用户名: 密码: 验证码:
小鼠Mageb18基因克隆、表达分析及其调节黑色素瘤B16-F0细胞恶性表型的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑色素瘤相关抗原(melanoma-associated antigens,MAGE)是一个多成员基因家族。目前在人、大鼠和小鼠中已经发现的MAGE基因约100个左右。所有的MAGE基因其蛋白序列中都有一个含200个氨基酸左右的结构域,称为MAGE同源结构域(MHD)。根据MAGE基因序列保守性的不同,这些基因可以分为多个不同的亚家族。另外,根据表达谱的不同,MAGE基因还可以分为I型和II型两类。I型MAGE基因由MAGE-A、-B和-C三个亚家族组成,其他的亚家族则都属于II型MAGE基因。已经发现,I型MAGE基因在许多不同类型的肿瘤组织和细胞中表达,但是在正常组织中只有睾丸、卵巢和胎盘表达。正好相反,II型MAGE基因却在许多正常组织中广谱表达。因为睾丸、卵巢和胎盘中HLA分子的表达水平很低,因此I型MAGE基因独特的表达特点使得它们成为肿瘤免疫治疗的理想靶标。目前,针对I型MAGE基因已经开发了许多不同类型的肿瘤疫苗,有的甚至已经开始进入临床试验。但是,由于对I型MAGE基因的表达谱及功能的研究相对较少,因此这在很大程度上限制了MAGE肿瘤疫苗的推广和应用。
     虽然有研究表明,I型MAGE基因在正常组织中的表达是睾丸特异的,但是我们前期利用表达序列标签(expressed sequence tag,EST)序列都对应于小鼠Mageb18基因。据此,我们假设认为,小鼠Mageb18基因在正常组织中的表达不是睾丸特异的,而是广谱的。本课题的目的就是克隆小鼠的Mageb18基因,分析它的表达特征以及调控机制,并研究它在调节肿瘤细胞恶性表型方面的功能以及相关分子机制。
     为此,我们首先借助生物信息学工具分析和预测了Mageb18基因的结构和功能。结果表明,小鼠Mageb18基因全长2160bp,由5个外显子组成。它最大的开放阅读框为984bp,编码蛋白含327个氨基酸,蛋白的理论分子量和等电点分别为37203.31Da和6.43。MAGEB18蛋白含有一个MAGE N-末端结构域和一个保守的MHD,分别位于Arg~3–Asp82和Ile~(91)–Ala~(289)。亚细胞定位预测表明,MAGEB18蛋白不含亚细胞定位序列,但是可能存在8个磷酸化位点和一个N-豆蔻酰化位点,提示MAGEB18可能是一个胞浆蛋白,并且存在翻译后修饰加工。以前的研究表明,I型MAGE基因主要定位在X染色体,而且同一亚族的基因往往形成相对独立的基因簇。染色体定位分析发现,小鼠Mageb18基因也定位在X染色体的C2-C3区域,并与其他多个MAGE-B亚家族的基因形成基因簇。而且系统进化树分析也表明,Mageb18基因与MAGE-B亚家族基因间的亲缘关系最近。此外,基因同源搜索则发现,Mageb18基因在高等哺乳动物中高度保守,而在哺乳动物以外的物种中不存在。这些结果集中提示,Mageb18基因是一个在高级哺乳动物中高度保守的I型MAGE基因。
     接下来,RT-PC分析Mageb18基因的表达谱发现,小鼠Mageb18基因在正常组织中的表达确实是非睾丸特异的。除了睾丸以外,它在胃、大肠、小肠、脾脏、淋巴结、骨髓和外周淋巴细胞都有较高水平表达。另外,我们发现Mageb18基因在小鼠睾丸中的表达是发育相关的。它在出生后第1天的睾丸中开始表达,而且随着时间的进行它的表达逐渐增高,在第21天左右达到最高,此后一直维持在较高的表达水平,提示Mageb18可能与睾丸的发育和精子的形成有关。继续分析Mageb18基因在小鼠细胞株中的表达谱发现,Mageb18在成纤维瘤细胞L929、黑色素瘤细胞B16-F0、肝癌细胞MM45T.Li、乳腺癌细胞4T1、胚胎成纤维细胞NIH3T3和巨噬细胞RAW264.7中表达,而在肝癌细胞H22和脑胶质瘤细胞C6中不表达。但是DNA甲基转移酶抑制剂5-氮-2’-脱氧胞苷和组蛋白去乙酰化酶抑制剂曲古霉素A能够激活Mageb18阴性细胞H22和C6中Mageb18基因的表达,提示表观遗传机制调节Mageb18的转录激活。
     然后,利用Western印迹分析HEK293中瞬时表达的HA-MAGEB18融合蛋白表明,小鼠Mageb18基因编码的蛋白大小约为46kDa。进一步分析小鼠正常组织中内源性MAGEB18蛋白则发现,MAGEB18蛋白在小鼠的胃、大肠、小肠、脾脏、淋巴结、骨髓和血液淋巴细胞中表达,而在脑、心脏、肺、肝脏和肾脏中不表达,提示在正常组织中MAGEB18蛋白的表达谱与其mRNA的表达谱完全一致。另外,在组织中全长MAGEB18蛋白大小也为46kDa左右,但是它可能存在翻译后的剪切加工,从而产生一条大小约为26kDa的片段。奇怪的是,小鼠细胞株中的内源性MAGEB18蛋白只存在大小为46kDa一种形式。这些结果提示,MAGEB18蛋白在小鼠组织和细胞株中可能存在不同的翻译后修饰,从而导致形成大小不同的蛋白产物。利用间接免疫荧光分析MAGEB18蛋白的亚细胞定位表明,小鼠MAGEB18蛋白主要定位在细胞浆中,但在不同细胞株的细胞核里也有或多或少的定位。免疫组化分析进一步发现,在睾丸组织中MAGEB18蛋白主要在具有增殖能力的初级和次级精原细胞的细胞浆中表达,但是在成熟的精子中不表达。这些结果提示,MAGEB18蛋白是一个胞浆蛋白,它可能与细胞的增殖表型有关。
     接下来,为了阐明Mageb18基因的功能,我们通过siRNA技术干扰内源性MAGEB18基因的表达,定量RT-PCR和Western印迹分析表明siRNA能够有效抑制细胞中Mageb18基因在mRNA和蛋白水平的表达。随后我们通过生长曲线分析、平板克隆形成实验以及皮下成瘤实验证明,干扰Mageb18基因的表达能够显著抑制B16-F0细胞和4T1细胞体外和体内的增殖。Annexin-V-APC/7-AAD细胞凋亡分析发现,干扰Mageb18能够显著增强B16-F0细胞的凋亡。Western印迹分析则表明,这个细胞凋亡增强的过程可能与TP53通路有关,因为干扰MAGEB18蛋白的表达能够提高TP53的蛋白水平,同时激活TP53的靶基因p21和Bax。
     最后,进一步分析Mageb18基因在小鼠细胞株中的表达发现,MAGEB18蛋白在高成瘤和高转移的肿瘤细胞株,包括肿瘤干细胞和前癌干细胞中表达,提示Mage18基因不仅与细胞增殖表型有关,而且可能还调节细胞的转移特性。为此,我们通过划痕实验、基质胶侵袭实验以及体内肺转移动物模型分析了Mageb18基因对B16-F0细胞运动性的影响。结果表明,干扰MAGEB18蛋白的表达能够显著抑制B16-F0细胞的迁移、侵袭和转移能力。基质金属蛋白酶家族在肿瘤的迁移和转移中扮演重要角色。我们通过RT-PCR分析发现,B16-F0细胞表达多种不同类型的MMPs。但是,干扰Mageb18基因以后只能特异性地下调MMP2和MMP9的表达,而其他MMP的表达却没有明显的差异。这些结果提示,Mageb18基因确实可以通过MMP2和MMP9调节B16-F0细胞的迁移、侵袭和转移。
     总之,我们的工作首次证明小鼠Mageb18基因一个非睾丸特异表达的I型MAGE基因。我们的结果提示,某些I型MAGE基因,至少是Mageb18基因的表达并不像传统观点所认为的那样是睾丸特异的,而是广谱的。由于MAGE家族基因是目前肿瘤疫苗研发中使用最多的靶标,因此我们的结果表明,以MAGE基因为靶标开发肿瘤疫苗之前,为了提高疫苗的有效性和安全性,非常有必要对该MAGE基因在正常组织中的表达谱和功能进行深入的研究。
Melanoma-associated antigens (MAGE) gene family consists of more than120genes and pseudogenes in the human, mouse and rat genomes. All the MAGEproteins shared a central and conserved region named the MAGE homology domain(MHD) which was composed of about200amino acid residues. On the basis of thedifference in sequence similarity and chromosome location, the MAGE genes aredivided into several subfamilies. They can also be classified into type I or type IIgenes on the basis of their expression pattern and functions. The type I MAGE genesare composed of the MAGEA, MAGEB and MAGEC subfamilies, whereas the othersubfamilies belong to the type II MAGE genes. Type I MAGE genes have been foundto be expressed in many different tumors, but their expression in normal tissues isrestricted to germline tissues such as placenta, ovary and testis, which express smallamounts of HLA molecules. In contrast, type II MAGE genes are expressedubiquitously in somatic cells of different tissues. These unique expression propertieshighlight the type I MAGE genes as superior candidates for tumor immunotherapy.To date, various vaccines targeting type I MAGE genes have been developed andhave shown great clinical benefit to treat patients with melanoma, multiple myeloma,breast cancer and so on. However, the study about the expression and functions oftype I MAGE genes is relatively less, which greatly restrains the application ofMAGE cancer vaccines.
     Some previous studies indicated that expression of type I MAGE genes wererestricted to germ cells in normal tissues and to different malignancies; however, inour attempt to screen the expression profile of all mouse type I MAGE genes usingthe EST (expressed sequence tag) database in GenBank, we found that, althoughmost of the mouse ESTs identified were cloned from cDNA libraries that containedmouse testis, ovary or embryonic tissues, three of these ESTs were cloned fromcerebellum or adipose tissues. Moreover, these three ESTs reflected the same gene,Mageb18(melanoma antigen family B18). These results led us to assume that the expression of Mageb18gene was not testis-specific, but ubiquitous in normal tissues.
     To address this hypothesis, we first used the bioinformatics tools to analyze andpredict the structure and function of mouse Mageb18gene. The results indicated thatthe full length of Mageb18mRNA was2160bp and contained five exons. The largestORF (open reading frame) of mouse Mageb18was984bp and encoded a predictedprotein that consist of327amino acids with an estimated molecular mass of37203.31Da and a theoretical pI of6.43. The MAGEB18protein contained a MAGEN-terminal domain and a conserved MHD (MAGE homology domain), which arelocated in Arg~3–Asp82and Ile~(91)–Ala~(289)respectively. TargetP1.1predicted that theMAGEB18protein carried no subcellular localization sequences; however, eightpotential phosphorylation sites and one N-myristoylation site are present in theprotein,which suggested that the MAGEB18protein may localize in the cytoplasmand undergo some post-translational modifications.
     Previous studies have indicated that the type I MAGE genes are located on the Xchromosome and form several gene clusters. Chromosome location analysis indicatedthat mouse Mageb18is also located on chromosome XC2-C3region, which is closelylinked to another seven MAGEB genes. Phylogenetic analysis of the mouse MAGEgenes on chromosome X indicates that Mageb18gene is formed in the late stages ofthe MAGEB subfamily. Meanwhile, other14apparently orthologous proteinsequences in higher mammals have been identified with mouse MAGEB18protein(GenBank accession number NP_776144.1) as a query to screen the non-redundantprotein sequence database. Sequence alignment indicated that the MHD ofMAGEB18proteins among these mammals are highly conserved. To date, no orthologouspredicted protein sequences have been identified in any other species. These resultscollectively suggested that mouse Mageb18belongs to the type I MAGE geneconserved in higher mammals.
     RT–PCR analysis with total RNA from normal mouse tissues indicated thatMageb18is indeed expressed in stomach, large intestine, small intestine, spleen,lymph node, bone marrow lymphocytes and blood T-lymphocytes, as well as testis.However, no expression was observed in the brain, heart, lung, liver and kidney. Theresult suggested that the expression of Mageb18is ubiquitous in mouse normal tissues. Further analyzing the expression of Mageb18mRNA in testes with differentage showed that Mageb18expression was detected from the first day of birth, andfound to increase steadily in the first3weeks of life. Mageb18mRNA reached fullexpression between14and21days and had a stable expression level between21and56days. The expression of Mageb18in testis was throughout this age range andreached a maximum expression in early puberty, indicating a role for Mageb18inboth testis development and spermatogenesis. RT–PCR was also used to analyze theexpression of Mageb18in eight mouse-derived cell lines, and the result indicated thatMageb18mRNA expression was detected in B16-F0(melanoma),4T1(breastcancer), L929(fibroblasts), NIH3T3(embryonic fibroblasts), MM45T.Li (livercancer) and RAW264.7(macrophages) cells, but not in hepatocellular carcinoma cellline H22and glioma cell line C6. However, treatment of H22and C6cells with DNAmethylation inhibitor5-aza-2-deoxycytidine and/or histone deacetylation inhibitortrichostatin A can reactivate the expression of Mageb18gene. These results suggestedthat DNA demethylation and histone acetylation certainly play important roles inregulating Mageb18gene expression.
     Western blotting analyzing the HA-tagged MAGEB18fusion protein transientlyexpressed in HEK293cells indicated that the Mageb18gene encodes a protein with amolecular weight of46kDa. The protein extracts from brain, heart, lung, liver,stomach, large intestine, small intestine, kidney, spleen, lymphoid node, bone marrowlymphocyte, blood T-lymphocyte and testis were further immunodetected using ananti-MAGEB18antibody. The results indicated that, no specific signal was observedin the brain, heart, lung, liver and kidney tissues. However, a strong signal wasdetected at approximately46kDa in the stomach, large intestine, small intestine,spleen, lymphoid node, bone marrow lymphocyte, blood T-lymphocyte and testis.These results are consistent with the Mageb18mRNA expression profile as indicatedusing RT-PCR analysis. Meanwhile, another band at approximately26kDa can alsobe detected in all MAGEB18-positive tissues, but not in MAGEB18-negative tissues.Surprisingly, the MAGEB18protein in mouse-derived cell lines only existed uniqueband at approximately46kDa. These results indicated that the endogenousMAGEB18protein in tissues and cell lines may undergo different post-translational modifications and result in the formation of products with different sizes.
     Subcellular localization analysis using indirect immunofluorescent stainingindicated that the endogenous MAGEB18protein was predominantly localized in thecytoplasm. However, the nuclear localization of MAGEB18protein can also beobserved more or less in different type of cells. Further immunohistochemicalstaining with mouse testis sections indicated that endogenous MAGEB18protein wasalso observed in cytoplasm of the primary and secondary spermatocytes, but less soin spermatids. These results collectively demonstrated that the Mageb18gene encodea cytoplasmic protein which may mediate cell proliferation.
     To further characterize the function of MAGEB18in regulating cancer cellmalignant phenotypes, we first used siRNA technology to knockdown endogenousMAGEB18in cells. Real time RT-PCR and Western blotting indicated that thesiRNA can effectively suppressed the expression of Mageb18gene both in mRNAand in protein level. Subsequent functional assays using growth curves, colonyformation and in vivo subcutaneous tumorigenesis experiment indicated thatknockdown of MAGEB18significantly inhibited the growth of B16-F0and4T1cellsboth in vitro and in vivo. Meanwhile, APC–annexin V/7-AAD staining followed byFACS analysis indicated that knockdown of Mageb18in B16-F0cell enhanced itsapoptosis. TP53has been reported to be a vital regulator of cell apoptosis. Westernblotting analysis showed that knockdown of MAGEB18indeed increased the proteinlevels of TP53and its target gene p21and Bax. Additionally, the level of anotherpro-apoptotic protein, caspase-3, was also activated in MAGEB18-knockdown cells.These results collectively suggested that knockdown of MAGEB18indeed inhibitedcell proliferation and induced cell apoptosis, and that TP53played an important rolein this process.
     Further analyzing the expression of Mageb18in various types of mouse-derivedcell lines found that Mageb18is over-expressed not only in cancer cell lines withhighly tumorigenic and metastatic properties, but also in cancer stem cell line andprecancerous stem cell lines, which indicates that the Mageb18gene may alsomediate the migration phenotype as well as proliferation and apoptosis. Therefore, wecombined the wound healing assay, transwell invasion assay and in vivo lung metastasis mouse model to investigate the impact of Mageb18gene on the mobility ofB16-F0cells. Our results indicated that knockdown of MAGEB18not only inhibitedthe in vitro migration and invasion of B16-F0cells, but also suppressed theirmetastasis to lung in vivo. It is well-known that MMPs plays important roles inregulating the migration and metastasis of cancer cells. As revealed by RT-PCRanalysis, we showed that parental B16-F0cells expressed various types of MMPs;however, knockdown of MAGEB18resulted in specifically down-regulating theexpression of gelatinases MMPs2and9. These results collectively indicated thatMageb18indeed mediated migration, invasion and metastasis phenotype of B16-F0cells through MMPs2and9.
     In summary, we have cloned and identified a member of MAGE gene family,Mageb18, and firstly characterized it as a non-testis-specific type I MAGE gene. Theresults of the present study thus reveal an important phenomenon that the expressionof some type I MAGE genes, at least for Mageb18, is not testis-specific, butubiquitous. Because the various type I MAGE genes are the most frequently usedtargets in tumor immunotherapy nowadays, our results therefore also suggest thenecessity to study further the expression pattern of these type I MAGE genes innormal tissues prior to using them to develop more effective and safer cancervaccines.
引文
[1] van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized bycytolytic T lymphocytes on a human melanoma. Science,1991,254:1643-1647
    [2] Salgaller M L, Weber J S, Koenig S, et al. Generation of specific anti-melanoma reactivity bystimulation of human tumor-infiltrating lymphocytes with MAGE-1synthetic peptide.Cancer Immunol Immunother,1994,39:105-116
    [3] Rimoldi D, Romero P&Carrel S. The human melanoma antigen-encoding gene, MAGE-1,is expressed by other tumour cells of neuroectodermal origin such as glioblastomas andneuroblastomas. Int J Cancer,1993,54:527-528
    [4] Brasseur F, Marchand M, Vanwijck R, et al. Human gene MAGE-1, which codes for atumor-rejection antigen, is expressed by some breast tumors. Int J Cancer,1992,52:839-841
    [5] De Plaen E, Arden K, Traversari C, et al. Structure, chromosomal localization, andexpression of12genes of the MAGE family. Immunogenetics,1994,40:360-369
    [6] Rogner U C, Wilke K, Steck E, et al. The melanoma antigen gene (MAGE) family isclustered in the chromosomal band Xq28. Genomics,1995,29:725-731
    [7] Muscatelli F, Walker A P, De Plaen E, et al. Isolation and characterization of a MAGE genefamily in the Xp21.3region. Proc Natl Acad Sci U S A,1995,92:4987-4991
    [8] Lucas S, De Smet C, Arden K C, et al. Identification of a new MAGE gene withtumor-specific expression by representational difference analysis. Cancer Res,1998,58:743-752
    [9] Pold M, Zhou J, Chen G L, et al. Identification of a new, unorthodox member of the MAGEgene family. Genomics,1999,59:161-167
    [10] Salehi A H, Roux P P, Kubu C J, et al. NRAGE, a novel MAGE protein, interacts with thep75neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron,2000,27:279-288
    [11] Chomez P, De Backer O, Bertrand M, et al. An overview of the MAGE gene family with theidentification of all human members of the family. Cancer Res,2001,61:5544-5551
    [12]Miranda E I. MAGE, biological functions and potential clinical applications. Leuk Res,2010,34:1121-1122
    [13] Barker P A&Salehi A. The MAGE proteins: emerging roles in cell cycle progression,apoptosis, and neurogenetic disease. J Neurosci Res,2002,67:705-712
    [14] Lucas S, De Plaen E&Boon T. MAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3: fournew members of the MAGE family with tumor-specific expression. Int J Cancer,2000,87:55-60
    [15] Lee J H, Sung B W, Youn H J, et al. Identification, expression, and nuclear location ofmurine Mage-b2protein, a tumor-associated antigen. Mol Cells,2000,10:647-653
    [16] Stone B, Schummer M, Paley P J, et al. MAGE-F1, a novel ubiquitously expressed memberof the MAGE superfamily. Gene,2001,267:173-182
    [17] Hennuy B, Reiter E, Cornet A, et al. A novel messenger ribonucleic acid homologous tohuman MAGE-D is strongly expressed in rat Sertoli cells and weakly in Leydig cells and isregulated by follitropin, lutropin, and prolactin. Endocrinology,2000,141:3821-3831
    [18] Lucas S, Brasseur F&Boon T. A new MAGE gene with ubiquitous expression does not codefor known MAGE antigens recognized by T cells. Cancer Res,1999,59:4100-4103
    [19] Saburi S, Nadano D, Akama T O, et al. The trophinin gene encodes a novel group of MAGEproteins, magphinins, and regulates cell proliferation during gametogenesis in the mouse. JBiol Chem,2001,276:49378-49389
    [20] Aizawa T, Maruyama K, Kondo H, et al. Expression of necdin, an embryonalcarcinoma-derived nuclear protein, in developing mouse brain. Brain Res Dev Brain Res,1992,68:265-274
    [21] Maruyama K, Usami M, Aizawa T, et al. A novel brain-specific mRNA encoding nuclearprotein (necdin) expressed in neurally differentiated embryonal carcinoma cells. BiochemBiophys Res Commun,1991,178:291-296
    [22] Shiras A, Sengupta A&Shepal V. Cloning and tissue-specific gene expression studies withDlxin-1, a newly identified transcriptional activator. Mol Cell Biol Res Commun,2001,4:313-319
    [23] Sasaki M, Nakahira K, Kawano Y, et al. MAGE-E1, a new member of themelanoma-associated antigen gene family and its expression in human glioma. Cancer Res,2001,61:4809-4814
    [24] Kuramoto T. Detection of MAGE-1tumor antigen in brain tumor. Kurume Med J,1997,44:43-51
    [25] Chen H, Cai S, Wang Y, et al. Expression of the MAGE-1gene in human hepatocellularcarcinomas. Chin Med J (Engl),2000,113:1112-1118
    [26] Liu J, Wang G, Okutomi T, et al. Expression of MAGE-A1and MAGE-A3genes in humansalivary gland carcinomas. Chin Med J (Engl),2003,116:897-900
    [27] Ogata K, Aihara R, Mochiki E, et al. Clinical significance of melanoma antigen-encodinggene-1(MAGE-1) expression and its correlation with poor prognosis in differentiatedadvanced gastric cancer. Ann Surg Oncol,2011,18:1195-1203
    [28] Pereira C M, Gomes C C, De Fatima Correia Silva J, et al. Evaluation of MAGE A1in oralsquamous cell carcinoma. Oncol Rep,2012,
    [29] Kim S H, Lee S, Lee C H, et al. Expression of cancer-testis antigens MAGE-A3/6andNY-ESO-1in non-small-cell lung carcinomas and their relationship with immune cellinfiltration. Lung,2009,187:401-411
    [30] Roeder C, Schuler-Thurner B, Berchtold S, et al. MAGE-A3is a frequent tumor antigen ofmetastasized melanoma. Arch Dermatol Res,2005,296:314-319
    [31] Jungbluth A A, Ely S, DiLiberto M, et al. The cancer-testis antigens CT7(MAGE-C1) andMAGE-A3/6are commonly expressed in multiple myeloma and correlate with plasma-cellproliferation. Blood,2005,106:167-174
    [32] Kienstra M A, Neel H B, Strome S E, et al. Identification of NY-ESO-1, MAGE-1, andMAGE-3in head and neck squamous cell carcinoma. Head Neck,2003,25:457-463
    [33] Curioni-Fontecedro A, Nuber N, Mihic-Probst D, et al. Expression of MAGE-C1/CT7andMAGE-C2/CT10predicts lymph node metastasis in melanoma patients. PLoS One,2011,6:e21418
    [34] Gibbs P, Hutchins A M, Dorian K T, et al. MAGE-12and MAGE-6are frequently expressedin malignant melanoma. Melanoma Res,2000,10:259-264
    [35] Brasseur F, Rimoldi D, Lienard D, et al. Expression of MAGE genes in primary andmetastatic cutaneous melanoma. Int J Cancer,1995,63:375-380
    [36] Becker J C, Gillitzer R&Brocker E B. A member of the melanoma antigen-encoding gene(MAGE) family is expressed in human skin during wound healing. Int J Cancer,1994,58:346-348
    [37] Morrison W B. Inflammation and cancer: a comparative view. J Vet Intern Med,2012,26:18-31
    [38] Sansone P&Bromberg J. Environment, inflammation, and cancer. Curr Opin Genet Dev,2011,21:80-85
    [39] Grange J M, Krone B&Mastrangelo G. Infection, inflammation and cancer. Int J Cancer,2011,128:2240-2241
    [40] Suzuki S, Sasajima K, Sato Y, et al. MAGE-A protein and MAGE-A10gene expressions inliver metastasis in patients with stomach cancer. Br J Cancer,2008,99:350-356
    [41] Reddy E M, Chettiar S T, Kaur N, et al. Dlxin-1, a member of MAGE family, inhibits cellproliferation, invasion and tumorigenicity of glioma stem cells. Cancer Gene Ther,2011,18:206-218
    [42] De Smet C, Lurquin C, Lethe B, et al. DNA methylation is the primary silencing mechanismfor a set of germ line-and tumor-specific genes with a CpG-rich promoter. Mol Cell Biol,1999,19:7327-7335
    [43] Weber J, Salgaller M, Samid D, et al. Expression of the MAGE-1tumor antigen isup-regulated by the demethylating agent5-aza-2'-deoxycytidine. Cancer Res,1994,54:1766-1771
    [44] De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1in tumorcells is correlated with genome-wide demethylation. Proc Natl Acad Sci U S A,1996,93:7149-7153
    [45] Yanagawa N, Tamura G, Oizumi H, et al. MAGE expressions mediated by demethylation ofMAGE promoters induce progression of non-small cell lung cancer. Anticancer Res,2011,31:171-175
    [46] Honda T, Tamura G, Waki T, et al. Demethylation of MAGE promoters during gastric cancerprogression. Br J Cancer,2004,90:838-843
    [47] Xiao J, Chen H S, Fei R, et al. Expression of MAGE-A1mRNA is associated with genehypomethylation in hepatocarcinoma cell lines. J Gastroenterol,2005,40:716-721
    [48] Kim K H, Choi J S, Kim I J, et al. Promoter hypomethylation and reactivation of MAGE-A1and MAGE-A3genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol,2006,12:5651-5657
    [49] Loriot A, De Plaen E, Boon T, et al. Transient down-regulation of DNMT1methyltransferaseleads to activation and stable hypomethylation of MAGE-A1in melanoma cells. J BiolChem,2006,281:10118-10126
    [50] Yang B, Wu J, Maddodi N, et al. Epigenetic control of MAGE gene expression by the KITtyrosine kinase. J Invest Dermatol,2007,127:2123-2128
    [51] Janssen B L, van de Locht L T, Fourkour A, et al. Transcription of the MAGE-1gene and themethylation status of its Ets binding promoter elements: a quantitative analysis in melanomacell lines using a real-time polymerase chain reaction technique. Melanoma Res,1999,9:213-222
    [52] Shichijo S, Yamada A, Sagawa K, et al. Induction of MAGE genes in lymphoid cells by thedemethylating agent5-aza-2'-deoxycytidine. Jpn J Cancer Res,1996,87:751-756
    [53] Suyama T, Ohashi H, Nagai H, et al. The MAGE-A1gene expression is not determinedsolely by methylation status of the promoter region in hematological malignancies. Leuk Res,2002,26:1113-1118
    [54] Wischnewski F, Pantel K&Schwarzenbach H. Promoter demethylation and histoneacetylation mediate gene expression of MAGE-A1,-A2,-A3, and-A12in human cancercells. Mol Cancer Res,2006,4:339-349
    [55] Moreno-Bost A, Szmania S, Stone K, et al. Epigenetic modulation of MAGE-A3antigenexpression in multiple myeloma following treatment with the demethylation agent5-azacitidine and the histone deacetlyase inhibitor MGCD0103. Cytotherapy,2011,13:618-628
    [56] Katsura Y&Satta Y. Evolutionary History of the Cancer Immunity Antigen MAGE GeneFamily. PLoS One,2011,6: e20365
    [57] Liu W, Cheng S, Asa S L, et al. The melanoma-associated antigen A3mediatesfibronectin-controlled cancer progression and metastasis. Cancer Res,2008,68:8104-8112
    [58] Zhu X, Asa S L&Ezzat S. Fibroblast growth factor2and estrogen control the balance ofhistone3modifications targeting MAGE-A3in pituitary neoplasia. Clin Cancer Res,2008,14:1984-1996
    [59] Kondo T, Zhu X, Asa S L, et al. The cancer/testis antigen melanoma-associatedantigen-A3/A6is a novel target of fibroblast growth factor receptor2-IIIb through histoneH3modifications in thyroid cancer. Clin Cancer Res,2007,13:4713-4720
    [60] Vatolin S, Abdullaev Z, Pack S D, et al. Conditional expression of the CTCF-paralogoustranscriptional factor BORIS in normal cells results in demethylation and derepression ofMAGE-A1and reactivation of other cancer-testis genes. Cancer Res,2005,65:7751-7762
    [61] Wischnewski F, Friese O, Pantel K, et al. Methyl-CpG binding domain proteins and theirinvolvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12gene promoters. Mol Cancer Res,2007,5:749-759
    [62] Li M, Li J, Ding X, et al. microRNA and cancer. AAPS J,2010,12:309-317
    [63] Shenouda S K&Alahari S K. MicroRNA function in cancer: oncogene or a tumorsuppressor? Cancer Metastasis Rev,2009,28:369-378
    [64] Weeraratne S D, Amani V, Neiss A, et al. miR-34a confers chemosensitivity throughmodulation of MAGE-A and p53in medulloblastoma. Neuro Oncol,2011,13:165-175
    [65] Taylor E M, Copsey A C, Hudson J J, et al. Identification of the proteins, includingMAGEG1, that make up the human SMC5-6protein complex. Mol Cell Biol,2008,28:1197-1206
    [66] Boccaccio I, Glatt-Deeley H, Watrin F, et al. The human MAGEL2gene and its mousehomologue are paternally expressed and mapped to the Prader-Willi region. Hum Mol Genet,1999,8:2497-2505
    [67] Kawano Y, Sasaki M, Nakahira K, et al. Structural characterization and chromosomallocalization of the MAGE-E1gene. Gene,2001,277:129-137
    [68] Fukuda M N, Sato T, Nakayama J, et al. Trophinin and tastin, a novel cell adhesion moleculecomplex with potential involvement in embryo implantation. Genes Dev,1995,9:1199-1210
    [69] Suzuki N, Nadano D, Paria B C, et al. Trophinin expression in the mouse uterus coincideswith implantation and is hormonally regulated but not induced by implanting blastocysts.Endocrinology,2000,141:4247-4254
    [70] Kikuno R, Nagase T, Ishikawa K, et al. Prediction of the coding sequences of unidentifiedhuman genes. XIV. The complete sequences of100new cDNA clones from brain which codefor large proteins in vitro. DNA Res,1999,6:197-205
    [71] Doyle J M, Gao J, Wang J, et al. MAGE-RING protein complexes comprise a family of E3ubiquitin ligases. Mol Cell,2010,39:963-974
    [72] Askew E B, Bai S, Hnat A T, et al. Melanoma antigen gene protein-A11(MAGE-11) F-boxlinks the androgen receptor NH2-terminal transactivation domain to p160coactivators. J BiolChem,2009,284:34793-34808
    [73] Bai S&Wilson E M. Epidermal-growth-factor-dependent phosphorylation andubiquitinylation of MAGE-11regulates its interaction with the androgen receptor. Mol CellBiol,2008,28:1947-1963
    [74] Feng Y, Gao J&Yang M. When MAGE meets RING: insights into biological functions ofMAGE proteins. Protein Cell,2011,2:7-12
    [75] De Plaen E, De Backer O, Arnaud D, et al. A new family of mouse genes homologous to thehuman MAGE genes. Genomics,1999,55:176-184
    [76] Chomez P, Williams R, De Backer O, et al. The SMAGE gene family is expressed inpost-meiotic spermatids during mouse germ cell differentiation. Immunogenetics,1996,43:97-100
    [77] Clotman F, De Backer O, De Plaen E, et al. Cell-and stage-specific expression of magegenes during mouse spermatogenesis. Mamm Genome,2000,11:696-699
    [78] De Backer O, Verheyden A M, Martin B, et al. Structure, chromosomal location, andexpression pattern of three mouse genes homologous to the human MAGE genes. Genomics,1995,28:74-83
    [79] Osterlund C, Tohonen V, Forslund K O, et al. Mage-b4, a novel melanoma antigen (MAGE)gene specifically expressed during germ cell differentiation. Cancer Res,2000,60:1054-1061
    [80] Buehr M. The primordial germ cells of mammals: some current perspectives. Exp Cell Res,1997,232:194-207
    [81] de Rooij D G&Grootegoed J A. Spermatogonial stem cells. Curr Opin Cell Biol,1998,10:694-701
    [82] Hayashi Y, Matsuyama K, Takagi K, et al. Arrest of cell growth by necdin, a nuclear proteinexpressed in postmitotic neurons. Biochem Biophys Res Commun,1995,213:317-324
    [83] Taniura H, Taniguchi N, Hara M, et al. Necdin, a postmitotic neuron-specific growthsuppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. JBiol Chem,1998,273:720-728
    [84] Yoshikawa K. Cell cycle regulators in neural stem cells and postmitotic neurons. NeurosciRes,2000,37:1-14
    [85] Bourdon J C, Laurenzi V D, Melino G, et al. p53:25years of research and more questions toanswer. Cell Death Differ,2003,10:397-399
    [86] Lafontaine J, Rodier F, Ouellet V, et al. Necdin, a p53-target gene, is an inhibitor ofp53-mediated growth arrest. PLoS One,2012,7: e31916
    [87] Taniura H, Matsumoto K&Yoshikawa K. Physical and functional interactions of neuronalgrowth suppressor necdin with p53. J Biol Chem,1999,274:16242-16248
    [88] Jay P, Rougeulle C, Massacrier A, et al. The human necdin gene, NDN, is maternallyimprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet,1997,17:357-361
    [89] MacDonald H R&Wevrick R. The necdin gene is deleted in Prader-Willi syndrome and isimprinted in human and mouse. Hum Mol Genet,1997,6:1873-1878
    [90] Sutcliffe J S, Han M, Christian S L, et al. Neuronally-expressed necdin gene: an imprintedcandidate gene in Prader-Willi syndrome. Lancet,1997,350:1520-1521
    [91] Holm V A, Cassidy S B, Butler M G, et al. Prader-Willi syndrome: consensus diagnosticcriteria. Pediatrics,1993,91:398-402
    [92] Wharton R H&Bresnan M J. Neonatal respiratory depression and delay in diagnosis inPrader-Willi syndrome. Dev Med Child Neurol,1989,31:231-236
    [93] Nicholls R D&Knepper J L. Genome organization, function, and imprinting in Prader-Williand Angelman syndromes. Annu Rev Genomics Hum Genet,2001,2:153-175
    [94] Lee S, Kozlov S, Hernandez L, et al. Expression and imprinting of MAGEL2suggest a rolein Prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet,2000,9:1813-1819
    [95] Tsai T F, Armstrong D&Beaudet A L. Necdin-deficient mice do not show lethality or theobesity and infertility of Prader-Willi syndrome. Nat Genet,1999,22:15-16
    [96] Muscatelli F, Abrous D N, Massacrier A, et al. Disruption of the mouse Necdin gene resultsin hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome.Hum Mol Genet,2000,9:3101-3110
    [97] Barker P A. p75NTR: A study in contrasts. Cell Death Differ,1998,5:346-356
    [98] Ceni C, Kommaddi R P, Thomas R, et al. The p75NTR intracellular domain generated byneurotrophin-induced receptor cleavage potentiates Trk signaling. J Cell Sci,2010,123:2299-2307
    [99] Kaplan D R&Miller F D. Neurotrophin signal transduction in the nervous system. CurrOpin Neurobiol,2000,10:381-391
    [100] Ingraham C A&Schor N F. Necdin and TrkA contribute to modulation by p75NTR ofresistance to oxidant stress. Exp Cell Res,2009,315:3532-3542
    [101] Masuda Y, Sasaki A, Shibuya H, et al. Dlxin-1, a novel protein that binds Dlx5andregulates its transcriptional function. J Biol Chem,2001,276:5331-5338
    [102] Bendall A J&Abate-Shen C. Roles for Msx and Dlx homeoproteins in vertebratedevelopment. Gene,2000,247:17-31
    [103] Jordan B W, Dinev D, LeMellay V, et al. Neurotrophin receptor-interacting magehomologue is an inducible inhibitor of apoptosis protein-interacting protein that augmentscell death. J Biol Chem,2001,276:39985-39989
    [104] Verhagen A M, Coulson E J&Vaux D L. Inhibitor of apoptosis proteins and their relatives:IAPs and other BIRPs. Genome Biol,2001,2: REVIEWS3009
    [105] Duan Z, Duan Y, Lamendola D E, et al. Overexpression of MAGE/GAGE genes inpaclitaxel/doxorubicin-resistant human cancer cell lines. Clin Cancer Res,2003,9:2778-2785
    [106] Kasuga C, Nakahara Y, Ueda S, et al. Expression of MAGE and GAGE genes inmedulloblastoma and modulation of resistance to chemotherapy. Laboratory investigation. JNeurosurg Pediatr,2008,1:305-313
    [107] Yang B, O'Herrin S, Wu J, et al. Select cancer testes antigens of the MAGE-A,-B, and-Cfamilies are expressed in mast cell lines and promote cell viability in vitro and in vivo. JInvest Dermatol,2007,127:267-275
    [108] Nardiello T, Jungbluth A A, Mei A, et al. MAGE-A Inhibits Apoptosis in ProliferatingMyeloma Cells through Repression of Bax and Maintenance of Survivin. Clin Cancer Res,2011,17:4309-4319
    [109] Bres V, Yoshida T, Pickle L, et al. SKIP interacts with c-Myc and Menin to promote HIV-1Tat transactivation. Mol Cell,2009,36:75-87
    [110] Prathapam T, Kuhne C&Banks L. Skip interacts with the retinoblastoma tumor suppressorand inhibits its transcriptional repression activity. Nucleic Acids Res,2002,30:5261-5268
    [111] Laduron S, Deplus R, Zhou S, et al. MAGE-A1interacts with adaptor SKIP and thedeacetylase HDAC1to repress transcription. Nucleic Acids Res,2004,32:4340-4350
    [112] Monte M, Simonatto M, Peche L Y, et al. MAGE-A tumor antigens target p53transactivation function through histone deacetylase recruitment and confer resistance tochemotherapeutic agents. Proc Natl Acad Sci U S A,2006,103:11160-11165
    [113] Yang B, O'Herrin S M, Wu J, et al. MAGE-A, mMage-b, and MAGE-C proteins formcomplexes with KAP1and suppress p53-dependent apoptosis in MAGE-positive cell lines.Cancer Res,2007,67:9954-9962
    [114] Wang C, Ivanov A, Chen L, et al. MDM2interaction with nuclear corepressor KAP1contributes to p53inactivation. EMBO J,2005,24:3279-3290
    [115] Marcar L, Maclaine N J, Hupp T R, et al. Mage-A cancer/testis antigens inhibit p53functionby blocking its interaction with chromatin. Cancer Res,2010,70:10362-10370
    [116] Jurk M, Kremmer E, Schwarz U, et al. MAGE-11protein is highly conserved in higherorganisms and located predominantly in the nucleus. Int J Cancer,1998,75:762-766
    [117] Lian Y, Sang M, Ding C, et al. Expressions of MAGE-A10and MAGE-A11in breastcancers and their prognostic significance: a retrospective clinical study. J Cancer Res ClinOncol,2012,138:519-527
    [118] Bai S, Grossman G, Yuan L, et al. Hormone control and expression of androgen receptorcoregulator MAGE-11in human endometrium during the window of receptivity to embryoimplantation. Mol Hum Reprod,2008,14:107-116
    [119] Karpf A R, Bai S, James S R, et al. Increased expression of androgen receptor coregulatorMAGE-11in prostate cancer by DNA hypomethylation and cyclic AMP. Mol Cancer Res,2009,7:523-535
    [120] Bai S, He B&Wilson E M. Melanoma antigen gene protein MAGE-11regulates androgenreceptor function by modulating the interdomain interaction. Mol Cell Biol,2005,25:1238-1257
    [121] Askew E B, Bai S, Blackwelder A J, et al. Transcriptional synergy between melanomaantigen gene protein-A11(MAGE-11) and p300in androgen receptor signaling. J Biol Chem,2010,285:21824-21836
    [122] Aprelikova O, Pandolfi S, Tackett S, et al. Melanoma antigen-11inhibits thehypoxia-inducible factor prolyl hydroxylase2and activates hypoxic response. Cancer Res,2009,69:616-624
    [123] Aubry F, Satie A P, Rioux-Leclercq N, et al. MAGE-A4, a germ cell specific marker, isexpressed differentially in testicular tumors. Cancer,2001,92:2778-2785
    [124] Kocher T, Zheng M, Bolli M, et al. Prognostic relevance of MAGE-A4tumor antigenexpression in transitional cell carcinoma of the urinary bladder: a tissue microarray study. IntJ Cancer,2002,100:702-705
    [125] Bergeron A, Picard V, LaRue H, et al. High frequency of MAGE-A4and MAGE-A9expression in high-risk bladder cancer. Int J Cancer,2009,125:1365-1371
    [126] Duffour M T, Chaux P, Lurquin C, et al. A MAGE-A4peptide presented by HLA-A2isrecognized by cytolytic T lymphocytes. Eur J Immunol,1999,29:3329-3337
    [127] Graff-Dubois S, Faure O, Gross D A, et al. Generation of CTL recognizing anHLA-A*0201-restricted epitope shared by MAGE-A1,-A2,-A3,-A4,-A6,-A10, and-A12tumor antigens: implication in a broad-spectrum tumor immunotherapy. J Immunol,2002,169:575-580
    [128] Jia Z C, Ni B, Huang Z M, et al. Identification of two novel HLA-A*0201-restricted CTLepitopes derived from MAGE-A4. Clin Dev Immunol,2010,2010:567594
    [129] Ohkuri T, Wakita D, Chamoto K, et al. Identification of novel helper epitopes of MAGE-A4tumour antigen: useful tool for the propagation of Th1cells. Br J Cancer,2009,100:1135-1143
    [130] Takahashi N, Ohkuri T, Homma S, et al. First clinical trial of cancer vaccine therapy withartificially synthesized helper/killer-hybrid epitope long peptide of MAGE-A4cancerantigen. Cancer Sci,2012,103:150-153
    [131] Montoro J R, Mamede R C, Neder Serafini L, et al. Expression of cancer-testis antigensMAGE-A4and MAGE-C1in oral squamous cell carcinoma. Head Neck,2011,
    [132] Mayer R J&Fujita J. Gankyrin, the26S proteasome, the cell cycle and cancer. BiochemSoc Trans,2006,34:746-748
    [133] Dawson S, Higashitsuji H, Wilkinson A J, et al. Gankyrin: a new oncoprotein and regulatorof pRb and p53. Trends Cell Biol,2006,16:229-233
    [134] Fu X Y, Wang H Y, Tan L, et al. Overexpression of p28/gankyrin in human hepatocellularcarcinoma and its clinical significance. World J Gastroenterol,2002,8:638-643
    [135] Higashitsuji H, Itoh K, Nagao T, et al. Reduced stability of retinoblastoma protein bygankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat Med,2000,6:96-99
    [136] Nagao T, Higashitsuji H, Nonoguchi K, et al. MAGE-A4interacts with the liveroncoprotein gankyrin and suppresses its tumorigenic activity. J Biol Chem,2003,278:10668-10674
    [137] Sakurai T, Itoh K, Higashitsuji H, et al. A cleaved form of MAGE-A4binds to Miz-1andinduces apoptosis in human cells. J Biol Chem,2004,279:15505-15514
    [138] Peikert T, Specks U, Farver C, et al. Melanoma antigen A4is expressed in non-small celllung cancers and promotes apoptosis. Cancer Res,2006,66:4693-4700
    [139] Mou D C, Cai S L, Peng J R, et al. Evaluation of MAGE-1and MAGE-3as tumour-specificmarkers to detect blood dissemination of hepatocellular carcinoma cells. Br J Cancer,2002,86:110-116
    [140] Hofmann M&Ruschenburg I. mRNA detection of tumor-rejection genes BAGE, GAGE,and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostictool. Cancer,2002,96:187-193
    [141] Park J W, Kwon T K, Kim I H, et al. A new strategy for the diagnosis of MAGE-expressingcancers. J Immunol Methods,2002,266:79-86
    [142] Jheon S, Hyun D S, Lee S C, et al. Lung cancer detection by a RT-nested PCR using MAGEA1--6common primers. Lung Cancer,2004,43:29-37
    [143] Song D W, Shin S J, Kim D E, et al. Detection of MAGE and SSX gene expressions byRT-nested PCR using common primers in head and neck cancer. Clin Exp Otorhinolaryngol,2008,1:97-102
    [144] Zhang Y, Li Q, Liu N, et al. Detection of MAGE-1, MAGE-3and AFP mRNA asmultimarker by real-time quantitative PCR assay: a possible predictor of hematogenousmicrometastasis of hepatocellular carcinoma. Hepatogastroenterology,2008,55:2200-2206
    [145] Filho P A, Lopez-Albaitero A, Xi L, et al. Quantitative expression and immunogenicity ofMAGE-3and-6in upper aerodigestive tract cancer. Int J Cancer,2009,125:1912-1920
    [146] Shin K C, Choi E Y, Chung J H, et al. Clinical application of MAGE A1-6RT-nested PCRfor diagnosis of lung cancer invisible by bronchoscopy. Anticancer Res,2012,32:163-167
    [147] Shin K C, Lee K H, Lee C H, et al. MAGE A1-A6RT-PCR and MAGE A3and p16methylation analysis in induced sputum from patients with lung cancer and non-malignantlung diseases. Oncol Rep,2012,27:911-916
    [148] Qiu G, Fang J&He Y.5' CpG island methylation analysis identifies the MAGE-A1andMAGE-A3genes as potential markers of HCC. Clin Biochem,2006,39:259-266
    [149] Shichijo S, Tsunosue R, Kubo K, et al. Establishment of an enzyme-linked immunosorbentassay (ELISA) for measuring cellular MAGE-4protein on human cancers. J ImmunolMethods,1995,186:137-149
    [150] Shichijo S, Hoshino T, Koufuji K, et al. Detection of MAGE-4protein in sera of lungcancer patients. Jpn J Cancer Res,1997,88:414-419
    [151] Iwamoto O, Nagao Y, Shichijo S, et al. Detection of MAGE-4protein in sera of patientswith head-and-neck squamous-cell carcinoma. Int J Cancer,1997,70:287-290
    [152] Kawagoe H, Yamada A, Matsumoto H, et al. Serum MAGE-4protein in ovarian cancerpatients. Gynecol Oncol,2000,76:336-339
    [153] Tsuzurahara S, Sata M, Iwamoto O, et al. Detection of MAGE-4protein in the sera ofpatients with hepatitis-C virus-associated hepatocellular carcinoma and liver cirrhosis. Jpn JCancer Res,1997,88:915-918
    [154] Yutani S, Tanaka M, Mutsumoto H, et al. Elevation of serum MAGE-4protein levels andprediction of hepatocellular carcinogenesis in patients with liver cirrhosis. Jpn J Cancer Res,2002,93:453-458
    [155] Caballero O L, Zhao Q, Rimoldi D, et al. Frequent MAGE mutations in human melanoma.PLoS One,2010,5:
    [156] Hoftman A D, Tai L Q, Tze S, et al. MAGE-B2autoantibody: a new biomarker for pediatricsystemic lupus erythematosus. J Rheumatol,2008,35:2430-2438
    [157] Tsuji T, Altorki N K, Ritter G, et al. Characterization of preexisting MAGE-A3-specificCD4+T cells in cancer patients and healthy individuals and their activation by proteinvaccination. J Immunol,2009,183:4800-4808
    [158] Marchand M, Brasseur F, van der Bruggen P, et al. Perspectives for immunization ofHLA-A1patients carrying a malignant melanoma expressing gene MAGE-1. Dermatology,1993,186:278-280
    [159] Traversari C, van der Bruggen P, Luescher I F, et al. A nonapeptide encoded by human geneMAGE-1is recognized on HLA-A1by cytolytic T lymphocytes directed against tumorantigen MZ2-E. J Exp Med,1992,176:1453-1457
    [160] Ottaviani S, Zhang Y, Boon T, et al. A MAGE-1antigenic peptide recognized by humancytolytic T lymphocytes on HLA-A2tumor cells. Cancer Immunol Immunother,2005,54:1214-1220
    [161] Pascolo S, Schirle M, Guckel B, et al. A MAGE-A1HLA-A A*0201epitope identified bymass spectrometry. Cancer Res,2001,61:4072-4077
    [162] Chaux P, Luiten R, Demotte N, et al. Identification of five MAGE-A1epitopes recognizedby cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transducedwith MAGE-A1. J Immunol,1999,163:2928-2936
    [163] Luiten R&van der Bruggen P. A MAGE-A1peptide is recognized on HLA-B7humantumors by cytolytic T lymphocytes. Tissue Antigens,2000,55:149-152
    [164] Luiten R M, Demotte N, Tine J, et al. A MAGE-A1peptide presented to cytolytic Tlymphocytes by both HLA-B35and HLA-A1molecules. Tissue Antigens,2000,56:77-81
    [165] Tanzarella S, Russo V, Lionello I, et al. Identification of a promiscuous T-cell epitopeencoded by multiple members of the MAGE family. Cancer Res,1999,59:2668-2674
    [166] Corbiere V, Nicolay H, Russo V, et al. Identification of a MAGE-1peptide recognized bycytolytic T lymphocytes on HLA-B*5701tumors. Tissue Antigens,2004,63:453-457
    [167] van der Bruggen P, Szikora J P, Boel P, et al. Autologous cytolytic T lymphocytes recognizea MAGE-1nonapeptide on melanomas expressing HLA-Cw*1601. Eur J Immunol,1994,24:2134-2140
    [168] Wang X F, Cohen W M, Castelli F A, et al. Selective identification of HLA-DP4binding Tcell epitopes encoded by the MAGE-A gene family. Cancer Immunol Immunother,2007,56:807-818
    [169] Chaux P, Vantomme V, Stroobant V, et al. Identification of MAGE-3epitopes presented byHLA-DR molecules to CD4(+) T lymphocytes. J Exp Med,1999,189:767-778
    [170] Chaux P, Lethe B, Van Snick J, et al. A MAGE-1peptide recognized on HLA-DR15byCD4(+) T cells. Eur J Immunol,2001,31:1910-1916
    [171] Goodyear O, Agathanggelou A, Novitzky-Basso I, et al. Induction of a CD8+T-cellresponse to the MAGE cancer testis antigen by combined treatment with azacitidine andsodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood,2010,116:1908-1918
    [172] Bao L, Dunham K&Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1can be upregulatedon neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing.Cancer Immunol Immunother,2011,60:1299-1307
    [173] Cruz C R, Gerdemann U, Leen A M, et al. Improving T-cell therapy for relapsedEBV-negative Hodgkin lymphoma by targeting upregulated MAGE-A4. Clin Cancer Res,2011,17:7058-7066
    [174] Bujas T, Marusic Z, Peric Balja M, et al. MAGE-A3/4and NY-ESO-1antigens expressionin metastatic esophageal squamous cell carcinoma. Eur J Histochem,2011,55: e7
    [175] Hudson J J, Bednarova K, Kozakova L, et al. Interactions between the Nse3and Nse4components of the SMC5-6complex identify evolutionarily conserved interactions betweenMAGE and EID Families. PLoS One,2011,6: e17270
    [176] Bhatia N, Yang B, Xiao T Z, et al. Identification of novel small molecules that inhibitprotein-protein interactions between MAGE and KAP-1. Arch Biochem Biophys,2011,508:217-221
    [177] Artamonova, II&Gelfand M S. Evolution of the exon-intron structure and alternativesplicing of the MAGE-A family of cancer/testis antigens. J. Mol. Evol.,2004,59:620-631
    [178] Lopez-Sanchez N, Gonzalez-Fernandez Z, Niinobe M, et al. Single mage gene in thechicken genome encodes CMage, a protein with functional similarities to mammalian type IIMage proteins. Physiol Genomics,2007,30:156-171
    [179] Nishimura I, Shimizu S, Sakoda J Y, et al. Expression of Drosophila MAGE gene encodinga necdin homologous protein in postembryonic neurogenesis. Gene Expr Patterns,2007,7:244-251
    [180] Bischof J M, Ekker M&Wevrick R. A MAGE/NDN-like gene in zebrafish. Dev Dyn,2003,228:475-479
    [181] Rimoldi D, Salvi S, Reed D, et al. cDNA and protein characterization of human MAGE-10.Int J Cancer,1999,82:901-907
    [182] Zhang J, Yu J, Gu J, et al. A novel protein-DNA interaction involved with the CpGdinucleotide at-30upstream is linked to the DNA methylation mediated transcriptionsilencing of the MAGE-A1gene. Cell Res,2004,14:283-294
    [183] Chen Y T, Stockert E, Chen Y, et al. Identification of the MAGE-1gene product bymonoclonal and polyclonal antibodies. Proc Natl Acad Sci U S A,1994,91:1004-1008
    [184] Kocher T, Schultz-Thater E, Gudat F, et al. Identification and intracellular location ofMAGE-3gene product. Cancer Res,1995,55:2236-2239
    [185] Rual J F, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the humanprotein-protein interaction network. Nature,2005,437:1173-1178
    [186] Franken N A, Rodermond H M, Stap J, et al. Clonogenic assay of cells in vitro. Nat Protoc,2006,1:2315-2319
    [187] Takahashi K, Shichijo S, Noguchi M, et al. Identification of MAGE-1and MAGE-4proteins in spermatogonia and primary spermatocytes of testis. Cancer Res,1995,55:3478-3482
    [188] Donehower L A. Effects of p53mutation on tumor progression: recent insights from mousetumor models. Biochim Biophys Acta,1996,1242:171-176
    [189] Schultz-Thater E, Piscuoglio S, Iezzi G, et al. MAGE-A10is a nuclear protein frequentlyexpressed in high percentages of tumor cells in lung, skin and urothelial malignancies. Int JCancer,2011,129:1137-1148
    [190] Pabst C, Zustin J, Jacobsen F, et al. Expression and prognostic relevance of MAGE-C1/CT7and MAGE-C2/CT10in osteolytic lesions of patients with multiple myeloma. Exp MolPathol,2010,89:175-181
    [191] Chen L, Shen R, Ye Y, et al. Precancerous stem cells have the potential for both benign andmalignant differentiation. PLoS One,2007,2: e293
    [192] Gao J X, Liu X, Wen J, et al. Differentiation of monocytic cell clones into CD8alpha+dendritic cells (DC) suggests that monocytes can be direct precursors for both CD8alpha+and CD8alpha-DC in the mouse. J Immunol,2003,170:5927-5935
    [193] Dalerba P&Clarke M F. Cancer stem cells and tumor metastasis: first steps into unchartedterritory. Cell Stem Cell,2007,1:241-242
    [194] Quintana E, Shackleton M, Sabel M S, et al. Efficient tumour formation by single humanmelanoma cells. Nature,2008,456:593-598
    [195] Briles E B&Kornfeld S. Isolation and metastatic properties of detachment variants of B16melanoma cells. J Natl Cancer Inst,1978,60:1217-1222
    [196] Kessenbrock K, Plaks V&Werb Z. Matrix metalloproteinases: regulators of the tumormicroenvironment. Cell,2010,141:52-67
    [197] Hanahan D&Weinberg R A. Hallmarks of cancer: the next generation. Cell,2011,144:646-674
    [198] Cavallaro U&Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs incancer. Nat Rev Cancer,2004,4:118-132
    [199] Selivanova G&Ivaska J. Integrins and mutant p53on the road to metastasis. Cell,2009,139:1220-1222
    [200] Lynch C C. Matrix metalloproteinases as master regulators of the vicious cycle of bonemetastasis. Bone,2011,48:44-53
    [201] Lukaszewicz-Zajac M, Mroczko B&Szmitkowski M. Gastric cancer-The role of matrixmetalloproteinases in tumor progression. Clin Chim Acta,2011,412:1725-1730
    [202] Chabottaux V&Noel A. Breast cancer progression: insights into multifaceted matrixmetalloproteinases. Clin Exp Metastasis,2007,24:647-656
    [203] Ming S H, Sun T Y, Xiao W, et al. Matrix metalloproteinases-2,-9and tissue inhibitor ofmetallo-proteinase-1in lung cancer invasion and metastasis. Chin Med J (Engl),2005,118:69-72
    [204] Staun-Ram E, Goldman S&Shalev E. p53Mediates epidermal growth factor (EGF)induction of MMP-2transcription and trophoblast invasion. Placenta,2009,30:1029-1036
    [205] Liu J, Zhan M, Hannay J A, et al. Wild-type p53inhibits nuclear factor-kappaB-inducedmatrix metalloproteinase-9promoter activation: implications for soft tissue sarcoma growthand metastasis. Mol Cancer Res,2006,4:803-810
    [206] Kim Y, Kang H, Jang S W, et al. Celastrol inhibits breast cancer cell invasion viasuppression of NF-kB-mediated matrix metalloproteinase-9expression. Cell PhysiolBiochem,2011,28:175-184
    [207] Germano S, Kennedy S, Rani S, et al. MAGE-D4B is a novel marker of poor prognosis andpotential therapeutic target involved in breast cancer tumorigenesis. Int J Cancer,2011,
    [208] Mauro C, Pacifico F, Lavorgna A, et al. ABIN-1binds to NEMO/IKKgamma andco-operates with A20in inhibiting NF-kappaB. J Biol Chem,2006,281:18482-18488
    [209] Xiao T Z, Bhatia N, Urrutia R, et al. MAGE I transcription factors regulate KAP1andKRAB domain zinc finger transcription factor mediated gene repression. PLoS One,2011,6:e23747
    [210] Kuwako K, Taniura H&Yoshikawa K. Necdin-related MAGE proteins differentiallyinteract with the E2F1transcription factor and the p75neurotrophin receptor. J Biol Chem,2004,279:1703-1712

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700