgrowth associated protein and factor expression (GAP-43 and NGF). The results in this part possibly implement that the mechanism of deficits of learning and memory of offspring rats after low level lead exposure during pregnancy might be through the apoptosis induction and increased level of GFAP as well as decreased the GAP-43 and NGF expression.
引文
1 Surkan PJ, Zhang A, Trachtenberg F, et al. Neuropsychological function in children with blood lead levels <10 microg/dL[J]. Neurotoxicology,2007,28(6):1170-1177
    2 Chiodo LM, Jacobson SW, Jacobson JL. Neurodevelopmental effects of postnatal lead exposure at very low levels[J]. Neurotoxicol Teratol, 2004,26(3):359-371
    3 Plusquellec P, Muckle G, Dewailly E, et al. The relation of low-level prenatal lead exposure to behavioral indicators of attention in Inuit infants in Arctic Quebec[J]. Neurotoxicol Teratol,2007,29(5):527-537
    4 Interpreting and Managing Blood Lead Levels <10 μg/dL in Children andReducing Childhood Exposures to Lead:Recommendations of CDC's Advisory Committee on Childhood Lead Poisoning Prevention.MMWR Recomm Rep,2007,56(RR-8):1-16
    5 Finkelstein Y, Markowitz ME, Rosen JF. Low-level lead-induced neurotoxicity in children:an update on central nervous system effects[J]. Brain Res Brain Res Reviews,1998,27(2):168-176
    6 Martin SJ, Grimwood PD, Morris GR. Synaptic plasticity and memory: an evaluation of the hypothesis[J]. Annu Rev Neurosci,2000,23: 649-711
    7 Howland JG, Wang YT. Synaptic plasticity in learning and memory: Stress effects in the hippocampus[J]. Prog Brain res,2008,169:145-158
    8 Agency for Toxic Substantal and Disease Registry. The nature and extent of lead poisoning in children in the U.S: a report to congress,Atlanta. Public Health Service,GA30333
    9 Martin MD, Benton T, Bernardo M, et al. The association of dental caries with blood lead in children when adjusted for IQ and neurobehavioral performance[J]. Sci Total Environ,2007,377(2-3):159-164
    10 宋华琴, 郑星泉, 庄丽. 学龄前儿童铅、镉接触总量及健康影响, WHO/UNEP 人体接触量评价(HEAL)报告[J].卫生研究,1993,22(增刊):1-13
    11 White LD, Cory-Slechta DA, Gilbert ME. New and evolving concepts in the neurotoxicology of lead [J]. Toxicol Appl Pharmacol,2007,225(1):1-27
    12 Min JY, Min KB, Cho SI, et al. Neurobehavioral function in children with low blood lead concentrations[J].Neurotoxicology,2007,28(2):421-425
    13 Meyer PA, Pivetz T, Dignam TA, et al. Surveillance for elevated blood lead levels among children-United States, 1997-2001[J]. MMWR Surveill Summ,2003,52(10):1-21
    14 Toscano CD, Guilarte TR. Lead neurotoxicity: from exposure to molecular effects s[J]. Brain Res Brain Res Rev, 2005,49(3):529-554
    15 Jett DA, Kuhlmann AC, Farmer SJ, et al. Age-dependent effects of developmental lead exposure on performance in the Morris water maze[J]. Pharmacol Biochem Behav,1997,57(1-2): 271-279
    16 Baranowska-Bosiacka J, Chlubek D. Biochemical mechanisms of neurotoxic lead activity [J]. Postepy Biochem,2006,52(3):320-329
    17 Moreira EG, Vassilieff I, Vassilieff VS. Developmental lead exposure: behavioral alterations in the short and long term[J]. Neurotoxicol Teratol, 2001,23(5):489-495
    18 Nevin, R.How lead exposure relates to temporal changes in IQ, violent crime, and unwed pregnancy[J]. Environ Res,2000,83(1):1-22
    19 Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[j]. Brain,2003,126(Pt1):5-19
    20 邹时朴, 胡淑珍, 李维君, 等. 轻度铅中毒对儿童注意力及行为的影响[J]. 中国儿童保健杂志,2006,14(1):75-76
    21 黄文勇, 杨敬源, 宋沈超,等.4-11 岁儿童铅暴露与多动行为的关系.中国妇幼保健,2008,23(3):331-333
    22 马惠容, 曾超谊. 2387 例 0-6 岁儿童血铅水平及影响因素分析. 广州 医药,2008,39(1):71-72 卷第 1 期
    23 刘捷. 低水平铅暴露与儿童神经行为发育. 实用儿科临床杂志,2007, 22(2):147-149
    24 张树英. 母孕期铅暴露对新生儿脐带血血铅及生长发育影响的研究现状[J]. 医学文选,2005,24(2):291-293
    25 Gilbert ME, Kelly ME, Samsam TE, et al. Chronic developmental lead exposure reduces neurogenesis in adult rat hippocampus but does not impair spatial learning [J]. Toxicol Sci,2005,86(2):365-374
    26 Chang W, Chen J, Wei QY, et al. Effects of Brn-3a protein and RNA expression in rat brain following low-level lead exposure during development on spatial learning and memory[J]. Toxicology Letters,2006, 164(1):63-70
    27 Lenne-Triin Heidmets, Tamara Zharkovsky, Monika Jurgenson, et al. Early post-natal, low-level lead exposure increases the number of PSA-NCAM expressing cells in the dentate gyrus of adult rat hippocampus[J]. Neuro Toxicology,2006,27(1):39-43
    28 王教辰,李红,马海燕,等. 孕期不同阶段铅暴露对大鼠妊娠结局的影响[J]. 中国儿童保健杂志,2006,14(4):375-376
    29 黄琼,许月初,王身笏,等. 低水平铅暴露对不同脑发育期大鼠学习记忆能力的影响[J]. 卫生毒理学杂志,2001,15(3):149-151
    30 Schmitt TJ, Zawia N, Harry GJ. GAP-43 mRNA expression in the developing rat brain: alterations following lead-acetate exposure. Neurotoxicology,1996,17(2):407 -414
    31 李艳.主编. 生物化学检验[M]. 北京: 人民卫生出版社, 2003: 162-163
    32 孙汉文 . 编著 . 原子吸收光谱分析技术 [M]. 北京 : 高等教育出版社,2002:133-224
    33 宋为丽, 艾中元, 段奇翠. 氢化物发生-原子吸收光谱法测定尿铅[J]. 中国工业医学杂志, 1999, 12(5):309-310
    34 刘耀珍. 氢化物发生原子吸收光谱法测定味精中铅[J]. 中国卫生检验杂志, 2005,15(6):719,758
    35 Iyengar GV, Rapp A. Human placenta as as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements. Part 3: toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ,2001, 280(1-3):221-238
    36 Fuentes M, Torregrosa A, Mora R, et al. Placental effects of lead in mice. Placenta,1996,17(5-6):371-376
    37 Goyer RA. Results of lead research: prenatal exposure and neurological consequences[J]. Environ Health Perspect,1996,104(10)1050-1054
    38 Hu H, Hashimoto D, Besser M. Levels of lead in blood and bone of women giving birth in a Boston hospital[J]. Arch Environ Health,1996, 51(1):52-58
    39 Shukle R, Bornschein RL, Dietrich KN, et al. Fetal and infant lead exposure: effects on growth in stature[J]. Pediatrics,1989,84(4):604-612
    40 刘建荣. 北京石景山地区孕妇及婴幼儿血铅动态研究.卫生研究[J]. 1997,26(1):38-40
    41 颜崇淮, 沈晓明.我国儿童铅中毒防治的现状与任务[J]. 中国实用儿科杂志, 2006,21( 3):165-166
    42 陶勇, 白雪涛, 张洪桥, 等.出生前后铅暴露对婴幼儿生长发育的影响[J].卫生研究, 2001,32( 2):102-104.
    43 李敏, 杨秀群, 陈淑明, 等.脐带血铅含量与新生儿出生体重关系的探讨[J]. 中国儿童保健杂志,2000,8( 3):165-166
    44 唐小平, 王开秀, 曹玉平. 孕期低水平铅暴露对胎儿孕周的影响[J]. 环境与健康杂志,2007,24(6):418-420
    45 EvansTJ, JamesK, KleiboekerSK, etal. Lead enter Rcho-1 trophoblastic cells by calcium transport mechanisms and complexes with cytosolic calcium-binding protein[J]. Toxicol Appl Pharmacol,2003,186(2):77- 89
    46 Lafond J, HamelA, TakserL, et al. Low environmental contamination by lead in pregnant women: effect on calcium transfer in human placental syncytiotrophoblasts[J]. J Toxicol Environ Health A,2004,67(14):1069- 1079
    47 阮素云, 顾祖维, 陆纯英, 等. 低浓度铅对大鼠血脑屏障超微结构的损害[J]. 中华劳动卫生职业病杂志, 1998,16 (6):339-341
    48 Marchetti C. Molecular targets of lead in brain neurotoxicity[J]. Neirotox Res,2003,5(3):221-236
    49 Zheng W, Aschner M, Ghersi-Egea JF. Brain barrier systems: a new frontier in metal neurotoxicological research[J], Toxicol Appl Pharmacol, 2003,192(1):1-11
    50 Shi LZ, Zheng W. Early lead exposure increases the leakage of the blood-cerebrospinal fluid barrier, in vitro[J]. Hum Exp Toxicol,2007, 26(3):159-167
    51 Lukács A, Lengyel A, Institóris L, et al. Subchronic heavy metal and alcohol treatment in rats: changes in the somatosensory evoked cortical activity [J]. Acta Biol Hung,2007,58(3):259-267
    52 Wang Q, Luo W, Zheng W,et al. Iron supplement prevents lead-induced disruption of the blood–brain barrier during rat development[J]. Toxicology and Applied Pharmacology,2007,219(1):33-41
    1 Stoleski S,Karadzinska-Bislimoska J, Stikova E, et al. Adverse effects in workers exposed to inorganic lead[J]. Arh Rada Toksikol,2008,59(1): 19-29
    2 Carta P, Carta R, Aru G, et al. Neurobehavioural testing in lead smelter workers[J]. G Ital Med Lav Ergon,2005,27(3):2859-289
    3 Goodman M, LaVerda N, Clarke C, et al. Neurobehavioural testing in workers occupationally exposed to lead: systematic review and meta-analysis of publications[J]. Occup Environ Med,2002,59(4):217-223
    4 Schuwartz BS, Stewart W, Hu H. Neurobehavioural testing in workers occupationally exposed to lead [J]. Occup Environ Med,2002,59(9): 648-649
    5 Blond M, Netterstrom B, Laursen P. Cognitive function in a cohort of Danish steel workers. [J]. Neurotoxicology,2007,28(2):328-335
    6 Yang Y, Ma Y, Ni L, et al. Lead exposure through gestation-only caused long-term learning/memory deficits in young adult offspring[J]. Exp Neuro, 2003,184(1):489-495
    7 Plusquellec P, Muckle G, Dewailly E, et al. The relation of low-level prenatal lead exposure to behavioral indicators of attention in Inuit infants in Arctic Quebec[J]. Neurotoxicol Teratol,2007,29(5):527-537
    8 Min JY, Min KB, Cho SI, et al. Neurobehavioral function in children with low blood lead concentrations[J]. Neurotoxicology,2007,28(2):421-425
    9 Surkan PJ, Zhang A, Trachtenberg f, et al. Neuropsychological function in children with blood lead levels <10 microg/dL[J]. Neurotoxicology, 2007,28(6):1170-1177
    10 Finkelstein Y, Markowitz ME, Rosen JF. Low-level lead-induced neurotoxicity in children: an update on central nervous system effects[J]. Brain Res Brain Res Rev,1998,27(2):168-176
    11 Jett DA, Kuhlmann AC, Farmer SJ, et al. Age-dependent effects of developmental lead exposure on performance in the Morris water maze[J]. Pharmacol Biochem Behav,1997,57(1-2):271-279
    12 Baranowska-Bosiacka J, Chlubek D. Biochemical mechanisms of neurotoxic lead activity [J]. Postepy Biochem,2006,52(3):320-329
    13 Moreira EG, Vassilieff I, Vassilieff VS. Developmental lead exposure: behavioral alterations in the short and long term[J]. Neurotoxicol Teratol, 2001,23(5):489-495
    14 Nevin, R.How lead exposure relates to temporal changes in IQ, violentcrime, and unwed pregnancy[J]. Environ Res,2000,83(1):1-22
    15 Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates[J]. Brain,2003,126(Pt1):5-19
    16 Jaako-Movits K, Zharkovsky T, Romantchik O, et al. Developmental lead exposure impairs contextual fear conditioning and reduces adult hippocampal neurogenesis in the rat brain[J]. Int J Dev Neurosci,2005,23(7):627-635
    17 Ris MD, Dietrich KN, Succop PA, et al. Early exposure to lead and neuropsychological outcome in adolescence[J]. J Int Neuropsychol Soc, 2004,10(2):261-270
    18 万建华, 盛西陵, 李双玲, 等. 孕妇血铅和脐血铅含量水平对新生儿及婴儿神经行为发育的影响[J]. 江西医学院学报,2002,42(6):128-130
    19 张树英. 母孕期铅暴露对新生儿脐带血血铅及生长发育影响的研究现状[J]. 医学文选,2005,24(2):291-293
    20 Chiodo LM, Jacobson SW, Jacobso JL. Neurodevelopmental effects of postnatal lead exposure at very low levels[J]. Neurotoxicol Teratol, 2004,26(3):359-371
    21 Finkelstein Y, Markowitz ME, Rosen JF. Low-level lead-induced neurotoxicity in children: an update on central nervous system effects[J]. Brain Res Brain Res Rev,1998,27(2):168-176
    22 Wigg NR. Low-level lead exposure and children[J]. J Paediatr Child Health, 2001,37(5):423-425
    23 Goyer RA. Results of lead research: prenatal exposure and neurological consequences[J]. Environ Health Perspect,1996,104(10):1050–1054
    24 Shen XM, Yan CH, Guo D. et al. Low-level prenatal lead exposure and neurobehavioral development of children in the first year of life: a prospective study in Shanghai[J]. Environ Res,1998,79(1):1–8
    25 Gulson BL, Mizon KJ, Korsch MJ,et al. Mobilization of lead from human bone tissue during pregnancy and lactation-a summary of long-term research[J]. Sci Total Environ, 2003,303(1-2):79-104
    26 Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in ratswith hippocampal lesions.Nature,1982,297(5868):681-683
    27 Morris R. Developments of a water-mase procedure for studing spatial learning in the rat[J]. J Neurosci Methods,1984,11(1):47-60
    28 Escorihuela RM, Fernandez TA , Gil L, et al. Inbred Roman high- and low-avoidance rats: differences in anxiety, novelty-seeking, and shuttlebox behaviors[J]. Physiol Behav,1999,67(1):19-26
    29 Clark MG, Vasilevsky S, Myers TM. Air and shock two-way shuttlebox avoidance in C57BL/ 6J and 129X1/SvJ mice[J]. Physiol Behav,2003,78 (1):117-123
    30 Dellu F, Mayo W, Cherkaoui J, et al. A two-trial memory task with automated recording: study in young and aged rats[J]. Brain Res,1992, 588(1):132-139
    31 王跃春,王子栋. 大鼠 Y-型迷宫测试指标正常值的确定[J]. 中国行为医学科学,2003,12(3):333-335
    32 王跃春.Y 型电迷宫在大鼠学习记忆功能测试中的合理应用. 中国行为医学科学, 2005,14(1):69-70
    33 Satcher DS. The surgeon general on the continuing tragedy of childhood lead poisoning[J]. Public Health Reports,2000,115(6):579-580
    34 Kyoung-Bok Min, Jin-Young Mina, Sung-Il Choa, et al. Relationship between low blood lead levels and growth in children of white-collar civil servants in Korea[J]. Int J Hyg Environ Health,2008,211(1-2):82-87
    35 Ellis MR, Kane KY. Lightening the lead load in children. Am Fam Physician,2000,62(3):545-554
    36 Nigg JT, Knottnerus GM, Martel MM, et al. Low Blood Lead Levels Associated with Clinically Diagnosed Attention-Deficit/Hyperactivity Disorder and Mediated by Weak Cognitive Control[J]. Biol Psychiatry, 2008,63(3):325-331
    37 Jedrychowski W, Perera F, Jankowski J, et al. Prenatal low-level lead exposure and developmental delay of infants at age 6 months (Krakow inner city study)[J]. Int. J. Hyg. Environ. Health,2007, Oct 1 [Epub ahead of print]
    38 Emory E, Pattillo R, Archibold, et al. Neurobehavioral effects of low-level lead exposure in human neonates[J]. Aw J Obstet Gynecol,1999,181(1): s2-11
    39 Wasserman GA, Liu X, Popovac D et al. The Yugoslavia Prospective Lead Studay: contributions of prenatal and postnatal lead exposure to early intelligence[J]. Neurotoxicol Teratol,2000,22(6):811-818
    40 Tong S, Baghurst PA, Sawyer MG, et al. Declining blood lead levels and changes in cognitive function during childhood: the Port Pirie Cohort Studay[J]. JAMA,1998,280(22):1915-1919
    1 Surkan PJ, Zhang A, Trachtenberg F, et al. Neuropsychological function in children with blood lead levels <10 microg/dL[J]. Neurotoxicology,2007,28(6):1170-1177
    2 Chiodo LM, Jacobson SW, Jacobson JL. Neurodevelopmental effects of postnatal lead exposure at very low levels[J]. Neurotoxicol Teratol,2004,26(3):359-371
    3 Plusquellec P, Muckle G, Dewailly E, et al. The relation of low-level prenatal lead exposure to behavioral indicators of attention in Inuit infants in Arctic Quebec[J]. Neurotoxicol Teratol,2007,29(5):527-537
    4 Interpreting and Managing Blood Lead Levels <10 μg/dL in Children and Reducing Childhood Exposures to Lead:Recommendations of CDC's Advisory Committee on Childhood Lead Poisoning Prevention.MMWR Recomm Rep,2007,56(RR-8):1-16
    5 Bellinger DC, Hu H, Kalaniti K, et al. A Pilot study of blood lead levels and neurobehavioral function in children living in Chennai,India[J]. Inr J Occup Environ Health,2005,11(2):138-143
    6 Marco MD, Halpern R, Barros HM.Early behavioral effeets of lead Perinatal exposure in rat pups[J]. Toxicology,2005,211(1-2):49-58
    7 Ris MD, Dietrieh KD, Sueeop PA,et al. Early exposure to lead and neuropsychological outcome in adolescence[J]. J int Neurophychol Soc, 2004,10(2):261-270
    8 Sehnaas L, Rothenberg SJ, Flores MF, et al. Reduced intellectual development in children with prenatal lead exposure[J]. Envion Health Perspect,2006,114(5):791-797
    9 Lanphear BP, Hornung R, Khoury J, et al. Low-level environmental lead exposure and children's intellectual function: an international pooled analysis [J]. Environ Health Perspect,2005,113(7):894-899
    10 Wasserman GA, Liu X, Popovae D, et al. The Yugoslavia prospective lead study: contributions of prenatal and postnatal lead exposure to early intelligence[J].Neurotoxicol Teratol,2000,22(6):811-818
    11 Cory-Sleehta DA. Relationships between lead-induced learning impairments and changes in dopaminergic,cholinergie,and glutamatergic neurotransmitter system funetions[J]. Annu Rev Pharmacol Toxicol,1995, 35:391-415
    12 Lasley SM, Gilbert ME. Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity[J].Neurotoxicology, 2000,21(6):1057-1068
    13 Gilbert ME, Mack CM. Chronic lead exposure accelerates decay of long-term potentiation in rat dentate gyrus in vivo[J]. Brain Res,1998, 789(1):139-149
    14 Gilbert ME, Mack CM, Lasley SM. Chronic developmental lead exposure increases the threshold for long-term potentiation in rat dentate gyrus in vivo[J].Brain Res,1996,736(1-2):118-124
    15 Gilbert ME, Mack, Lasley SM. Chronic developmental lead exposure and hippocampal long-term potentiation: biphasic dose-response relationship[J].Neurotoxicology,1999,20(1):71-82
    16 Gilbert ME, Mack CM, Lasley SM. The influence of developmental period of lead exposure on long-term potentiation in the adult rat dentate gyrus in vivo[J].Neurotoxicology,1999,20(1):57-69
    17 Ruan DY, Chen JT, Zhao C,et al. Impairment of long-term potentiation and paired-pulse facilitation in rat hippocampal dentate gyrus following developmental lead exposure in vivo[J]. Brain Res,1998,806(2):196-201
    18 Yuan J . Apoptosis in the nervous system[J]. Nature,2000,407(6805): 802-813
    19 Loikkanen J, Chvalova K, Naaarla J, et al. Pb2+-induced toxicity associated with P53-independent apoptosis and enhanced by glutamate in GT1-7 neuronc[J]. Toxicol Lett, 2003,142(2):235246
    20 张荣,牛玉杰,程云会,等. 醋酸铅对大鼠脑细胞凋亡及 bcl-2 基因表达的影响[J] .中华劳动卫生职业病杂志,2000,18(8):232-234
    21 Blaschke AJ, Weiner JA, Chun J. Programmed cell death is a universal feature of embryonic and postnatal neuroproliferative regions throughout the central nervous system[J]. J Comp Neurol,1998,396(1):39-50
    22 刘素缓, 孙黎光, 刑伟, 等. 慢性染铅对大鼠海马区神经细胞 Ca2+浓度及 Ca2+-A TP 酶活性的影响[J]. 卫生毒理学杂志,1999,13(1):16-21
    23 Obert A, Marks N, Evans HL, et al. Lead(Pb2+) promotes apoptosis in newborn rat cerebellar neurons: pathologic implications[J]. J Pharmal Exp Ther,1996,279(1):435-442
    24 吴德生,李国君. 急性染铅对大鼠脑组织 IEG 表达的量效时效关系的研究[J]. 癌变畸变突变,1999,11(6):323
    25 李国君,吴德生,肖邦良,等.铅对大鼠不同脑区 IEG 表达的影响[J]. 卫生研究,1999,28(2):65-69
    26 牛玉杰, 张荣, 程云会, 等. 醋酸铅对大鼠脑细胞凋亡及 bcl-2、bax 基因表达的影响[J]. 中华预防医学杂志, 2002,36(1):30-33
    27 雷荣辉, 张进, 易建华, 等. 宫内及哺乳期铅接触子鼠海马神经元凋亡及 bcl-2 、 bax 基 因 的 表 达 [J]. 西 安 交 通 大 学 学 报 ( 医 学版),2003,24(1):27-29
    28 安兰敏, 杨军, 徐兵. 铅对大鼠脑细胞凋亡的诱发作用及对P53基因表达影响的研究[J]. 癌变. 畸变. 突变,2003,15(4):209-211
    29 Guilarte TR, Miceli RC, Jett DA. Biochemical evidence of an interaction of lead at t he zinc allosteric sites of t he NMDAR complex effects of neuronal development [J]. Neurotoxicology,1995,16(1):63-71
    30 Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain[J].Science,1999, 283(5398):70-74
    1 Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Seienee,1997,277(5332):1684-1687
    2 Sarthy V. Focus on molecules: glial fibrillary acidic protein (GFAP)[J]. Exp Eye Res,2007,840(3):381-382
    3 Liesi P, Kauppila, T. Induction of type IV collagen and other basementmembrane assoeiated proteins after spinal cord injury of the adult rat participate information of the glial scar[J]. Exp Neurol,2002(7),173:31-45
    4 Jabs R, Seifert G, Steinh?user C,et al. Astrocytic function and its alteration in the epileptic brain[J]. Epilepsia,2008,49(Suppl 2):3-12
    5 Wetherington J, Serrano G, DingledineR. Astrocytes in the Epileptic Brain [J]. Neuron,2008,58(2):168-178
    6 Nwaashior H, Messing A, AzzamN. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury[J]. Neuroreport,1998,9(8):1691-1696
    7 Dietrich WD, Turetter J, Zhao W, et al. Sequential changes in glia fibrillary acidie protein and expression following parasagittal fiuid-percussion brain injury in rats[J]. J Neuortrauma,1999,16(7):567-58
    8 Dugar A, Patanow C, Ocallaghan JP, et al. Immunohistochemical localization and quantification of glial fibrillary acidic protein and synaptosomal-associated protein(MOL.WT25000)in the ageing hippocampus following administration of 5,7-dihydroxytryptamine[J]. Neuroscience,1998,85(1):123-133
    9 De Keyser J, Mostert JP, Koch MW, et al. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders[J]. J Neurol Sci, 2008,267(1-2):3-16
    10 Van Den Bosch L, Robberecht W. Crosstalk between astrocytes and motor neurons: What is the message? [J]. Exp Neurol,2008,26 [Epub ahead of print]
    11 López MV, Cuadrado MP, Ruiz-Poveda OM, et al. Neuroprotective effect of individual ginsenosides on astrocytes primary culture[J]. Biochim Biophys Acta, 2007,1770(9):1308-1316
    12 Perea G, Araque A. Communication between astrocytes and neurons: a complex language[J]. J Physiol Paris,2002,96(3-4):199-207
    13 Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons[J]. Proc Natl Acad Sci USA,2000,97(15):8629-8634
    14 Parpura V, Basarsky TA, Liu F, et al. Glutamate mediated astrocyte neuronssignaling[J]. Nature,1994,369(6483):744-747
    15 Pasti L, Volterra A, Pozzan T, et al. Intracellular calcium oscillations in astrocytes: a highly Plastic, bi-directional form of communication between neurons and astrocytes in situ[J]. J Neurosci,1997,17(20):7817-7830
    16 Roder JK, Roder JC, Gerlai R. Memory and the effect of cold shock in the water maze in S100 beta transgenic[J]. Physiol Behave, 1996, 60(2):611-615
    17 Nishiyama H, Knopfel T, Endo S, et al. Glial protein S100 modulates long-term neuronal synaptic plasticity[J]. Proc Natl Acad Sei USA,2002, 96(6):4037-4042
    18 Meeker RB, Azuma Y, Bragg DC, et al. Microglial proliferation in cortical neural culture exposed to feline immunodeficieney virus[J]. J Neuroimmuno,1999,101(l):15
    19 Nwaashior H, Messing A, Azzam N. Mice lacking GFAP are hypersensitive to traumatic cerebrospinal injury[J]. Neuroreport,1998,9(8):1691-1696
    20 Pekny M, Johansson CB, Eliasson C, et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin[J]. J Cell Biol,1999,145(3):503-514
    21 Meshul CK, Seil FJ, Helndon RM. Astrocytes play a role in regulation of synaptic density[J]. Brain Res,1987:402(l):139-145
    22 Robertson JM. The Astrocentric Hypothesis: Proposed role of astrocytes in consciousness and memory formation[J]. J Physiol Paris,2002,96(3-4): 251-255
    23 Partl S, Herbt H, Schaeper F, et al. GFAP gene expression is altered in young rats following developmental low lever exposure[J]. Neurotoxicology, 1998,19(4-5):547-551
    24 陈军, 祝卫国, 陈秋生.铅对体外培养大鼠海马神经细胞生长和Oct-2蛋白表达的影响[J].中华预防医学杂志, 2004,38(3):152-153
    25 Funan Huang JS, Schneider. Effects of Lead Exposure on Proliferation and Differentiation of Neural Stem Cells Derived from Different Regions of Embryonic Rat Brain[J].Neuro Toxicology,2004,25(2):1001-1012
    26 Steeves JD, Tetzlaff W. Engines, accelerators,and brakes on functional spinal cord repair[J]. Ann NY Acad Sci,1998,860(3):412-424
    27 Seemes E, Spray DC. Increased intercellular cornmunication in mouse astrocytes exposed to hypo-osmotic shoeks [J]. Glia,1998,24(1):74-84
    1 Skene JH. Axonal growth associated proteins[J]. Annu Rev Neurosci, 1989,12:127-156
    2 Viberg H, Mundy W, Eriksson P. Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis[J]. Neurotoxicology,2008,29(1):152-159
    3 Wang XY, Zhang JT. Effects of ginsenoside Rgl on synaptic plasticity of freely moving rats and its mechanism of action[J]. Acta Pharmacol Sin, 2003,22(7):657-662
    4 Hassiotism M, Ashwell KW, Marotte LR, et al. GAP-43 immunoreactivity in the brain of the developing and adul twallaby[J]. Anat Embryol Berl, 2002,206 (1-2): 97-118
    5 Tolner EA, Vliet EA, Holtmaast AJ, et al. GAP-43 mRNA and protein expression in the hippocampal and parahippocampal region during the course of epilep togenesis in rats[J]. Eur J Neurosci,2003,17(11): 2369-2380
    6 Tang XQ, Cai J, Nelson KD, et al. Functional repair after dorsal root rhizotomy using nerve conduits and neurotrophic molecules[J]. Eur J Neurosci,2004;20(5):1211-1218
    7 Tuszynski MH, U HS, Alksne J, et al. Growth factor gene therapy for Alzheimer disease[J]. Neuorsurg Focus, 2002,13(5):e5
    8 Cattaneo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor[J]. Nature,1990,347(6295):762-765
    9 Cheng Zujue, Wang weidong, Xu Jinaping, et al. Neurogenesis and expression of nerve growth factor in the hippocampus of adult rats after diffuse brain injury[J]. Chin Emerg Med,2003,12(9):587-590
    10 Crowley C, Spences D, Nishimura MC, et al. Mice lacking nerve growth facto display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons[J]. Cell,1994,76(6):1001-1011
    11 Yin M. The summarize of nerve growth factor [J]. Navy Military Affairs J Med,1998,19(1):44-46
    12 Tessarollo L. Pleiotropic functions of neurotrophins in development[J]. Cytokin Growth Factor Reviews,1998,9(2):125-129
    13 Linder MD, Dworetzky SI, Sampson C, et al. Relationship of App mRNA transcripts and levals of NGF and low-affinity NGF receptors to behavioral measures of age-related cognitive dysfunction[J]. J Neurosci,1994,14 (4):2282-2289
    14 端礼荣, 张志坚, 邢光伟.神经生长因子对醋酸铅拮抗效应的研究.中国生化药物杂志,2000,21(3):118-120
    15 Guilarte TR, Toscano CD, McGlothan JL, et al. Environmental enrichment reverses cognitive and molecular deficits induced by developmental lead exposure[J]. Ann Neurol,2003,53(1):50-56
    16 Schmitt TJ, Zawia N, Harry GJ. GAP-43 mRNA expression in the developing rat brain:alterations following lead-acetate exposure[J]. Neurotoxicology,1996,17(2):407 -414
    17 Scortegagna M, Chikhale E, Hanbauer I. Effect of lead on cytoskeletal proteins expressed in E14 mesencephalic primary cultures[J]. NeurochemInt,1998,32(4):353-359
    18 Routtenberg A, Cantallops I, Zaffuto S, et al. Enhanced learning after genetic overexpression of a brain growth protein[J]. Proc Natl Acad Sci USA,2000,97(13):7657-7662
    19 McNamara RK, Namgung U, Routtenberg A. Distinctions between hippocampus of mouse and rat:protein F1/GAP-43 gene expression, promoter activity, and spatial memory[J]. Brain Res Mol Brain Res,1996, 40(2):177-187
    20 刘玲, 陈达光, 陈燕惠. 早期干预对宫内缺氧、缺血大鼠脑功能及神经生长相关蛋白表达的影响[J]. 中华物理医学与康复杂志,2005,27(1): 20-23
    21 Casoli T, Spagna C, Fattoretti P, et al. Neuronal plasticity and aging: a quantitative immunohistochemistry study of GAP-43 distribution in discrete regions of the rat brain[J]. Brain Res,1996,714(1-2):111-117
    22 Caprini M, Gomis A, Cabedo H, et al. GAP-43 stimulates inositol trisphosphate-mediated calcium release in response to hypotonicity[J]. Embo Joumal,2003,22(12):3004-3014
    23 Fishman MC. GAP-43: Putting constraints on neuronal plasticity[J].Perspective in developmental neurobiology,1996,4(2-3): 193-198
    24 Hulo S, Alberi S, Laux T, et al. A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity[J]. Eur J Neurosci,2002,15(2):1976-1982
    25 Hens JJ, De Wit M, Boomsma F, et al. N-terminal-specific anti-B-50(GAP-43) antibodies inhibit Ca2+ induced noradrenaline release, B-50 phosphorylation and dephosphorylation, and calmodulin binding[J]. J Neurochem,1995,64(3):1127-1136
    26 杨辉, 蔡文琴, 张可成. GAP-43mRNA 在正常成年大鼠中枢神经系统中的分布[J]. 科学通报,1995,40(6):558-560
    27 DeGraan PN, Hens JJ, Gispen WH. Presynaptic PKC substrate B-50(GAP-43) and neurotransmitter release: studies with permeatedsynaptosomes [J]. Neurotoxicology,1994,15(1):41-47
    28 Lvins KJ, Neve KA, Feller DJ, et al. Antisense GAP-43 inhibits the evoked release of dopamine from PC12 cells[J]. J Neurochem,1993,60(2): 626-633
    29 Chen B, Wang JF, Sun X, et al.Regulation of GAP-43 expression by chronic desipramine treatment in rat cultured hippocampal cells[J]. Biol Psychiatry,2003,53(6):530-537
    30 Lovinger DM, Colley PA, Akers RF, et al. Direct relation of long-term synaptic potentiation to phosphorylation of membrance protein F1, a substrate for membrane protein kinase C[J]. Brain Res,1986,399(2): 205-211
    31 Norden JJ, Lettes A, Costello B, et al. Possible role of GAP-43 in calcium regulation/neurotransmitter release[J]. Ann N Y Acad Sci,1991,627:75-93
    32 Linden DJ, Wong KL, Sheu FS, et al. NMDA receptor blockade prevents the increase in protein kinase C substate(protein F1) phosphorylation produced by long-term protentiation[J]. Brain Res,1988,458(1):142-146
    33 Cattnaeo E, McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor[J]. Nuarte,1990,347(6295): 762-7655
    34 Fukunaga K, Miymaoto E. Role of MAP kinase in neurons[J]. Mol Neurobiol,1998,16(1):79-95
    35 Scllwba JM, Beschomer R, Nguyen TD, etal. Differential cellular accumulation of connective tissue growth factor defines a subset of reactive astrocytes, invading fibroblasts, and endothelial cells of llowing central nervous system injury in rats and humans[J]. J Neuro trauma, 2001,18(4):377-388
    36 施英唐, 马骥, 袁崇刚.神经生长因子诱导神经干细胞定向迁移[J]. 解剖学报,2004,35(l):22-25
    37 Brewster WJ, Femyhough P, Lara T, et al.Diabcetic neuropathy, nerve growth factor and other neurotrophic factors[J]. TINS,1994,17(8):321-325
    38 Mudge AW. Neurobiology.Motor neurons find their factors[J].Nature,1993,363(6426):213
    39 Varon S, Conner JM. Nerve growth factor in CNS repair[J]. J Neurotrauma, 1994,11(5):473-486
    40 Weidner N, Blesch A, Grill RJ, et al . Nerve growth factor-hypersecreting Schwann cell grafts augment and guide spinal cord axonal growth and remyelinatecentral nervous system axons in a phenotypically appropriate manner that correlates with expression of L1[J]. J Comp Neurol,1999,413 (4):495- 506
    41 Frin DM, Short MP, Rosenberg WS, et al. Local protective effects of nerve growth factor-secreting fibroblasts against excitotoxic lesions in the rat striatum[J]. J Neurosrug,1993,78(2):267-273
    42 Cheng B, Mattson MP . NT-3 and BDNF protect CNS neurons against metabolic/excitotoxic insults[J]. Brain Res,1994,640(1):56-67
    43 De Cristobal J, Cardenas A, Lizasoain I, et al. Inhibition of glutamate release via recovery of ATP levels accounts for a neuroprotective effect of aspirin in rat cortical neurons exposed to oxygen-glucose deprivation[J]. Stroke,2002, 33(1):261-267
    44 De Cristobal J, Madrigal JL, Lizasoain I, et al. Aspirin inhibits stress-induced increase in plasma glutamate, brain oxdative damage and ATP fall in rats[J]. Neuro report,2002,13(2):217-221
    45 Guegan C, Ceballos Picot I, Chebalier E, et al. Reduction of ischemic damage in NGF-transgenic mice: Correlation with enhancement of antiosidant enzyme activeties[J]. Neurobiol Dis,1999,6(3):180-189
    46 Asanuma M, Asanuma SN, Miuazak I, et al. Neuroprotective effects of nonsteroidal anti-inflammatory drugs by direct scaveging of nitric oxide radicals[J].J Neurochem,2001,76(6):1895-1904.
    47 Asanuma M, Miyazaki I, Ogawa N.Neuroprotective effects of nonsteroidal anti-inflammatory drugs on neurodegenerative diseases[J]. Curr Pharm Des,2004,10(6):695-700.
    48 Kuhn W, Muller T, Buttner T, et al.Aspirin as a free radical scavenger: Consequences for therapy of cerebrovascular ischemia [J]. Stroke,1995,26(10):1959-1960
    49 Cheng B, McMahon D, Mattson MP. Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons[J]. Brain Res, 1993, 607(1-2): 275-285
    50 牛玉杰,张荣,程云会,等. 醋酸铅对大鼠脑细胞调亡及 bcl22、bax 基因表达的影响. 中华预防医学杂志,2002, 36(1):30-33
    51 Zhai S, Yssr M, Doyle SM, et al. Nerve growth factor rescues pigment cells from ultraviolet-induced apoptosis by upregulating bcl-2 levels[J]. Exp Cell Res,1996,224(2):335-343
    52 刁士元.神经生长因子对大鼠局灶性脑缺血再灌注后细胞凋亡的影响[ J].临床神经学杂志,2004,17(6):450-451
    53 王艳辉,赵冬宝,赵春玉,等.神经生长因子对新生的大鼠小脑皮质神经细胞凋亡的影响[J].中国临床康复,2005, 9(9): 50-51
    1 1 Surkan PJ, Zhang A, Trachtenberg F, et al. Neuropsychological function in children with blood lead levels <10 microg/dL[J]. Neurotoxicology,2007,28(6):1170-1177
    2 White LD, Cory-Slechta DA, Gilbert ME. New and evolving concepts in the neurotoxicology of lead [J]. Toxicol Appl Pharmacol, 2007, 225(1):1-27
    3 Min JY, Min KB, Cho SI, et al. Neurobehavioral function in children with low blood lead concentrations[J]. Neurotoxicology, 2007, 28(2):421-425
    4 Baranowska-Bosiacka I, Chlubek D. Biochemical mechanisms of neurotoxic lead activity[J]. Postepy Biochem,2006,52(3):320-329
    5 Gilbert M E, Mack CM, Lasely SM. Chronic development lead increases the threshold for long-term-potentiation in rat dentate gyrus in vivo[J]. Brain Res,1996,73(6):118-124
    6 Altmann L, Gutowski M, Wiegand H. Effects of maternal lead exposure on functional plasticity in the visual cortex and hippocampus of immature rats[J]. Dev Brain Res,1994,81(1):50-56
    7 蔡文琴,李海标,主编. 发育神经生物学.北京:科学出版社,1999,44
    8 Chakraborti T, Kim A, Goldstrein GW, et al. Increased AP-1 DNA biding activity in PC12 cells treated with lead[J]. J Neurochem, 1999,73(1):87-94
    9 Kim K, Annadata M, Goldstein GW. Induction of c-fos mRNA by lead in PC12 cells[J]. Int J Dev Neurosci,1997,15(2):175-182
    10 Yang P, Yin X, Rutishauser U. Intercellular space is affected by the polysialic acid content of NCAM[J]. J Cell Biol,1992,116(6):1487-1496
    11 蔡文琴,李海标,主编. 发育神经生物学[M]. 北京:科学出版社, 1999, 58-60
    12 Vanberkum MFA, Goodman CS. Targeted disruption of calcium-calmodulin signaling in Drosophila growth cones leads to small in axon and errors in axon guidance[J]. Neuron,1995,14(1):43-56
    13 Hegg CC, Miletic V. Diminished blocking effect of acute lead exposure on high-threshold voltage-gated calcium currents in PC12 cell chronically exposed to the heavy metal[J]. Neurotoxicology,1998,19(3):413-420
    14 Singh AK, Jiang Y. Development effects of chronic low-level lead exposure on voltage-gated calcium channels in brain synaptosomes obtained from the neonatal and the adult rats[J]. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1997,118(1):75-81
    15 Partl S, Herbst H, Schaeper F. GFAP gene expression altered in young rats following developmental low level lead exposure[J]. Neurotoxicology,1998,19(4):547-551
    16 牛玉杰,张荣,孙侠,等. 醋酸铅对大鼠脑细胞凋亡及 bcl-2、bas 基因表达的影响. 中华预防医学杂志,2002,36(1):30-33
    17 Oberto A, Marks N, Evans HL, et al. Lead(Pb+2) promotes apoptosis in newborn rat cerebellar neurons: pathologic implications. J Pharmacol Exp Ther,1996,279(1):435-442
    18 张荣, 牛玉杰, 程云会, 等. 醋酸铅对大鼠脑细胞凋亡及 bcl-2 基因表达的影响. 中华劳动卫生职业病杂志, 2000, 18(4):232-234
    19 Sharifi AM, Baniasadi S, Jorjani M, et al. Investigation of acute lead poisoning on apoptosis in rat hippocampus in vivo[J]. Neurosci Lett,2002, 329(1):45-48
    20 Bliss TV, Gardner-Medwin AR. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol,1973,232(2):357-374
    21 阮迪云, 赵艳梅, 陈聚涛, 等. 铅对海马齿状回 L P 的损伤及锌的拮抗[J ]. 生理物理学报,1997,12 (4):619- 625
    22 Gibert ME, Mack CM, Lasley SM, et al. Impairment of long-term potentiation in rat dentate gyrus following developmental lead exposure in vivo[J]. Brain Research,1998,806(2):196-201
    23 时利德, 蔡葵, 滕过玺, 等. 脑发育不同阶段慢性铅暴露对大鼠在体海马齿状回 LTP 的影响. 中国应用生理学杂志,1999,15(2):154-158
    24 李北利,万伯健,时利德,等.慢性染铅对幼大鼠长时程增强的损害作用. 毒理学杂志,2000,149(3):164-166
    25 Hussain RJ, Parsons PJ, Carpenter DO, et al. Effects of lead on long term potentiation in hippocampal CA3 vary with age [J]. Brain Res Dev Brain Res,2000,121(2):243-252
    26 Zhang HS, Zhao XL, Song LH, et al. Inhtbition of the specific 3H-DL-Glu binding in the hippocampus of rat brain by lead[J]. Biomed environ sci, 1998,11(1):81-86
    27 张亨山, 赵西龙, 宋丽华, 等. 铅对大鼠海马脑片谷氨酸递质体外释放的影响[J] . 中华预防医学杂志,1997, 31(5):285-287
    28 Chen H, Ma T, Ho IK. Effects of developmental lead exposure on inhibitory avoidance learning and glutamate receptors in rats[J]. Environ Toxicol Pharmacol,2001,9(4):185-191
    29 张亨山, 李双黎, 赵西龙, 等. 铅对大鼠海马突触小体摄取谷氨酸递质的增强作用[J]. 中华预防医学杂志,1997,31(1):16-18
    30 Reddy GR, Basha MR, Devi CB, et al. Lead induced effects on acetylcholinesterase activity in cerebellum and hippocampus of developing rat[J]. Int J Dev Neurosci,2003,21(6):347-352
    31 Braga MF, Pereira EF, Mike A, et al. Pb2+ via protein kinase C inhibits nicotinic cholinergic modulation of synaptic transmission in the hippocampus[J]. J Pharmacol Exp Ther,2004,311(2):700-710
    32 阮迪云. 铅对海马神经元通道、受体和递质的影响及其作用机制[J]. 广东微量元素科学, 2001, 8(9):1-4
    33 Tsien JZ, Chen DF, Gerber D, et al. Subregion-and cell type-restricted gene knockout in mouse brain[J]. Cell,1996,87(7):1317-1326
    34 Murphy KP, Reid GP, Trentham DR, et al. Activation of NMDA receptors is necessary for the induction of associative longt-erm potentiation in area CA1 of rat hippocampal slice[J]. J Physiol,1997,504 (Pt2):379-385
    35 Lau WK, Yeung CW, Lui PW, et al. Different trends in modulation of NMDAR1 and NMDAR2B gene expression in cultured cortical and hippocampal neurons after lead exposure[J]. Brain Res,2002,932(1-2): 10-24
    36 Guilarte TR, McGlothan JL. Selective decrease in NR1 subunit splice variant mRNA in the hippocampus of Pb2+-exposed rats: implications for synaptic targeting and cell surface expression of NMDAR complexes[J]. Brain Res Mol Brain Res,2003,113(1-2):37-43
    37 Zhang XY, Liu AP, Ruan DY, et al. Effect of developmental lead exposure on the expression of specific NMDA receptor subunit mRNAs in the hippocampus of neonatal rats by digoxigenin-labeled in situ hybridization histochemistry[J]. Neurotoxicol Teratol,2002,24(2):149-160
    38 Sui L, Ruan DY. Impairment of the Ca2+-permeable AMPA/kainite receptors by lead exposure in organotypic rat hippocampal slice cultures[J]. Pharmacol Toxicol,2000,87(5):204-210
    39 Mockett BG, Brooks WM, Tate WP, et al. Dopamine D1/D5 receptor activation fails to initiate an activity-independent late-phase LTP in rat hippocampus[J]. Brain Res,2004,1021(1):92-100
    40 Gedeon Y, Ramesh GT, Wellman PJ, et al. Changes in mesocorticolimbic dopamine and D1/D2 receptor levels after low level lead exposure: a time course study[J]. Toxicol Lett,2001,123(2-3):217-226
    41 Lindahl LS, Bird L, Legare Me, et al. Differential ability of astroglia and neuronal cells to accumulate lead: dependence on cell type and degree of differention[J]. Toxicol Sci,1999,50(2):236-240
    42 Goyer RA. Results of lead research: prenatal exposure and neurological consequences[J]. Environmental Health Perspectives,1996,104(10): 1050- 1054
    43 Back SA, Khan R, Gan X, et al. A new Alamar Blue viability assay to rapidly quantify ologodendrocyte death[J]. Neurosci Methods,1999,91(1): 47-54
    44 金亚平, 廖英俊, 陆春伟. 铅对星形胶质细胞活力影响的检测评价[J].卫生毒理学,2003,17(2):125-126
    45 Frisen J, Egerotrand AH, RislingM. Spinal axons in central nervous system scar tissue are closely related to laminin-immunore active astrocytes[J]. Neuroscience,1995,65(1):293-304
    46 Lefrancois T, Fages C, Peschanski M, et al.Neuritic out-growth associated with astroglial phenotypic changes induced by antisence glial fibrillary acidic protein(GFAP)mRNA in injured neuron-astrocyte cocultures[J].J Neurosci,1997,17(11):4121-4128
    47 Hozumi I, Chiu FC, Norton WT. Biochemical and immunocytochemical changes in glial fibrillary acidic protein afterstab wounds[J]. Brain Res, 1998,524(1):64-71
    48 Povlishock JT, Christman CW. The pathobiology of traumatic brain injury[A].Salzman SK,Faden AI.The Neurobiology of Central Nervous System Trauma[M]. New York: Oxford University Press,1994.109-120
    49 Leibrock J, Lottspreich F, Hohn A, et al. Molecular cloning and expression of brain -derived neurotrohic factor[J]. Nature,1999,341(6238):149-152
    50 Day JR, Laping NJ, Lampert-Etchells M, et al. Gonadal steroids regulate the expression of glial fibrllary acidic protein in the adult male rat hippocampus[J].Neuroscience,1993,55(2):435-444
    51 王福弟, 赵法佶, 郭俊生. 锌对仔鼠中枢神经系统 GFAP 表达的影响[J].营养学报,2000,22(1):12-14
    52 Malhotra SK, Shnitka TK, Elabrink J. Reactive astrocytes: a review[J]. Cytobios,1990,61(246-247):133-160
    53 Von Boyen GB T, Steinkamp M, Reinshagen M. Proin-flammatory cytokines increase glial fibrillary acidic protein expression in enteric glia[J]. Gut,2004,53(2):222-228
    54 Weissman, Tamily, Noctor, et al. Neurogenic radial glial cells in reptile, rodent and human: from mitosis to migration cerebral cortex[J]. Changing Concepts of Cortical Development,2003,13(6):550-559
    55 Kane CJ, Sims TJ, Gilmore SA. Astrocytes in the aged rat spinal cord fail to increase GFAPmRNAfollowing sciatic nerve axotomy[J]. Brain Res, 1997,759(1):163-165
    56 寇盛斌,吕来清,潘三强,等. 大鼠在空间学习记忆时脑海马区内星形胶质细胞纤维酸性蛋白的表达[J].2005,9(16):108-109
    57 Selvín-Testa A, Loidl CF, López EM, Capani F, et al. Prolonged lead exposure modifies astrocyte cytoskeletal proteins in the rat brain. Neurotoxicology.1995,16(3):389-401
    58 Buchheim K, Noack S, Stoltenburg G, et al. Developmental delay of astrocytes in hippocampus of rhesus monkeys reflects the effect of pre- and postnatal chronic low level lead exposure. Neurotoxicology. 1994, 15(3):665-669
    59 陈军, 祝卫国, 陈秋生. 铅对体外培养大鼠海马神经细胞生长和 Oct-2蛋白表达的影响[J]. 中华预防医学杂志, 2004, 38(3):152-153
    60 Wilkins A, Majed H, Layfield R, et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor [J]. J Neurosci,2003,23(12):4967-4974
    61 Deng W, Poretz RD. Protein kinase C activation is required for the lead-induced inhibition of proliferation and differentiation of cultured oligodendroglial progenitor cells[J]. Brain Res,2002,929(1):87-95
    62 Huang F, Schneider JS. Effects of lead exposure on proliferation and differentiation of neural stem cells derived from different regions of embryonic rat brain[J]. Neurotoxicology,2004,25(6):1001-1012
    63 阮素云, 顾祖维, 马国云, 等. 铅对大鼠脑神经细胞钙分布和侧棘数的影响. 中华预防医学杂志, 1998, 32(3):150-152
    64 刘素媛, 孙黎光, 刑伟, 等. 慢性染铅对大鼠海马区神经细胞 Ca2+浓度及 Ca2+-ATP 酶活性的影响. 卫生毒理学杂志,1999,13(1):16-21
    65 Toscano CD, O’Callaghan JP, Guilarte TR. Calcium Pcalmodulin -dependent protein kinaseⅡactivity and expression are altered in the hippocampus of Pb2+-exposed rats[J].Brain Res,2005,1044 (1):51-58
    66 Nihei MK, McGlothan JL, Toscano CD, et al. Low level Pb (2+) exposure affects hippocampal protein kinase C gamma gene and protein expression in rats[J]. Neurosci Lett,2001,298(3):212-216
    67 Cremin JDJr, Smith DR. In vitro vs in vivo Pb effects on brain protein kinase C activity[J]. Environ Res,2002,90(3):191-199
    68 Cordova FM, Rodrigues AL, Giacomelli MB, et al. Lead stimulates ERK1/2 and p38MAPK phosphorylation in the hippocampus of immature rats[J]. Brain Res, 2004,998(1):65-72
    69 Zhu ZW, Yang RL, Dong GJ, et al. Study on the neurotoxic effects of low-level lead exposure in rats[J]. J Zhejiang Univ Sci B,2005,6(7): 686-692
    70 Nowak P, Szczerbak G, Nitka D , et al. Cortical dopaminergic neurotransmission in rats intoxicated with lead during pregnancy. Nitric oxide and hydroxyl radicals formation involvement. Neurotoxicol Teratol.2008 Mar 5 [Epub ahead of print]
    71 arci-Arcnas G, Ramirez-Amaya V, Balderas J, et al. Cognitive deficits in adult rats by lead intoxication are related regional specific inhibition of cNOS[J]. Behav Bra Res,2004,149(1):49-59
    72 吴德生,李国君. 急性染铅对大鼠脑组织 IEG 表达的量效时效关系的研究[J] . 癌变·畸变·突变, 1999,11(6):323
    73 Ramesh GT, Manna SK, Aggarwal BB, et al. Lead exposure activates nuclear factor kappa B, activator protein21, c-Jun N-terminal kinase and caspases in the rat brain[J]. Toxicol Lett,200l,123(2-3):195-207
    74 Toscano CD, McGlothan JL, Guilarte TR. Lead exposure alters cyclic-AMP response element binding protein phosphorylation and binding activity in the developing rat brain[J]. Brain Res Dev Brain Res,2003,145 (2):219-228
    75 Bouton CM, Hossain MA, Frelin LP, et al. Microarray analysis of differential gene expression in lead-exposed astrocytes [J]. Toxicol Appl Pharmacol,2001,176(1):34-53
    76 Rutishauser U, Acheson A, Hall AK, et al. The neural cell adhesion molecule(NCAM)as regulator of cell-cell interations[J]. Science,1988, 240(4848):53-57
    77 Bonfanti L. PSA-NCAM in mammalian structural plasticity and neurogenesis.Prog Neurobiol. 2006,80(3):129-164
    78 Niethammer P, Delling M, Sytnyk V, et al. Cosignaling of NCAM via lipid rafts and the FGF receptor is required for neuritogenesis[J]. J Cell Biology, 2002,157(3):521-532
    79 Baldwin T J, Fazeli M S, Doherty P, et al. Elucidation of the molecular actions of NCAM and structurally related cell adhesion molecules[J]. J Cell Biochemistry,1996,61(14):502-513
    80 Polo-Parada L, Bose CM, Plattner F, et al. Distinct roles of different neural cell adhesion molecule isoforms in synaptic maturation revealed by analysis of NCAM 180kDa isoform-Deficient mice[J]. J Neuroscience, 2004,24(8):1852-1864
    81 Kasper C, Rasmusen H, Kastrup JS, et al. Structural basis of cell-cell adhesion by NCAM[J]. Nature Structural Biology, 2000, 7(5): 387-393
    82 胡前胜,任铁玲,傅洪军,等. 低剂量铅对海马神经元神经细胞粘附分子表达的影响[J]. 中华预防医学杂志,2004,38(6):379-382
    83 Heidmets LT, Zharkovsky T, Jurgenson M, et al. Early post-natal, low-level lead exposure increases the number of PSA-NCAM expressing cells in the dentate gyrus of adult rat hippocampus[J]. Neurotoxicology, 2006,27(1):39-43
    84 Murphy KJ, Regan CM. Low-level lead exposure in the early postnatal period results in persisting neuroplastic deficits associated with memory consolidation[J]. J Neurochemi,1999,72(2):2099-2104
    85 Laganowich LA, Steim AP, Renhl KP. N-cadherin in normal and abnormal brain development[J]. Neurotoxicology,1994,15(1):123-132
    86 Regan CM. Effects of lead on neural cell adhesion molecules[J]. Neurotoxicity,1993,14 (2-3):69-74
    87 Dey PM, Burger J, Gochfeld M, et al. Developmeant lead exposure disturbs expression of synaptic neural cell adhension molecules in herring gull brains[J]. Toxicology,2000,146(2-3):137-147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700