用户名: 密码: 验证码:
石羊河流域中下游河岸植被变化及其驱动因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用空间和时间序列分析方法,利用遥感影像与石羊河流域中下游的不同河段植被、土壤和水文调查数据,以石羊河流域的红崖山水库为界,分析了其之上长流水河段和以下断流河段的河流变迁、径流、水质、地下水位年际变化。从河流水文过程、存在和完整性丧失的角度,探讨了石羊河中下游不同河段在不同时空尺度上的植被特征、水文变化以及与区域生态环境之间的耦合关系。通过典型植被带河流方向的土壤理化性质空间变化特征研究,阐明了土壤理化性质对植被梯度变化的影响及关系。同时,分析探讨了河岸植被的生态功能、河流变迁及其与区域荒漠化的关系,说明了石羊河流域河曲的空间位置及其在生态综合治理中的重要性,为石羊河中下游生态治理提供了理论依据和建议。通过研究得出以下初步结论:
     (1)石羊河流域中下游的大部分河段的右岸植被带较左岸宽而丰富度大;河岸植被带宽度最小约30m,最大约3000m;河岸植被受人为影响较大,在石羊河干流区段,自中游至下游的河岸植被依次为人工杨树河岸林、沙枣河岸林、柽柳+柳树+沙枣河岸林、柽柳+沙蒿灌丛、白刺+人工沙枣林,典型河岸植被的横向变化梯度明显。
     (2)石羊河流域中下游的河岸植物群落中共有木本植物14种,草本植物22种;植被的优势种群为荒漠植物类群,其中频度较大的优势种有:沙蒿、白刺、柽柳、芦苇等,优势种的分布格局为聚集分布。河岸植被属于荒漠植被型组,共有5个植被型、6个植被亚型、12个群系组、20个群系和30个群丛。石羊河流域的中下游河岸植被趋于简单和衰退状态,植被盖度以15%≤fg<30%的中盖度面积最大,盖度与河床间距成指数函数分布。
     (3)石羊河对河岸区域的地下水位作用区间在不同河段的差异较大。在红水河河谷的季节性流水河段,河溪影响地下水区间小于5m;在丰水河段的河漫滩则约为1000m;涸水河段古河床的500m区间内的土壤水分较好。植被对河流的响应区间大于地下水位。随着河流的消亡和地下水位下降,与之相适应的植被发生演替,从沼泽草甸、典型草甸演化为盐化草甸,荒漠河岸林退化为灌丛,演化为灌木荒漠和小灌木荒漠或一年生草本植被。
     (4)在石羊河流域水文演变过程中,留下了大量的水生和草甸植被的痕迹。民勤盆地的“柴湾”走向正好与古大西河的走向一致,“柴湾”沿大西河的东南岸生长,是遗留至今的古大西河河岸林。近年来区域地表径流量虽为丰水年,但现有的流量对河岸植被的影响较小。
     (5)石羊河中下游的河岸植被盖度和物种丰富度的变化与土壤性质的变化相-致。河岸植被的盖度和丰富度与土壤的含水量和土壤水溶性盐的含量相关性显著。河岸植被的良好生长促进河岸土壤的演化与形成。
     (6)石羊河中下游河岸植被可分为6个类型:季节性流水的河谷小灌木荒漠、泉水汇流的河谷地禾草盐化草甸、丰水段的河漫滩荒漠河岸乔木林、丰水段的河漫滩荒漠河岸灌木林、涸水段的人工渠系灌丛、涸水段人工渠系小灌木荒漠。石羊河中下游河岸植被分布的主要驱动因素是气候和河流径流量,但流水地貌、土壤生境和人为干扰也促进了河岸植被类型的形成。
     (7)石羊河中下游河岸植被具有多种生态功能,支持区域的多样性,提供物种源(基因库)和栖息地,调节区域微气候,具有缓冲带作用,防护河岸,稳定河床,减轻区域风沙和洪水的危害,保护人居环境;河岸植被也是景观廊道,具有连接作用,输送有机物质,增加系统能量,也为人们提供了休闲娱乐的优良户外活动场所。
     (8)石羊河中下游的河岸植被目前处于退化状态,人为活动引起的生态用水量减少、地下水位持续下降、造林密度过大和疏于管理等是其退化的主导因素。根据石羊河中下游的河岸植被的特征和区域荒漠化发展的现状,提出以下河岸植被保育和荒漠化防治建议:加大全流域教育投资力度,建立环境监测系统,加强石羊河中下游河岸植被的管理;充分利用河岸带水资源优势,补充完善河岸植被,加快退化植被的恢复,建立区域植被防护体系;外流域调水,补给流域水资源缺口;以流域为单元,统筹合理利用水资源;严禁开荒,加大局部防治力度,遏制区域荒漠化。
The riparian vegetation character, aspect of precipitation, river change, runoff, water quality, annual change of ground water, soil and relation with vegetation at middle and lower reaches of Shiyang river basin were discussed by a method of time and spetial series, remote material, investigation results and correlation analysis on vegetation, soil and hydrology at up and lower zone of Shiyang river body with runoff or not by a bound of Hongya reserveoir. The spatial and time change of vegetation and hydrology and coupling relation with environment were studied by hydrological process, existence and lose of wholeness. The aspect of soil of riparian zone and relation with vegetation were measured and analyzed at line and cross direction. In addition, the function, change of river with desertification was studied. Then theory according and advice were given for ecological improvement of middle and lower of Shiyang River basin. The main conclusions as follows:
     (1) The width and abundance of vegetation of right bank is larger than that of left bank. The minimum width of riparianvegetation is about 30m and maximum width of 3000m. It is extremely serious that the riparian vegetation is effected by artificial activity, and then the types of riparian vegetation on the bank of main body of Shiyang River are artificial forest of Populus spp., Elaeagnus angustifolia, Tamarix spp+Salix spp.+Elaeagnus angustifolia, Tamarix spp+Artemisia areanaria and Nitraria tangutorum+ Elaeagnus angustifolia along with bank at different altitude. The gradient change is obvious at broadwise of typical riparian vegetation.
     (2) There are 14 species of woody plants and 22 herbs of riparian community at middle and lower reaches of Shiyang River basin. The dominant species with more frequency are Artemisia areanaria Nitraria spp., Tamarix spp., and Phragmites communis. The distribution of dominant population is aggregative. The vegetation is desert vegetation type group, and there are 5 vegetation types,6 second vegetation types,12 vegetation form groups,20 vegetation forms and 30 associations. The community change of riparian vegetation tends towards simple and retrogradation status. The dominant population of riparian is desert population.The largest area of plant coverage is 15%≤fg<30%, and the relation between coverage and distance is exponential function.
     (3) The difference of average precipitation from middle to lower reaches is 60 mm, but it is not obvious that precipitation effects riparian vegetation. The difference of distance that river effects ground water is obvious at different river section. The affect distance to ground water by river is 5m at valley of Hongshui River with season runoff. And the width is 1000m that river effects ground water at flood plain of river part with rich water, while respond width of vegetation to the excudation of river water is larger than that of ground water table.There is much moisture of soil at 500m distance from river bed without water at lower reaches of Shiyang river basin. It will be known by the future of different vegetation located bank with water or not. With river escape, the evolution of vegetation is swamp to meadow and saline meadow; desert riparian forest change into bush to desert shrub and small shrub desert and annual vegetation.
     (4) The large area with aquatic mark and meadow remains were found at Shiyang River basin with the hydrological change. The direction of "Caiwan" is with the direction of Daxi River, and the "Caiwan" is the riparian forest that grown at bank of Daxi River.Acorrding to hydrological process of Shiyang river at recent year, the amount of the river at middle and lower reaches was high flow with globe warm; but the used water was increasing, the quantity of flow from up reaches was decreasing, it is not obvious that the riparian vegetation was effected by runoff.
     (5) The coverage and richness of riparian vegetation at middle and lower reaches of Shiyang river accord with hydrology and texture and chemical character of soil, but the maximum of coverage and richness is not corresponding with soil character. The coverage and richness of riparian vegetation is positive correlation with moisture and chemical character of soil.
     (6) The affect factor to riparian vegetation main is rate of flow and climate, but stream morphology, soil character and artificial disturbance promote the form of riparian vegetation. The riparian vegetation at middle and lower of Shiyang river basin is divided into 6 types:small shrub with season runoff at valley, saline grass meadow with spring water at valley, desert riparian tree with rich water at flood plain, shrub riparian vegetation with rich water at flood plain, shrub at channel without runoff, small shrub at channel without runoff.
     (7)The river bed and relic of river bed is located oasis border, and give a function without replacement. There are many ecological function of riparian vegetation, which hold out region diversity, provide species source and perch place, adjust micro-region climate, buffer function, protected bank, stabilized river bed, decreased harm of wind-sand and flood, protected environment of residence. The riparian is a landscape corridor and juncture. Riparian supply matter organic and increase system energy, in addition riparian is a good open place for entertainment.
     (8) At present, the riparian vegetation at middle and lower reaches of Shiyang River Basin is a degeneration station which is affected by natural factors of disease and insect, morphology, abnormity climate and so on. It is the dominant factor that the flux of runoff decrease, ground water table goes down continually and make up large density forest with extensive management to arise ecological problem. The riparian vegetation is protected and raised to defend region desertification. The desertification is decreased by the process to improve the riparian vegetation. The advice on revegetation and decreasing desertification is given by riparian vegetation character and station of desertification. The investment of education will be increased, established the monitor system, and the management of riparian vegetation should be enhanced. The water resource advantage of bank will be used to makeup riparian vegetation, and accelerate restoration of degenerate vegetation for establishment of protected system. The water will be transferred to supply lack of water, reasonably used the water resource by all of river basin. The land reclamation should be forbidden, and enhance the region improvement to contain region desertification.
引文
1. 倪晋仁,马蔼乃.河流动力地貌学[M].北京:北京大学出版社,1998:45-60.
    2. 夏继红,严忠明.生态河岸带的概念及功能[J].水利水电技术,2006,37(5):14-17.
    3. 饶良懿,崔建国.河岸植被缓冲带生态水文功能研究进展[J].中国水土保持科学,2008,6(4): 121-128.
    4. 王忖,赵振兴.河岸植被对水流影响的研究现状[J].水资源保护,2006,(6):50-53.
    5. 曲仲湘.植物生态学[M].北京:人民教育出版社,1982:20-45.
    6. 上官铁梁,贾志力,张峰等.汾河河岸植被类型及其利用与保护[J].河南科学,1999,(]7): 83-86.
    7. 张建春,彭补拙.河岸带研究及其退化生态系统的恢复与重建[J].生态学报,2003,23(1):56-63.
    8. 王根绪,程国栋.内陆河流域生态环境的空间分异特征[J].地理科学,1998,18(4):255-361.
    9. 陈吉泉,河岸植被特征及其在生态系统和景观中的作用[J].应用生态学报,1996,7(4):439-448.
    10.汪飞,玉米·提哈力克,B. Conradie.塔里木河下游阿拉干断面胡杨枝下高对应急输水的响应[J].生态环境学报,2009,18(1):286-291.
    11.陈亚宁,李卫红,徐海量,等.塔里木河下游地下水位对植被的影响[J].地理学报,2003,58(4):542-549.
    12.赵振勇,王让会,张惠芝,等.塔里木河下游天然植被恢复的生态学机制[J].干旱区研究,2005,22(1):94-100.
    13.刘加珍,陈亚宁,李卫红,陈永金,等,荒漠河岸植被的受损过程与受损机理分析[J].地理学报,2006,61(9):946-956.
    14.包维楷,陈庆恒.生态系统退化的过程及其特点[J].生态学杂志,1999,18(2):36-42.
    15.杨海军,张化永,赵亚楠,等.用芦苇恢复受损河岸生态系统的工程化方法[J].生态学杂志,2005,24(2):214-216.
    16.蔡锡安,夏汉平,崔玉炎.广州流溪河河岸缓冲带生态治理的优良草种筛选试验[J].生态环境,2004,13(3):342-346.
    17.黄凯,郭怀成,刘永,郁亚娟,周丰.河岸带生态系统退化机制及其恢复研究进展[J].应用生态学报,2007,18(6):1373-1322.
    18.邓红兵,王青春,王庆礼.河岸植被缓冲带与河岸带管理[J].应用生态学报,2001,12(6):951-954.
    19.封福记,杨海军,于智勇.受损河岸生态系统近自然修复实验的初步研究[J].东北师大学报,2004,(1):101-106.
    20.李小平,张利权.土壤生物工程在河道坡岸生态修复中应用与效果[J].应用生态学报,2006,17(9):1557-1770.
    21.刘恒,钟华平,顾颖.西北干旱内陆河区水资源利用与绿洲演变规律研究——以石羊河流域下游民勤盆地为例[J],水科学进展,2001:(3):378-384.
    22.白映万,王开录.石羊河流域水资源保护与可持续利用对策[J].水土保持研究,2005,12(4):253-255.
    23.朱艳,陈发虎.石羊河流域早全新世湖泊抱粉记录及其环境意义[J].科学通报,2001,46(19):1596-1602.
    24.杨自辉,胡明贵,王继和.绿洲边缘沙漠化土地植被的演替与恢复利用[A].甘肃:兰州大学出版社,1998:438-444.
    25.杨自辉,俄有浩,方峨天,等.民勤绿洲边缘物种多样性对水资源变化的响应[J]. 中国沙漠,2007,27(2):278-282.
    26.刘虎俊,王继和,常兆丰,石羊河下游荒漠植物区系及其植被特征[J].生态学杂志,2006,25(2):113-118.
    27.张耀甲.民勤地区柽柳属植物的生态生理特点及其在防风固沙中的意义[A].兰州:兰州大学出版社,1999:243-249.
    28.陈隆亨,曲耀光.河西地区水土资源及其合理开发利用[M].北京:科学出版社,1999:1-22.
    29.王乃昂,李吉均,曹继秀,等.青土湖近6000年来沉积气候记录研究——兼论四五世纪气候回暖[J].地理科学,1999,19(2):119-124.
    30.韩兰英,王宝鉴,张正偲.基于RS的石羊河流域植被覆盖度动态监测[J].草业科学,2008,25(2):11-5.
    31.郭会哲,樊巍,宋绪忠.河岸带植被结构功能及修复技术研究进展[J].河南林业科技,2005,25(4):1-3.
    32.郭笃发.黄河对沿岸缓冲带土地利用格局的影响——以近代黄河三角洲段为例[J].农业环境科学学报,2005,24(4):757-760.
    33.郭晓寅,陈发虎,颉耀文,等.自然条件下石羊河终闾湖泊模拟研究[J].自然资源学报,1999,14(4):385-388.
    34.胡影,李亚.民勤绿洲物候季节划分及景观季相特征[J].干旱区资源与环境.2005,19(02):173-178.
    35.李王成,冯绍元,康绍忠,等.石羊河中游荒漠绿洲区土壤水分分布特征[J].水土保持学报.2007,21(3):138-144.
    36.李玲萍,杨永龙,钱莉.石羊河流域近45年气温和降水特征分析[J].干旱区研究.2008,25(5):705-71.
    37.李爱德,赵明,王耀琳,等.民勤地区不同梭梭林地水分平衡研究[A],兰州:兰州大学出版社,1999:250-258.
    38.张丽,董增川,黄晓玲.干旱区典型植物生长与地下水位关系的模型研究[J].中国沙漠,2004,24(1):110-113.
    39.张鹏云,张耀甲.中国植物志[M]. 五十卷第二分册.北京:科学出版社,1990:146-166.
    40.张武文,史生胜.额济纳绿洲地下水动态与植被退化关系的研究[J].冰川冻土,2002,24(4):421-425.
    41.焦菊英,马祥华,白文娟.黄土丘陵沟壑区退耕地植物群落与土壤环境因子的对应分析[J].土壤学报,2005,42(5):744-752.
    42.张华,伏乾科,李锋瑞,等.退化沙质草地自然恢复过程中土壤—植物系统的变化特征[J]. 土保持通报,2003,23(6):1-6.
    43.李新荣.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学D辑地球科学,2005, 35(4):361-370.
    44.胡孟春.科尔沁土地沙漠化分类定量指标初步研究[J].中国沙漠,1991,11(3):57-60.
    45.慈龙骏,吴波.中国荒漠化气候类型划分与潜在发生范围的确定[J].中国沙漠,1997,17(2):107-111.
    46.董玉祥,刘毅华.土地沙漠化监测指标体系的探讨[J].干旱环境监测,1992,6(3):179-182.
    47.孙武,南忠仁,李保生,等.荒漠化指标体系设计原则的研究[J].自然资源学报,2000,15(2): 160-163.
    48.李锋.荒漠化监测中生态环境与社会经济评价指标体系及评价方法的研究[J].干旱环境监测,1997,11(1):1-5.
    49.高尚武,王葆芳,朱灵益,等.中国沙质荒漠化土地监测评价指标体系[J].林业科学,1998,34(2):1-10.
    50.丁国栋.荒漠化评价指标体系的研究——以毛乌素沙区为例[D].北京:北京林业大学,1998:20-50.
    51.贾宝全,慈龙骏,高志海,等.绿洲荒漠化及其评价指标体系问题的初步探讨[J].干旱区研究,2001,18(2):18-24.
    52.蔡体久.基于遥感和GIS的荒漠化程度定量评价研究[D].北京:北京林业大学,2003:45-70.
    53.徐广,李萍.石羊河流域荒漠化监测结果分析[J].水土保持通报,2007,27(6):145-148.
    54.张兰兰,赵文吉,赵强.基于RS与GIS的水资源环境监测评价方法研究——以石羊河流域为例[J].首都师范大学学报,2004,25(2):89-93.
    55.乔平林,张继贤,张伟刚,等.水资源环境监测评价信息系统的设计与实现[J].测绘科学,2005,30(2):102-103.
    56.王刚,贾冰.石羊河流域气候变化历史及其对水文水资源的影响[J].甘肃水利水电技术,2008,44(3):172-173.
    57.黄玉霞,王宝鉴,张强.气候变化和人类活动对石羊河流域水资源影响评价[J].高原气象,2008,27(4):866-872.
    58.边克俭.石羊河中游武威盆地沙漠与沙漠化问题的考察报告[J].甘肃省治沙研究所论文集刊,1986,(1):1-13.
    59.王兵,崔向慧.民勤绿洲-荒漠过渡区水量平衡规律研究[J].生态学报,2004,24(2):235-240.
    60.王庆锁.生态交错带与生态流[J].生态学杂志,1997,16(6):52-58.
    61.民勤县志编纂委员会.民勤县志[M].兰州:兰州大学出版社,1994:1-50.
    62.颉耀文,陈发虎.民勤绿洲的开发与演变[M].北京:科学出版社,2008:6-10.
    63.颉耀文,陈发虎.基于数字遥感图像的民勤绿洲20年变化研究[J].干旱区研究,2002,19(1):69-74.
    64.颉耀文,郭英,矫树春.基于遥感与GIS的民勤盆地荒漠垦殖研究[J].遥感技术与应用,2004,19(5):334-339.
    65.刘明春.石羊河流域气候干湿状况分析及评价[J].生态学杂志,2006,25(8):880-884.
    66.徐启运,郭慧,尹宪志.10kaBP来石羊河流域气候演变特征分析[J].冰川冻土,2007,29(4):467-469.
    67.缪磊磊,王爱民.区域人地系统演进机制分析——以民勤盆地为例[J].干旱区资源与环境,2004,18(1)11-16.
    68.康尔泗,李新.甘肃河西地区内陆河流域荒漠化的水资源问题[J].冰川冻土,2004,26(6):657-667.
    69.俄有浩.民勤盆地地下水时空动态及其对生态环境变化影响过程的GIS辅助模拟[D].兰州:兰州大学,2005:1-90.
    70.天庆久,闵祥军.植被指数研究进展.地球科学进展,1998,13(4):327-333.
    71.高志海,李增元,魏怀东,等.基于遥感的民勤绿洲植被覆盖度变化定量监测[J].地理研究,2006,25(4):587-95.
    72.高志海.基于RS和GIS的绿洲植被和荒漠化动态研究[J].北京:北京林业大学,2003:1-100.
    73.徐先英.石羊河下游绿洲-荒漠过渡带典型固沙植被生态水文效应研究.北京:北京林业大学,2008:1-100.
    74.王勋陵,王静.植物形态结构与环境[M].兰州:兰州大学出版社,1989:57-87.
    75.王耀芝,王勋陵,李蔚.荒漠化草原常见植物叶内部结构的观察[J].兰州大学学报,1983,19(3):87-96.
    76.王新平,张志山,张景光,等.荒漠植被影响土壤水文过程研究述评[J].冲国沙漠,2005,25(2):196-201.
    77.刘家琼.我国荒漠不同生态类型植物的旱生结构[J].植物生态学与地植物学丛刊,1982,6(4):314-319.
    78.刘家琼,蒲锦春、刘新民.国沙漠中部地区主要不同类型植物的水分和旱生结构的比较研究[J],植物学报,1987,29(6):662-673.
    79.赵翠仙,黄子琛.里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,23(4):278-283.
    80.黄振英,吴鸿,胡正海.疆10种沙生植物旱生结构的解剖学研究[J].植物学报,1995,15(6):56-61.
    81.黄振英,吴鸿,胡正海.新疆30种沙生植物的结构及其对沙漠环境的适应[J]生态学报,1997,21(6):521-530.
    82.张晓然,吴鸿,胡正海.毛乌素沙地10种沙生植物叶的形态结构与环境的关系,西北植物学报,1997:17(5):54-60.
    83.曹宇,肖笃宁,欧阳华,等.额济纳天然绿绿洲景观演化驱动因子分析[J].生态学报,2004,24(9):1895-1902.
    84.陈敏建,王浩,王芳.内陆干旱区水分驱动的生态演变机理[J].生态学报,2004,24(10):2108-2114.
    85.常兆丰,韩福贵,仲生年,等.石羊河下游沙漠化的自然因素和人为因素及其位移[J].干旱区地理,2005,28(2):150-155.
    86.常兆丰.沙漠人工植被的生态学取向及其途[J]. 生态学杂志,2004,23(6):167-170.
    87. Pierre Y. Julien. River mechanics [M]. England:Cambridge University Press,2002:200-250.
    88. Naiman R J, Decamps H, Pollock M. The role of riparian corridors in maintaining regional biodiversity [J]. Ecology,1993, (3):309-212.
    89. Naiman RJ, Decamp sH. The ecology of interface:Riparian zones [J]. Annual Review of Ecology and System atics,1997, (28):621-658.
    90. Nagasaka A, Nakamura F. The influences of land-use changes on hydrology and riparian environmentin a northern Japanese landscape [J]. Landscape Ecology,1999, (14):543-556.
    91. Nakamura F, Yamada H. Effects of pasture development on the ecological functions of riparian forests in Hokkaido in northern Japan [J]. Ecological Engineering,2005, (24):539-550.
    92. Lowrance R, Leonard R. and Sheridan J. Managing riparian ecosystems to control nonpoint pollution [J], Journal of Soil and Water Conservation,1985,40(1):87-91.
    93. Gregory S V. Swartson F J., Mckee W A, et.al. An ecosystem perspective of riparian zones [J], Bioscience,1991, (41):540-551.
    94. Raedeke K J Streamside management:Riparian wildlife and forestry interactions Proceedings of A Symposium on Riparian wildlife and forestry interactions [M]. Washington:University of Washington USA,1988:15-20.
    95. Swanson F J, Grego Ry S V, Sedeij, J R, et al. land——water interactions:the riparian zone [A]. In:EDMONDS R L. Analysis of Coniferous Forest Ecosystems in the western United Statesl CJ [J]. Pennsylvania:HutehinsOn Ross Publishing,1982,267-291.
    96. Bennett Paul. Guidelines for assessing and monitoring riverbank health [M]. NSW: Hawkesbury—Nepean Catchment Management Trust,2000:3-4.
    97. Ervin H Z, David S and Steven F. Desert riparian landscapes:Values and Change,1981-96 [J]. Landscape and Urban Planning,1998, (42):81-89.
    98. Shang Z B, Gao Q. Watershed ecology. a new research area of ecology [J]. Acta Ecologica Sinica,2001,21(3):468-473.
    99. Sunil N, Zhou Y C and John R J. Application of remote sensing and geographic information systems to the delineation and analysis of riparian buffer zones[J]. Aquatic Botany,1997,(58): 393-409.
    100. Julie C FZ, Laura E D, Peter G R. Vegetation diversity in an interconnected ephemeral riparian system of north central Arizona SA [J]. Biological Conservation,1999, (90):217-228.
    101. Ren H, Peng S L. An introduction to restoration ecology [M]. Beijing:Science Press,2001: 1-42.
    102. Ravindra NC, Chen H J. From gene shuffling to the restoration on of riparian ecosystems [J]. Trends Plant Science,1999, (4):337-338.
    103.Dennis F W. Ecological issues related to wet land preservation, restoration, creation and assessment [J]. The Science of the Total Environment,1999, (240):31-40.
    104. Molles J. Mannel C and Crawford C. Managed flooding for riparian ecosystem restoration [J]. Bioscience,1998,48(9):749.
    105. Nilsson C, Svedmark M. Basic principles and ecological consequences of changing water regimes: Riparian plant communities [J]. Environmental Management,2002, (30):468-480.
    106. Nilsson C, Berggren K. Alterations of riparian ecosystems caused by river regulation [J]. BioScience,2000, (50):783-792.
    107. Harris R, Olson C. Two stage system for prioritizing riparian restoration at the stream reach and community scales [J]. Restoration Ecology,1997, (5):34-42.
    108. Osborne LL, Kovacic D A. Riparian vegetated buffer strips in water-quality restoration and stream management [J]. Foreshow Biol.,1993, (29):243-258.
    109. Qureshi. M E. Harrison. S R. A. A decrson support process to compare riparian revegetion options in Seheu Creek catchment in North Queenland[J]. Journal of Environmental Management,2001, (62):101-112.
    110. He, CS. Malcplm, S. B., Dahlberg, K. A., et al. A conceptual framework for integeraing hydrological and biological indicators into watershed management. Landscape and Urban Planning [J],2000, (49):25-34.
    111.Aspinall, R., Pearson. D. Integrated georraphical assessment of environmental condition in water catchments:Linking landseap ecology, enviro, nmental modeling and GIS [J]. Journal of Enviromental Management,2000, (59):299-319.
    112. Basehak. L A. BrowN R D. An ecological framework for the planning, design and management of urban river greenways [J]. Landseape and Urban Planning,1995, (33):211-225.
    113. Freeman, R. E., Ray. R. O. Landseape ecology practice by small scale river conservation groups [J]. Landseape and Urban Planning,2001, (56):171-184.
    114. Knopf FL, Johns on R R, Rich T, et al. Conservation of riparian ecosystems in the United States [J]. Wilson Bulletin,1988, (100):272-284.
    115. Allen EB, Niering WA. Riparian restoration[M]. Restoration Ecology,1997:15-36
    116. Mabutt J A. Desertification indicators [J]. Climatic Change,1986, (9):113-122.
    117. Hunsaker C T, Carpenter D E. Ecological indicators for the environmental monitoring and assessment program [R]. USEPA Office of Research and Development:Research Triangle Park, 1990:15-30.
    118.Kosmas C. Kirkby M. Geeson N. Manual on key indicators of desertification and mapping environmentally sensitive areas to desertification [A]. European Commission, Energy, Environment and Sustainable Development [C].1999,87.
    119. Rubio J L, Bochet E. Desertification indicators as diagnosis criteria for desertification risk assessment in Europec [J]. Journal of Arid Environments,1998, (39):113-120.
    120. Dregne H E. Desertification assessment and control [A]. The United Nations University. New Technologies to Combat Desertification, Proceedings of the International Symposium in Iran in1998[C],1999.95-102.
    121. Thcker C J, Dregne H E, Newcomb W W. Expansion and contraction of the Sahara Desert from 1980 to 1990 [J]. Science,1991,253:299-301.
    122. Mouat D, Lancaster J, Wade T, et al. Desertification evaluated using an integrated environmental assessment model [J]. Environmental Monitoring and Assessment,1997,48:139-156.
    123. Weiss E, Marsh S E. Pfirman E S. Application of NOAA2AVHRR NDVI time series data to assess changes in Saudi Arabia's rangelands [J]. Int J Remote Sensing,2001,22:1005-1027.
    124. Tripathy G K, et al. Monitoring of desertification process in Karnataka state of India using multitemporal remote sensing and ancillary information using GIS [J]. INT. J. Remote Sensing,1996,17(12):2243-2257.
    125. Lambin E F, et al. The surface temperature-vegetation index space for land cover and land cover change analysis [J]. INT. J. Remote Sensing,1996,17(3):463-487.
    126. Bastin G N, et al. A grazing gradient approach to land degradation assessment:a case study
    [J]. INT. J. Remote Sensing,1995,16(4):651-672.
    127. Price, J. C. Estimating leaf area index from satellite data [J]. IEEE. Transaction on Geoscience and Remote Sensing,1993, (31):727-734.
    128. Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. and Sorooshian, S. A modified soil adjusted vegetation index [J], Remote Sense, Environ.,1994, (48):119-126.
    129. Pinty, B., Leprieur, C., and Verstraete, M. M.. Towards a quantitative interpretation of vegetation indices, part1:biophysical canopy properties and classical indices [J]. Remote Sensing Review, 1993, (7):127-150.
    130. Leprieur, C., Kerr, Y. H., and Pichon, J. M.. Critical assessment of vegetation indices from AVHRR in a semi-arid environment [J]. International Journal of Remote Sensing,1996, (17): 2594-2563.
    131. Verstraete, M. M. and Pinty, B. The potential contribution of satellite remote sensing to the understanding of arid lands processes [J]. Vegetation,1991, (91):59-72.
    132. Boning JD, WailkerLR. Plantand soil recoveryalong a series ofabandoned desert roads ofArid environments,2000,46(1):1-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700