用户名: 密码: 验证码:
真姬菇AFLP分子标记的建立和遗传多样性分析及酿酒酵母细胞絮凝主效基因的定位克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阐明复杂性状的遗传机制是动植物、微生物遗传改良以及人类复杂疾病致病机理研究的重要基础。复杂性状遗传解析的重点是定位控制复杂性状遗传的数量性状基因座(quantitative trait loci, QTL),检测QTL之间的相互作用,进而鉴定相应的候选基因。QTL定位分析要求整合遗传标记、表型数据和作图群体遗传结构3个方面的信息。本研究以真菌作为研究材料,首先从食用真菌真姬菇入手,通过建立AFLP分子标记,为真姬菇遗传图谱构建和QTL定位分析奠定基础;通过菌株遗传多样性分析,为揭示真姬菇群体遗传结构提供第一步参考,并为作图群体的亲本选择提供可靠依据。
     由于食用菌基因组结构复杂且遗传信息匮乏,对真姬菇继续开展复杂性状遗传基础研究困难重重。为此,接下来本文创造性地利用酿酒酵母这一简单的模式真核生物对复杂性状遗传变异的分子基础进行解析,通过研究为系统解决数量遗传学的核心问题提供分析框架,并为包括真姬菇等食用菌品种在内的动植物及微生物复杂性状研究提供理论和方法参考。
     真姬菇(Hypsizygus marmoreus (Peck) H.E.Bigelow),又称玉蕈、斑玉蕈、鸿喜菇和蟹味菇等,隶属于担子菌门、伞菌纲、伞菌目、白蘑科、玉蕈属。真姬菇是一种珍稀食用菌品种,具有味道鲜美、营养丰富的食用价值和抗真菌、抗肿瘤等药用价值,因此具有良好的市场前景。国内外对于真姬菇的研究主要集中在营养生理生化和药理作用等方面,对于真姬菇分子生物学和遗传学研究鲜有报导。1999年我国签署了《国际植物新品种保护法》,这要求我们在尊重其它国家的品种知识产权的同时也要加强保护本国的品种知识产权。建立有关真姬菇生产用菌种的分子遗传标记,并创立相应的菌种检测标准与方法,是保护我国真姬菇品种知识产权的重要途径。
     本研究首先旨在建立一套可靠的AFLP (amplified fragment length polymorphism)分子标记实验方案对真姬菇进行基因分型,并对包括工厂化栽培品种和保藏品种在内的19个真姬菇菌株进行DNA指纹图谱构建和遗传多样性分析。主要研究结果如下:
     1、真姬菇AFLP分子标记的建立
     真姬菇多糖和蛋白含量较高,这为其基因组DNA的提取带来困难。为了制备符合AFLP标记技术要求的高质量DNA,我们对普遍应用于植物材料的十六烷基三乙基溴化铵(cetyltriethylammonium bromide, CTAB)法进行修改,建立了适合真姬菇的有效的DNA提取方法。
     AFLP分析采用的限制性内切酶组合是EcoRⅠ知MseⅠ。通过对选择性碱基种类和数目以及引物组合进行筛选,最终确定10对引物组合(EcoRⅠ+2nt/MseⅠ+3nt)用于多态性检测。运用10对引物在19个基因型中共扩增得到609个AFLP标记位点,其中多态性位点为532个,多态性比率为87%。每对引物扩增的标记总数从47到80不等(平均标记数为60.9),但各引物组合多态信息量(polymorphic information content,PIC)很高,其中PIC最高达到92%。另外,除去由试验误差造成的缺失数据,10对引物在19个基因型中共检测到11184个标记数据点。以上数据表明:(1)真姬菇物种具有丰富的遗传差异和遗传多样性;(2)10对引物都具备较好的多态性检出能力,可作为今后试验(如遗传图谱构建)的候选引物;(3)丰富的多态性位点和标记数据点的获得证明本研究建立的AFLP标记技术能够有效地应用于真姬菇的遗传学研究。
     2、19个真姬菇菌株遗传多样性评价
     采用Dice相似系数分析和UPGMA法对19个真姬菇菌株的遗传相似性进行聚类分析。聚类结果表明,HmC1199等6个菌株在相似系数大于等于0.95处聚为类群一;另有HmC2637等7个菌株在相似系数大于等于0.92处聚为类群二;其余6个菌株与两个类群的遗传差异相对较大,尤其是菌株HmJ2632与HmC1199的相似系数仅为0.547。同时,采用主成分分析(principal component analysis, PCA)对19个真姬菇菌株的遗传多样性作进一步分析和验证,第一和第二主分揭示出与UPGMA聚类分析一致的结果。
     将19个真姬菇菌株遗传分类的结果与形态学特征作比较,发现同一类群的菌株的子实体形态具有共同特点,如类群一,菇盖小、菌柄细;类群二,菇盖大、菌柄短而粗。据此可以把19个菌株划分为4个代表类别:即除两个类群外,还包括白色菇盖品种(HmJ3136)和瘤盖品种(HmJ2632)。尽管我们尚不了解真姬菇菇盖性状的遗传基础,但是克隆这个白色菇盖品种(HmJ3136)的白化基因并将其与其它菌株正常基因作比较,无疑将是一个正确的选择和起点。而瘤盖品种(HmJ2632)与其余18个菌株遗传差异非常大,借鉴其他菌种子实体结实温度的研究结论,我们认为,真姬菇可能存在与香菇类似的子实体结实类型(fruiting season type),其中瘤盖品种(HmJ2632)可能属于高温型,而其余18个菌株则可能分别属于中温或低温型。
     目前,在复杂性状遗传结构解析方面,人类和动植物作图群体中有效减数分裂量的匮乏极大地限制了QTL定位的解析率,研究者将目光更多地投向模式生物。酿酒酵母(Saccharomyces cerevisiae)是适用于数量遗传学研究的一个重要的真核模式物种。酵母絮凝是一个可逆的、无性的且依赖于钙离子的过程,是指酵母细胞之间相互粘附形成聚集体(floes).絮凝特性与乙醇发酵生产密切相关,具有重要的工业应用价值。研究表明,酵母FLO基因家族的多个FLO基因的遗传变异和表达修饰可以导致絮凝表型的差异,这反映了絮凝这一性状受多基因控制的复杂遗传本质。本研究采用正向遗传学方法揭示酿酒酵母自然群体中细胞絮凝发生遗传变异的分子基础,通过研究为包括真姬菇等食用菌品种在内的动植物及微生物复杂性状研究提供理论和方法参考,并为用于发酵工业的酵母菌株的遗传改良提供可靠的理论依据。主要研究结果如下:
     1、选择两个絮凝表型变异极其显著的酵母菌株YH1A(非絮凝)和YL1C(絮凝)作为亲本,通过两亲本杂交构建了由292个子代个体组成的F2代单倍体分离群体(Huet al.,2007)。同时,构建了以260个微卫星标记(STR)为主(Hu et al.,2007)、24个SNP标记为补充的酵母全基因组饱和分子标记连锁图谱,标记平均间隔在10-20cM范围内;
     2、建立了一套简便可靠的实验方法对亲本及子代个体进行絮凝表型测定。以液体培养基中细胞沉淀至管底所用时间(T)作为判定标准,并以两个亲本作为对照,絮凝表型一共划分为四大类:第1类(T=0);第Ⅱ类(0Understanding the genetic mechanism of complex traits is of key importance for genetic improvements of crops and domestic animals, and is also helpful to elucidate the genetic aetiology of human complex diseases. The essential issues in genetic analysis of complex traits is to map quantitative trait loci (QTLs) that affect the inheritance of complex trait, to detect the interaction among QTLs (epistasis), and consequently to identify the candidate genes underlying complex trait.
     Analysis of QTL mapping integrates three sources of basic information, genetic markers, phenotype of the target trait and genetic structure of mapping population. The research materials in the present study are fungi and an edible fungi Hypsizygus marmoreus is firstly studied. Development of AFLP molecular markers in Hypsizygus marmoreus provides basis for genetic linkage map construction and QTL analysis in this species. Also, the present study provides an initial but useful step towards an understanding of population genetic structure of the species and, a reliable reference for screening parental strains to construct mapping population.
     It is difficult to carry on genetic study of complex traits in Hypsizygus marmoreus due to its complex genome structure and to lack of useful genetic imformation. Therefore, the eukaryotic model organism Saccharomyces cerevisiae is subsequently used to dissect the molecular basis of genetic variation in complex trait. The results in the study provide and experimental and analytic framework in which core issues in quantitative genetics can be addressed systematically, and provide theoretical and method reference for studying complex traits in animals, plants and microbes including edible fungi.
     Hypsizygus marmoreus is a basidiomycete fungus which is not only a delicious and nutritious food but also of great medicinal value of antifungus and antitumor activity. Therefore, H. marmoreus has good market prospects. Although the literature on this fungus species has been foused on the biochemistry of nutrition and nutritious physiology and pharmacology, the molecular and genetic study of H. marmoreus is rare. China subscribed to an agreement for the protection of new cultivars of plants including mushrooms in 1999, which required protection of intellectual property rights in our own country particularly. It is necessary to develop molecular makers and provide new standards and tests for cultivated strains of H. marmoreus.
     The present study was designed to develop a reliable experimental protocol for detecting and genotyping amplified fragment length polymorphism (AFLP) markers in H. marmoreus and to evaluate the genetic polymorphisms and diversity among 19 stains including both commercial cultivars and stock strains based on AFLP markers. The results of the present study were listed below.
     1、Development of AFLP markers in H. marmoreus
     The high concentration of polysaccharides and proteins in H. marmoreus makes it difficult to extract pure genomic DNA. In order to prepare good quality DNA samples as required for a successful AFLP analysis, we established an appropriate protocol for DNA extraction in H. marmoreus by modifying the CTAB method commonly used in plants.
     EcoRⅠand MseⅠwere used to digest DNA in AFLP analysis.10 primer pairs (EcoRⅠ+2nt/ MseⅠ+3nt) were used for detecting genetic polymorphisms. The AFLP analysis with 10 primer pairs has generated a total of 609 markers, of which 532 (87%) were polymorphic. The capability of different primer pairs to generate AFLP markers varied significantly, from 47 to 80 (average 60.9) markers per primer pair over all gentypes. However, the polymorphic information content (PIC) was high and reached up to 92%. In total,11184 marker data points were scored across all the 19 genotypes. These results had three implications:(1) The richness of genetic divergence and polymorphisms could be found in H. marmoreus; (2) A number of markers were generated from each of the 10 primer pairs, which could be used as good candidacy for further studies; (3) The abundant polymorphic sites and marker data points achieved in present study showed that the AFLP protocol established could be effective and reliable in genetic study of H. marmoreus.
     2、Estimation of genetic diversity of H. marmoreus Similarities among samples were calculated as Dice coefficient. A dendrogram was produced based on the similarity coefficient by UPGMA. The results showed that six stains including HmC1199 et al. were clustered as groupⅠat a genetic similarity of>=95%; and the second group containing 7 genotypes including HmC2637 et al. shared a genetic similarity of>=92%; and the remaining six genotypes showed a higher level of genetic difference than the other two groups, in particular, similarity coefficient between HmJ2632 and HmC1199 was only 0.547. We further estimated the genetic diversity among 19 H. marmoreus strains by principal component analysis (PCA). The first and second principal components reveals a very similar pattern of divergence to that obtained by the UPGMA clustering analysis.
     A comparison of the genetic diversity of the 19 H. marmoreus strains with their morphologic characters indicated that the strains in the same cluster shared a common fruiting body character, e.g. small caps and thin stipes in groupⅠand wide caps but short stipes in groupⅡ. All the 19 genotypes basically represented 4 different morphological phenotypes:in addition to the two groups mentioned above, there were one genotype with white pileus(HmJ3136)and another one with tumor-baring caps(HmJ2632). Although the genetic basis of the pileus trait is still not established in H. marmoreus, it is certainly a good starting point to clone and compare the albino gene from the strain HmJ3136 with that from others. The stain with malformed caps was most genetically distant from the others. According to previous information in fruiting season types in other fungus species, we suppose that similar fruiting season types exist in H. marmoreus, in particular, the strain HmJ2632 may be of the H type, and the remaining 18 stains would be possibly classified as either M or L type.
     Presently, the resolution of QTL mapping is restricted due to lack of informative meiosis in humans, animals and plants mapping populations. Therefore, researchers are trying to study complex traits in model organisms. Saccharomyces cerevisiae is an important model organism in quantitative genetics. Yeast flocculation is a reversible, asexual and calcium-dependent process in which cells adhere to each other to form flocs. Yeast flocculation properties are closely related to ethanol fermentation and therefore are of great industrial values. Several published researches have identified a series of FLO genes of which either genetic variants or modified expression may change the flocculation phenotype, strongly supporting the polygenic nature of its genetic control. In the present study, we describe the development of yeast flocculation as a model for quantitative genetics. Through a combination of genetic mapping and functional verification, we finally identified a quantitative trait nucleotide (QTN) variant that control yeast flocculation differences. We also investigated the genetic interactions between the three QTL genes. This study represented the first forward genetic approach for dissecting genetic basis underlying yeast flocculation and the significance of this study in theory and practice could be as follows:First, the study provides theoretical and method reference for genetic dissection of complex traits in animals, plants and microbes including edible fungi.Second, the study provides a reliable theoretical basis for genetic improvement of yeast strains used in fermentation industry. The results of the present study were listed below:
     1、Two yeast strains YH1A (nonflocculent) and YL1C (flocculent) with highly divergent trait phenotype were chosen as parental strains. A F2 haploid segregating population comprising 292 segregants from crossing the two parental strains was developed (Hu et al.,2007). Meanwhile, a saturated linkage map across yeast genome with mainly 260 STR markers(Hu et al.,2007), supplemented by 24 SNP markers, was constructed. The average map distance between markers is 10-20cM.
     2、We developed a simple but reliable experimental method for scoring the flocculation phenotype of both parents and individuals. The sediment time(T)for cells sinking to the bottom of tubes in liquid culture was used as criterion. We classified the parental and offspring stains into 4 flocculation categories:CategoryⅠ(T=0),CategoryⅡ(0
引文
[1]Adams, A., D.E.Gottschling, C.A.Kaiser, T.Stearn.1997. Methods in Yeast Genetics, Cold Spring Harbor Press, Cold Spring Harbor, NY.
    [2]Akihisa,T., S.G. Franzblau, et al.2005. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizygus marmoreus. Biological and Pharmaceutical Bulletin 28(6):1117-1119.
    [3]Almasy, L. and J.Blangero.1998. Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics 62:1198-1211.
    [4]Amos, C.I.1994. Robust variance-components approach for assessing genetic linkage in pedigrees. American Journal of Human Genetics 54:535-543.
    [5]Baudin, A., O. Ozier-Kalogeropoulos, A. Denouel, et al.1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Research 21:3329-3330.
    [6]Benson, G.1999. Tandem repeats finder:a program to analyze DNA sequences. Nucleic Acids Research 27:573-580.
    [7]Bester M.C., I.S.Pretorius, F.F.Bauer.2006. The regulation of Saccharomyces cerevisiae FLO gene expression and Ca2+-dependent flocculation by Flo8p and Mss11p. Current Genetics 49:375-383.
    [8]Bing Nan and Ina Hoeschele.2005. Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170:533-542.
    [9]Brem, R.B. and L.Kruglyak.2005. The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proceedings of the National Academy of Sciences of the United States of America 102:1572-1577.
    [10]Brem, R.B., G.Yvert, R.Clinton, and L.Kruglyak.2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:752-755.
    [11]Bystrykh, L., E.Weersing, B.Dontje, and et al.2005. Uncovering regulatory pathways that affect hematopoietic stem cell function using'genetical genomics'.Nature Genetics 37:225-232.
    [12]Callac, P., F.Moquet, M.Imbernon, et al.1998. Evidence for PPC1, a determinant of the pilei-pellis color of Agaricus bisporus fruitbodies. Fungal Genetics and Biology 23:181-188.
    [13]Chesler, E.J., L.Lu, S.M.Shou, and et al.2005. Complex trait analysis of gene expression uncovers polygenetics and pleiotropic networks that modulate nervous system function. Nature Genetics 37: 233-242.
    [14]Clerget-Darpoux, F., C.Bonaiti-Pellie. And J. Hochez.1986. Effects of miss specifying genetic parameters in lod score analysis. Biometrics 42:393-399.
    [15]Cliften, P. et al.2003. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71-76.
    [16]Colman-Lerner, A. T.E. Chin, and R.Brent.2001. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107:739-750.
    [17]Crepieux, S., et al.2004. Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168 (3): 1737-1749.
    [18]de Koning, D.J. and C.S.Haley.2005. Genetical genomics in humans and model organisms. Trends in Genetics 21:377-381.
    [19]De Las Penas, A., S.J.Pan, I.Castano, J.Alder, R.Cregg and B.P.Cormack.2003. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1-and SIR-dependent transcriptional silencing. Genes and Development 17: 2245-2258.
    [20]Deluca,M.,N.V.Roshina, G.L.Geiger-thornsberry, R.F.Lyman, E.G. Pasyukova.2003. Dopa decarbosylase (Ddc) affects variation in Drosophila longevity. Nature Genetics 34:429-433.
    [21]Deutschbauer, A.M. and R.W.Davis.2005. Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nature Genetics 37 (12):1333-1340.
    [22]Falconer, D.S. and T.F.C.Mackay.1996. Introduction to quantitative genetics (4th edition). Pearson Education Limited. Page 356-378.
    [23]Fichtner, L., F. Schulze and G.H.Braus.2007. Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S.cerevisiae S288C. Molecular microbiology 66(5):1276-1289.
    [24]Flint, J. and R. Mott.2001. Finding the molecular basis of quantitative traits:Success and pitfalls. Nature Reviews Genetics 2:437-445.
    [25]Flint, J., W.Valsar, S.Shifman, and R.Mott.2005. Stragegies for mapping and cloning quantitative trait genes in rodents. Nature Review Genetics 6:271-286.
    [26]Frary A. et al.2000. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88.
    [27]Fridman, E., F.Carrari, Y.S.Liu, A.R.Fernie and D.Zamir.2004. Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305 (5691):1786-1789.
    [28]Glazier, A., J.H. Nadeau, and T.J. Aitman.2002. Finding genes that underlie complex traits. Science 298 (5602):2345-2349.
    [29]Goldgar, D.E.1990. Multipoint analysis of human quantitative genetic variation. American Journal of Human Genetics 47:957-967.
    [30]Goffeau, A., B.G.Barrell, H.Bussey, and et al.1996. Life with 6000 genes. Science 214:563-567.
    [31]Guo,B., C.A.Styles, Q.Feng, and G.Fink.2000. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proceedings of the National Academy of Sciences of the United States of America 97:12158-12163.
    [32]Guo, S.W. and K. Lance.2000. Genetic mapping of complex traits:promises, problems, and prospects. Theoretical Population Biology 57:1-11.
    [33]Halme, A., B.Bumgarner, C. A. Styles and G. R. Fink.2004. Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 116:405-415.
    [34]Harada, A., S. Gisusi, S. Yoneyama, and M. Aoyama.2004. Effects of strain and cultivation medium on the chemical composition of the taste components in fruit-body of Hypsizygus marmoreus. Food Chemistry 84:265-270.
    [35]Harada, A., S. Yoneyama, S. Doi, and M. Aoyama.2003. Changes in contents of free amino acids and soluble carbohydrates during fruit-body development of Hypsizygus marmoreus. Food Chemistry 83:343-347.
    [36]Hasebe, K., I. Ohira, and I. Arita.1998. Genetic relationship between high-, medium-and low-temperature-type fruiting of Lentinula edodes in wood log culture. Reports of the Tottori Mycological Institute 36:21-28 [In Japanese with English summary].
    [37]Hibbett, D. S., R. Vilgalys.1993. Evolutionary relationships of Lentinus to the Polyporaceae: Evidence from restriction analysis of enzumatically amplified ribosomal DNA. Mycologia 83: 425-439.
    [38]Hodgson, J.A., et al.1985. Discrimination by heat and proteinase treatments between flocculent phenotypes conferred on Saccharomyces cerevisiae by the genes FLO1 and FLO5. Journal of General Microbiology 131(12):3219-3227.
    [39]Hoppers, J.L. and J.D.Mathews.1982. Extensions to multivariate normal models for pedigree analysis. Annual Human Genetics 46:373-383.
    [40]Howell-Adams, B. and H.S.Seifert.2000. Molecular models accounting for the gene conversion reactions mediating gonococcal pilin antigenic variation. Molecular Microbiology 37:1146-1158.
    [41]Hu, X.H., M.H.Wang, et al.2007. Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae. Genetics 175:1479-1487.
    [42]Huang, N.L.1994. Cultivation of Lentinula edodes in China. Scientific and Technological Literatures Press, Shanghai, China. pp.268-273.
    [43]Hubner, N., C.A.Wallace, H.Zimdahl, and et al.2005. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nature Genetics 37:234-252.
    [44]Ikekawa, T.1995. Bunashimeji, Hypsizygus marmoreus antitumor activity of extracts and polysaccharides. Food Reviews International 11:207-209.
    [45]Imakura, Y, T. Konishi, K. Uehida, et al.1994. Regioselective cleavage reaction of the aromatie methylenedioxy ring.V1.Synthesis of Phenothiazie analogues by using the cleavage reaction with sodium methoxide-thiols in dimethyl sulfoxide and evaluation of theirbiological activities. Chemistry and Pharmaceutical Bulletin 42(3):500-511.
    [46]Jansen, R.C.1993. Interval mapping of multiple quantitative trait loci. Genetics 135 (1):205-211.
    [47]Jansen, R.C. and J.P.Nap.2001. Genetical genomics:the added value from segregation. Trends in Genetics 17:388-391.
    [48]Jin,Y.L. and R.A.Speers.1998. Flocculation of Saccharomyces cerevisiae. Food Research International 31 (6-7):421-440.
    [49]Kao, C.H., Z.B.Zeng, and R.D.Teasdale.1999. Multiple interval mapping for quantitative trait loci. Genetics 152:1203-1216.
    [50]Kellis, M., N.Patterson, M.Endrizzi, et al.2003. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241-254.
    [51]Kobayashi, O. and H.Suda.1996. Molecular cloning and analysis of the dominant flocculation gene FLO8 from Saccharomyces cerevisiae. Molecular and General Genetics 251 (6):707-715.
    [52]Kobayashi, O., et al.1999. Analysis of the genes activated by the FLO8 gene in Saccharomyces cerevisiae. Current Genetics 36 (5):256-61.
    [53]Kobayashi, O., et al.1998. Region of FLO1 proteins responsible for sugar recognition. Journal of Bacteriology 180 (24):6503-6510.
    [54]Kraft P. and S.Horvath.2003. The genetics of gene expression and gene mapping. Trends in Biotechnology 21:377-378.
    [55]Kunz, B.A., and R.H.Haynes.1981. Phenomenology and genetic control of mitotic recombination in yeast. Annual Review Genetics 15:57-89.
    [56]Lam, S.K., and T.B.Ng.2001. Hypsin, a novel thermostable ribosome-inactivating protein with antifungal and antiproliferative activities from fruiting bodies of the edible mushroom Hypsizygus marmoreus. Biochemical and Biophysical Research Communications 285:1071-1075.
    [57]Lander, E.S. and D.Botstein.1989. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185-199.
    [58]Lander, E.S. and N.J.Schork.1994. Genetic dissection of complex traits. Science 265:2037-2048.
    [59]Li, J. and M. Burmeister.2005. Genetical genomics:combining genetics with gene expression analysis. Human Molecular Genetics 14:R163-R169.
    [60]Lichtenstein, C.P., and J.Draper.1985. Genetic engineering of plants. DNA Cloning:A Practical Approach, Vol. Ⅱ (Glover D.M, ed), pp.67-119. IRL Press, Oxford, UK.
    [61]Liu,H.P., C.A.Styles and G.R.Fink.1996. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144 (3):967-978.
    [62]Liu, N., D.Wang, Z.Y.Wang, X.P.He and B.Zhang.2007. Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae. FEMS Yeast Research 7:1362-1370.
    [63]Long, A.D., S.L.Mullaney, T.F.Mackay and C.H.Langley.1996. Genetic interactions between naturally occurring alleles at quantitative trait loci and mutant alleles at candidate loci affecting bristle number in Drosophila melanogaster. Genetics 144:1497-1510.
    [64]Lorenz, M.C., R.S. Muir, E.Lim, et al.1995. Gene disruption with PCR products in Saccharomyces cerevisiae. Gene 158:113-117.
    [65]Luo, Z.W., C-I.Wu, and M.J.Kearsey.2002. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcrosss or intercross schemes. Genetics 161:915-929.
    [66]Lynch, M., and B.Walsh,1998. Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA.
    [67]Mackay, T.F.C.2001. Quantitative trait loci in Drosophila. Nature Review Genetics 2:11-21.
    [68]Mackay, T.F.C.2004. The genetic architecture of quantitative traits:lesson from Drosophila. Current Opinion in Genetics and Development 14:253-257.
    [69]Mather, K., and J.L. Jinks.1982. Biometrical Genetics,3rd edition. Chapman and Hall, London
    [70]Monks, S.A., A.Leonardson, H.Zhu, and et al.2004. Genetics inheritance of gene expression in human cell lines. American Journal of Human Genetics 75:1094-1105.
    [71]Morley, M., C.M.Molony, T.M.Weber, and et al.2004. Genetics analysis of genome-wide variation in human gene expression. Nature 430:743-747.
    [72]Mueller, U.G. and Wolfenbarger, L.L.1999. AFLP genotyping and fingerprinting. Tree 14(10): 389-394.
    [73]Nadeau, J.H. and W.N.Frankel.2000. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs. Nature Genetics 25:381-384.
    [74]Nobrega M.A., I. Ovcharenko, V. Afzal, E.M. Rubin.2003. Scanning human gene deserts for long-range enhancers. Science 302:413.
    [75]Pan X and J. Heitman.2002. Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Molecular and Cellular Biology 22:3981-3993.
    [76]Phillips,P.C.1998. The language of gene interaction. Genetics 149:1167-1171.
    [77]Ramirez L, V. Muez, M. Alfonso, et al.2001. Use of molecular markers to differentiate between commercial strains of the button mushroom Agaricus bisporus. FEMS Microbiology Letter 198(1): 45-48.
    [78]Rieseberg, L.H. et al.1999. Transgressive segregation, adaptation and speciation. Heredity 83:363-372.
    [79]Risch, N.J.2000. Searching for genetic determinants in the new millennium. Nature 405:847-856.
    [80]Rupp, S., et al.1999. MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO Journal 18 (5):1257-1269.
    [81]Sato, M., Maeba, H., Watari, J., and Takashio, M.2002. Analysis of an inactivated Lg-FLOl gene present in bottom-fermenting yeast. Journal of Bioscience and Bioengineering.93:395-398.
    [82]Saito, K., K. Fujimura-Kamada, H. Hanamatsu, et al.2007. Transbilayer phospholipid flipping regulates Cdc42p signaling during polarized cell growth via Rga GTPase-activating proteins. Developmental Cell 13:743-751.
    [83]Schmitt, M.E. T.A.Brown, and B.L.Trumpower.1990. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Research 18:3091-3092.
    [84]Schork, N.J.1993. Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power and modeling considerations. American Journal of Human Genetics 53: 1306-1319.
    [85]Sen, S., J.M.Satagopan and G.A.Churchill.2005. Quantitative trait locus study design from an information perspective. Genetics 170:447-464.
    [86]Shmookler Reis R J.2003. From QTL mapping to genes:the long and winding road. Journal of Bone and Mineral Research,2003,18:186-189.
    [87]Shoemaker,D.D., D.A.Lashkari, D.Morris, M.Mittmann, R.W.Davis.1996. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar-coding strategy. Nature Genetics 14:450-456.
    [88]Sinden, J.W.1990.Developments in spawn production. Mushroom News 38:6-10.
    [89]Smith, G.R., S.A.Givan, P.Cullen, and G.F.Sprague Jr.2002. GTPase-Activating Proteins for Cdc42. Eukaryotic Cell 1 (3):469-480.
    [90]Smukalla, S., M.Caldara, and et al.2008. FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726-737.
    [91]Souciet, J. et al. Genomic exploration of the hemiascomycetous yeasts:1. A set of yeast species for molecular evolution studies. FEBS letter 487:3-12.
    [92]Steinmetz, L.M., et al.2002. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416 (6878):326-330.
    [93]Stratford, M.1989. Evidence for two mechanisms of flocculation in Saccharomyces cerevisiae. Yeast 5 Spec No:S441-5.
    [94]Stratford, M.1989. Yeast flocculation:calcium specificity. Yeast 5:487-496.
    [95]Stratford, M.1992. Yeast flocculation:Reconciliation of physiological and genetic viewpoints. Yeast 8:25-38.
    [96]Stringer, J.R. and S.P.Keely.2001. Genetics of surface antigen expression in Pneumocystis carinii. Infection and Immunity 69:627-639.
    [97]Tanguay, P., P. Loppnau, C. Morin, L.Bernier, and C. Breuil.2006. A spontaneous albino mutant of Ceratocystis resinifera results from a point mutation in the polyketide synthase gene, PKS1. Canadian Journal of Microbiology 52:501-507.
    [98]Terashima, K., T. Matsumoto, K. Hasebe, and Y. Fukumasa-Nakai.2002. Genetic diversity and strain-typing in cultivated strains of Lentinula edodes (the shii-take mushroom) in Japan by AFLP analysis. Mycological Research 106(1):34-39.
    [99]Teunissen, A.W., et al.1995. Localization of the dominant flocculation genes FLO5 and FLO8 of Saccharomyces cerevisiae. Yeast 11 (8):735-745.
    [100]Teunissen, A.W., et al.1993. Sequence of the open reading frame of the FLO1 gene from Saccharomyces cerevisiae. Yeast 9(4):423-427.
    [101]Teunissen,A.W. and H.Y. Steensma.1995. Review:the dominant flocculation genes of Saccharomyces cerevisiae constitute a new subtelomeric gene family. Yeast 11(11):1001-1013.
    [102]Urbanelli, S., V. Della, Rosa, F. Punelli, D. Porretta, M. Reverberi, A.A.Fabbri, and C. Fanelli. 2007. DNA-fingerprinting (AFLP and RFLP) for genotypic identification in species of the Pleurotus eryngii complex. Applied Microbiology and Biotechnology 14:592-600.
    [103]van Dyk D, I.S.Pretorius, F.F.Bauer.2005. Mss11p is a central element of the regulatory network that controls FLO 11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 169: 91-106.
    [104]Verstrepen, K.J., GD.Erdelinckx, H.Verachtert and F.R.Delvaux.2003. Yeast flocculation:what brewers should know. Applied Microbiological Biotechnology 61:197-205.
    [105]Verstrepen, K.J., Jansen, A., Lewitter, F., and Fink, G.R.2005. Intragenic tandem repeats generate functional variability. Nature Genetics 37:986-990.
    [106]Verstrepen, K.J. and F.M.Klis.2006. Flocculation,adhesion and biofilm formation in yeasts. Molecular Microbiology 60:5-15.
    [107]Verstrepen, K.J., C. Michiels, G. Derdelinckx et al.2001. Late fermentation expression of FLO 1 in Saccharomyces cerevisiae. Journal of American Society of Brewing Chemists.59:69-76.
    [108]Verstrepen, K.J., Reynolds, T.B., and Fink, G.R.2004. Origins of variation in the fungal cell surface. Nature Review Microbiology 2:533-540.
    [109]Vos, Pieter., R. Hogers, M. Bleeker, et al.1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research 23(21):4407-4414.
    [110]Wach, A., A.Brachat, R. Pohlmann, P. Philippsen.1994. New heterologous modules for classical or PCR based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793-1808.
    [111]Wade, C.M., E.J.Kulbokas, A.W.Kirby, M.C.Zody, J.C.Mullikin, E.S.Lander, K.Lindblad-Toh and M.J.Daly.2002. The mosaic structure of variation in the laboratory mouse genome. Nature 420: 574-578.
    [112]Wang,S., C. J. Basten, and Z.-B. Zeng.2007. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
    [113]Wang, Y.C., T.Shirogane, D.Liu, et al.2003. Exit from exit:resetting the cell cycle through Amnl inhibition of G protein signaling. Cell:697-709.
    [114]Watari, J., et al.1994. Molecular cloning and analysis of the yeast flocculation gene FLO1. Yeast 10 (2):211-25.
    [115]Wayne,M.L. and L.M.Mcintyre.2002. Combining mapping and arraying:an approach to candidate gene identification. Proceedings of the National Academy of Sciences of the United States of America 99:14903-14906.
    [116]Wiltshire, T., M.T.Pletcher, S.Batalov, et al.2003. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proceedings of the National Academy of Sciences of the United States of America 104:1708-1713.
    [117]Xu, S., W. R. Atchley.1996. Mapping quantitative trait loci for complex binary diseases using line croses. Genetics 143:1417-1424.
    [118]Yalcin, B., S.A. Willis-oven, J.Fullerton, A.Meesaq, R.M.Deacon.2004. Genetic dissection of a behavioral quantitative trait locus shows that Rgs2 modulates anxiety in mice. Nature Genetics 36:1197-1202.
    [119]Yi, N., and S. Xu.1999. A random model approach to mapping quantitative trait loci for complex binary traits in outbred population. Genetics 153:1029-1040.
    [120]Yi, N., and S. Xu.2000. Bayesian mapping of quandtadve trait for complex binary traits. Genetics 155:1391-1403.
    [121]Yi, N., S. Xu, V. George, et al.2004. Mapping multiple quantitative trmt loci for complex ordinal traits. Behavior Genetics 34 (1):3-15.
    [122]Yvert,G., R.B.Brem, J.Whittle, J.M.Akey, E.Foss, E.N.Smith, R.Mackelprang, and L.Kruglyak. 2003. Trans-acting regulatory variation in Saccharomyces cerevisiae and the role of transcription factors. Nature Genetics 35:57-64.
    [123]Zeng, Z.B.1993. Theretical basis for separation of multiple linked gene effects in mapping quantiatative trait loci. Proceedings of the National Academy of Sciences of the United States of America 90:10972-10976.
    [124]Zeng, Z.B.1994. Precision mapping of quantitative trait loci. Genetics 136:1457-1468.
    [125]Zeng, Z.B., C.H. Kao and C.J.Basten.1999. Estimating the genetic architecture of quantitative traits. Genetical Research 74:279-289.
    [126]Zhang, R.Y., C.Y.Huang, S.Y. Zheng, J.X. Zhang, T.B. Ng, R.B. Jiang, X.M. Zuo, and H.X.Wang. 2007. Strain-typing of Lentinula edodes in China with inter simple sequence repeat markers. Applied Microbiology and Biotechnology 74:140-145.
    [127]A.亚当斯等著[美],刘子铎译.2000.酵母遗传学方法实验指南.北京:科学出版社.
    [128]陈明杰,赵绍惠,张树庭.1996.用分子生物学技术对草菇进行菌株鉴别[J].真菌学报,15(2):129-134.
    [129]程继红,冯志勇,高君辉.2003.栽培种培养时间对真姬菇产量和质量的影响[J].食用菌学报,10(2):45-49.
    [130]辜运富,张小平,陈强,廖德聪,刘坚.2003.双孢蘑菇种内多态性的AFLP分析[J].西南农业学报,16(4):39-43.
    [131]胡小华.2005.酵母数量性状主销基因的定位分离及克隆.复旦大学博士学位论文.
    [132]黄志龙,肖淑霞.2002.真姬菇栽培特性研究[J].福建农业科技,3:11-12.
    [133]刘传斌,白凤武,邵梅等.2001.自絮凝颗粒酵母酒精高浓度连续发酵的研究[J].微生物学 报,41:367-371.
    [134]孟宇,蒋昌顺,廖问陶,张义正.2003.糙皮侧耳的AFLP指纹图谱分析[J],遗传学报,30(12):1140-1146.
    [135]莫惠栋.2003.数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战[J].扬州大学学报(农业与生命科学版),24(6):24-31.
    [136]上官舟建.2004.真姬菇生物学特性及栽培技术研究[J].食用菌,1:16-18.
    [137]上官舟建,谢宝贵等.2004.真姬菇三个选育菌株的RAPD分析[J].中国食用菌,23(3):12-14.
    [138]沈天峰,王朝江,罗信昌等.2001.木耳属四个野生菌株的RAPD图谱分析[J].食用菌学报,8(4):1-4.
    [139]汤在祥,徐辰武.2008.复杂性状遗传分析策略和方法研究进展[J].中国农业科学41(5):1255-1266.
    [140]吴学谦,李海波等.2004.DNA分子标记技术在食用菌研究中的应用及进展[J].浙江林业科技,24(2):75-78.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700