用户名: 密码: 验证码:
粘细菌的分离纯化和分类鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验以采集自越南以及我国的云南、河北、陕西各地的土样和各种树皮、腐木作为实验材料,利用兔、羊粪球和滤纸作为基质诱导出多种颜色丰富、形态多样的粘细菌子实体,采用本实验室摸索出的较为有效的纯化粘细菌的方法,在实验器材上用24孔细胞培养板代替传统的平皿,有效地缩短了粘细菌的纯化周期,提高了分离纯化的效率。从越南、云南、河北、陕西各地的94份土壤样品和9份树皮、腐木样品中,分离得到259株粘细菌,并从中纯化出140株。
     根据菌株的特征性子实体形态和其营养细胞、粘孢子形态,以《Bergey's manualof determinative bacteriology》第九版为依据,将分离纯化出的菌株初步鉴定到属,这259株粘细菌菌株经过初步的分类鉴定,分属于9个属,即粘球菌属(Myxococcus)139株、珊瑚球菌属(Corallococcus)20株、囊球菌属(Angiococcus)18株、原囊菌属(Archangium)21株、孢囊杆菌属(Cystobacter)5株、标桩菌属(Stigmatella)36株、单囊菌属(Haploangium)9株、小囊菌属(Nannocystis)3株,和多囊菌属(Polyangium)8株。对纯化菌株的液体培养特征进行了描述,并首次依据初步分类鉴定结果探索了液体特征与分类地位之间的关系,即依据营养细胞和粘孢子形态将粘细菌划分成的两大类型中,第一类型(包括粘球菌属等7个属)的菌株在液体培养基中通常形成片状或絮状,而第二类型(包括单囊菌属等5个属)的菌株则主要呈现球形。
     比较讨论了丙酮提取法、碱裂解法和创新的NaOH-CTAB法提取粘细菌总DNA的效果,较之丙酮提取法和碱裂解法,NaOH-CTAB法可以更加彻底、快速地破坏粘细菌细胞壁,同时可以较彻底去除粘细菌丰富的胞外多糖,从而得到高质量的粘细菌总DNA,使粘细菌的分子生物学研究更为简便。
     选取具有抑制肿瘤活性的粘细菌菌株6株(菌株编号分别为:YN34、YN65、YN76、YN112、BD85、BD105),根据形态特征将其归为粘球菌属(Myxococcus)。应用NaOH-CTAB法提取这6株粘细菌菌株的总DNA,进行16S rDNA序列测定,从分子水平初步确定其分类地位。将其16S rDNA基因序列与GenBank中所有已
    
    河北大学理学硕士学位论文
    经测定的原核生物的165 rDNA序列进行比较,构建了粘球菌属你为优ococcu:)
    的系统发育进化树,确定其系统发育地位,并进行了生理生化反应实验以及总DNA
    的G+Cmol%测定。结果表明,这6株菌的G+Cmol%均比较高,在65十69%之间;
    它们均属于粘球菌属。为优口coccus),菌株YN34与菌株YNll2和BDzOS关系均较
    近,相似性均为10既,与它们关系最近的为橙色粘球菌以办优ococcus fulvus)
    AJ233919,相似性为99.78%;YN65与大抱粘球菌。心优口coecus macro明orus)
    AYO72738关系最近,相似性为99.57%;YN76与菌株YN34、YNI 12、和BD105关系
    均较近,相似性均为99.86%,与橙色粘球菌。为优口eoecusfulvus)AJ233919,相似
    性为99.64%;BD85与黄色粘球菌帆乃优口coceus xanthus)M34114关系最近,相
    似性为100%。
     生理生化实验结果与165 rDNA序列分析结果基本一致,证明了生理生化实验
    对于粘细菌分类的重要作用。另外,在一些生理生化反应上,二者又有较大的差
    异,体现出了它与分子分类在内的其他分类方法相结合,以共同准确地确定粘细
    菌的真实分类地位的必要性。
The soil and bark samples collected from Yunnan, Hebei and Shanxi provinces of China, and also from Vietnam, were used as the materials in this experiment. And dung pellets of rabbits or goats that had been autoclaved can be used to induce many kinds of fruiting bodies of the Myxobacteria in different colors, sizes, and shapes. We isolated and purified Myxobacteria strains with the improved method which was found by our laboratory. The using of tissue culture plates instead of traditional plates accelerated the purification process and enhanceed the purification efficiency. From 94 soil samples and 9 bark samples in these areas, 259 Myxobacteria strains were isolated and 140 strains of them were purified.
    These 259 Myxobacteria strains were primarily identified in genus or species level by their fruiting bodies, myxospores and vegetative cells on the base of Sergey's manual of determinative bacteriology and they belonged to 9 genera(Myxococcus, Corallococcm. Angiococcus. Archangium, Cystobacter. Stigmatella . Hapoangium. Nannocystis. Polyangium) of Myxococcales. The characteristic in liquid culture of the purified strains were described, and the relation between the characteristic and the taxonomic traits was researched for the first time. The two groups of Myxobacteria differentiated according to the shape character of the myxospores and vegetative cells had different characteristic in liquid culture. The strains belonged to the first group including Myxococcus, Corallococcus, Angiococcus, Archangium, Cystobacter, Melittangium and Stigmatella were usual pieces or floe in liquid culture, while strains of the other group including Hapoangium, Nannocystis, Polyangium, Sorangium and Chondromyces were spheriform
    mostly.
    The effect of three methods for extracting total DNA of Myxobacteria which were Acetone isolation method .Alkaline lysis method and innovative NaOH-CTAB method was compared. The NaOH-CTAB method can destroy cell wall of Myxobacteria more drastically and wipe off extracellular amylose more effectively than by Acetone
    
    
    
    
    isolation method and Alkaline lysis method which offer total DNA of high quality for the study of molecular biology of Myxobacetia.
    Six strains(serial numbers were YN34, YN65, YN76, YN112, BD85, BD105) which had the inhibitory activity to the tumour belonged to Myxococcus according to their shapes and their total DNA were extracted by the NaOH-CTAB method. The 16S rDNA sequencing analyses of them was carried out. Complete sequences of them were obtained and phylogenesis analyses were carried out of Myxococcus, their phylogenetic position was determined. We did also G+Cmol%, physiological and biochemical characteristics tests. The results show that the 6 strains should be clustered into the genus Myxococcus; YN34, YN112 and BD105 had close relationship and their sequence similarity were 100%, the most closed strain was Myxococcus fulvus AJ233919; YN65 was similar to Myxococcus macrosporus; YN76 was closed to YN34, YN112 and BD105 and their sequence comparability were 99.86%; BD85 similar to Myxococcus xanthus. G+CmoI% of the 6 strains were in the range of 65% to 69%.
    The 16S rDNA sequences results were almost identical to the physiological and biochemical results, this conformed the importance of molecular, physiological and biochemical function in the taxonomy of Myxobacteria . While the physiological and biochemical function and other taxology methods were need to combined for the exist of some differences between them.
引文
[1] Link H F. Observation in Ordines plantarum naturales. Dissertatio Ima.complectens Ansnfrarum ordines Epiphtas, Mucedines Gastomycis et Fungos. Der Gesellschaft Naturforschender Ferunde zu Berlin Magazin fur die neuesten Entdeckungen in der gesamten Naturkunds 3:3-42+2 plates (in Latin; on Polyangium: p.42 and Fig.65). 1809
    [2] Berkeley, M. J. Introduction to Cryptogamic Botany (on Stigmatella and Chondromyces). H. Bailliere Publishers, London. 1857, 313-315
    [3] Thaxer R. Bot. Gaz. On the Myxobacteriaceae, a new order of Schizomycetetes. 1892,17:389-406
    [4] Reiehenbach, H. and Dworkin, M. Induction of myxospore formation in Stigmatella aurantiaca (Myxobacterales) by monovalent cations. J. Bacteriol, 1970, 101:325-326
    [5] Reichenbach, H. and H(?)fle, G. The gliding bacteria: a treasury of secondary metabolites. In: Bioactive Metabolites from Microorganisms(Bushell, M.E. and Gr(?)fe, E., Eds), Elsevier, Amsterdam. 1989, 79-100
    [6] Dworkin, M. Recent advances in the social and developmental biology of the myxobacteria. Microbiol, 1996, Rev. 60: 70-102
    [7] 微生物学词典.北京:科学出版社.1990.9(1)版:215
    [8] Reichenbach, H. Biology of Myxobacteria: Ecology and Taxonomy, In: Myxobacteeria Ⅱ, Dworkin M and Kaiser D. Am Soc Microbial Washington DC. 1993, 13-62
    [9] Reichen Bach H, Dworkin M. The Myxobacteria. In: Bclous Act al ed. The prokaryote 2nd ed. New York, Springer-Verlay. 1992, 3418-3487
    [10] Brockman, E.R. Fruiting myxobacteria from the South Carolina Coast. J. Bacteriol,1967, 94: 1253-1254
    [11] Ruekert, G. Zur Verbreitung von Fruchtkorper -bildenden Myxobacterien in europaischen Strand-und Dunenboden. Abl. Bakteriol.,2.Abt. 1975b, 130:343-347
    [12] Ruckert, G. Myxobakerien in Boden extremer Biotope. Mitt. deutsch. Bodenkundl. Gesellsch. 1983, 38: 179-184
    [13] Reichenbach, H. and Dworkin, M. The Myxobacteria. In: Truper H G, Dworkin M, Harder W
    
    et al. The Prokaryotes[M]. Second Edition. Berlin: Springer-Veerlag. 1992, 3416
    [14] 李越中,张勇,胡玮,周璐.海洋粘细菌-1 菌株生长及活性物质产生条件的分析.中国抗生素杂志,2001,26(2):134-137
    [15] IizukaT, JojimaY, FudouR, etal. Isolationof myxobacteria from the marine environment[J]. FEMSMicrobiolLett, 1998, 169: 317
    [16] 李越中,陈琦.海洋微生物的多样性.生物工程进展,1998,18:34
    [17] 李越中,李健.我国粘细菌资源的分离与鉴定.微生物学报,2000,40(6):652-656
    [18] John G. Holt, Noel R. Krieg, Peter H. Sneath et al. Bergey's Manual of Systematic Bacteriology. Ninth edition. Williams&Wilkins. The Fruting, Gliding Bacteria:The Myxobacteria. 1994, 515-525
    [19] Shimkets L J. AnnuRevMicrobiol, 1999,53:525-549
    [20] 周璐,李越中,李健.粘细菌生物活性物质研究进展.生物化学与生物物理进展,1999,26(6):544-547
    [21] Reichenbach, H. and Dworkin, M. The myxobacteria. In: The Prokaryotes(Starr, K. P., Stolp, H., Trper, H.G., Belows, A. and Schlegel, H.G., Eds.), Springer, New York 1991,4: 3415-3487.
    [22] Rosenberg E. Ed. Myxobacteria Development and Cell Interaction. Springer, New York. 1984, 65-68
    [23] 胡玮,李越中,张禹清,吴斌辉.细菌的细胞程序性死亡.微生物学报,2002,42(2):255-258
    [24] Wolfgang Dawid. Biology and global distribution of myxobacteria in soils FEMS Microbiology Reviews, 2000, 24:403-427
    [25] Shimkets, L.J. Social and developmental biology of the myxobacteria. Microbiol, 1990, Rev. 54: 473-501
    [26] 陈锡时,李颐.粘细菌的滑行运动及其分子生物学研究进展.微生物学通报,1998,25(5):292-294
    [27] Lunsdrof H. and Reichenbach H. J. Gen Microbiol, 1989,135:1633-1641
    [28] 李越中,李健.粘细菌的分离与纯化.微生物学通报,1997,24(4):237-240
    [29] 周璐.粘细菌的研究.山东大学97级硕士学位论文,24-27
    [30] Reichenbach H. A simple method for the purification of myxobacteria. J. Microbiol Meth, 1983,
    
    1:77-79
    [31] Singh, B.N. and Singh, N.B. Distribution of fruiting myxobacteria in Indian soils, bark of trees and dung of herbivorous animals. Indian J. Microbiol, 1971,11:47-92
    [32] Dawid, W. Vorkommen und Verbreitung fruchtkrperbildender Myxobakterien im Siebengebirge. Z.Allg. Mikrobiol, 1979,19:705-719
    [33] Nellis, L.E and Garner, H.R. Methods of isolation and purification of Chondromyces. J. Bacteriol, 1964, 87:230-231
    [34] LiPing Zhang, HaiYing Wang, XiaoMei Fang, Erko Stackebrandt and YanBo Ding. Improved methods of isolation and purification of myxobacteria and development of fruiting body formation of two strains. Journal of Microbiological Methods, 2003,54(1): 21-27
    [35] 李季伦,张伟心,杨启瑞,等.微生物生理.北京:中国农业大学出版社,1993,535-541
    [36] Sporer C, ReichBach H, Stankebrandt E. Int J Syst Bacteriol, 1999,49:1255-1262
    [37] Keller K H,M. Grady, and M.Dworkin. Surface tension gradients: feasible model for gliding motility of Myxococcus xanthus. J.Bacteriol, 1983,155:1358-1366
    [38] Lampky, J R, and E R Brockman. Fluorescence of Myxococcus stipitatus. Int syst Bacteriol, 1977, 27: 161
    [39] Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus anxthus. Proc.Natl. Acad.Sci.Usa, 1979,76:5952-5956
    [40] Kaiser D. Spriger-Verlag, New York. Genetics of Myxobacteria. Development and cell interactions, 1984a
    [41] Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Regulation of multicellular development in Myxobacteria, In: R.Loscck and L.Shapiro(ed), Microbial development, 1984b, 197-218
    [42] Breton A M,S Jaoua,and J Guespin-Miehel. Transfer of plasmid RP4 to Myxococcus xanthus and evidence for its integration into the chromosome: J.Bacteriol, 1985,161: 523-528
    [43] Dhundale A, Lampson B, Furuich T, et al. Cell, 1987,51:1105-1112
    [44] Inouye S, Herzer PJ, Inouye M. Two Independent Retrons with Highly Diverse Reverse Transcriptases in Myxococcus xanthus. Proc Natl Acad Sci USA, 1990, 87:942-945
    
    
    [45] 王意敏,刘志恒.微生物通报.放线菌的多相分类,1999,26(2):137-140
    [46] Nguimbi E, Li YZ, Gao BL, Li ZF, Wang B, Wu ZH,Yan BX,Qu YB,Gao PJ.16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strains. Syst Appl Microbiol, 2003,26(2): 262-268
    [47] McMurdy H D. Order Myxococals. In:Staley J T, et al. Bergey's manual of Systematic bacteriology, Baltimore: Williams and Wibkins, 1989, 2139-2170
    [48] Woese C R, Magrum L. J.Fox G E. Archaebacteria. J Mol Evol, 1978,11:245-252
    [49] H Van.den.Eynde,Y Van de Peer, H Vandenabeele, M Van Bogaert, and R De Wachter. 5S rRNA seguences of Myxobacteria and radioresistant bacteria and implications for eubacterial evolution, Int Syst Bacteriol, 1990,40(4): 399-404
    [50] Ludwig W, H H Schleifer, H Reichenbach, and E Stankebrandt. A phylogenetic analysis of the myxobacteria Myxococcus fulvus, Stigmatella aurantiaca, Cystobaeter fuscus, Sorangium cellulosum and Nannocystis exedens. Arch.Microbiol, 1983,135:58-62
    [51] Stankebrandt E, R G E Murrary, and H G Turper. Bacteriol,Rev. Proteobacteria classis nov., a name for the phylogenenic taxon that includes the "purple bacteria and their relatives". Int.J Syst, 1988, 38: 321-325
    [52] Ravenschlag, K., K. Sahm, J. Pernthaler, and R. Amann. High bacterial diversity in permanently cold marine sediments. Appl. Environ. Microbiol, 1999,65:3982-3989
    [53] von Wintzingerode, F., B. Selent, W. Hegemann, and U. B. Goebel. Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl. Environ. Microbiol. 1999, 65: 283-286
    [54] Robert A. Sanford, James R. Cole, and James M. Tiedje. Characterization and Description of Anaeromyxobacter dehalogenans gen. nov.,sp, nov., an Aryl-Halorespiring Facultative Anaerobic Myxobacterium. Applied and Environmental Microbiology, 2002,68(2): 893-900
    [55] Shimkets, L., and C. R. Woese. A phylogenetic analysis of the myxobacteria: basis for their classification. Proc. Natl. Acad. Sci. USA, 1992,89: 9459-9463.
    [56] Brosius, J., M. L. Palmer, E J. Kennedy, and H. F. Noller. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA, 1978,75:4801-4805
    
    
    [57] Reichenbach, H. and H(?)fle, G. Production of bioactive secondary metabolism. In: Dworkin , Kaiser D. Myxobacteria Ⅱ. Washington DC: American Society for Microbiology, 1993, 347-397
    [58] Egorov NS (translated by Rosinkin A). Antibiotics and their classification, In: Egorov NS. Antibiotics, a scientific approach. Moscow: Mir Publisher, 1985, 47-60
    [59] Reichenbach H. Biotechnology, 1988,6:115-121
    [60] H(?)fle, G. and Reichenbach, H. Biologically active substances from microorganisms. Sci.Ann.Rep.Gesellschaftf(?)rBiotechnolog.Forschung, Braunschweig. 1990, 5-22
    [61] Reichenbach, H. and Dworkin, M. The myxobacteria. In: The Prokaryotes(Starr, K.P., Stolp, H., Trper, H.G., Belows, A. and Schlegel, H.G., Eds.), Springer, New York 1991,4:3415
    [62] Reichenbach, H. and H(?)fle, G. Biologically active secondary metabotites from myxobacteria. Biotechnol. Adv, 1993,11:219-277
    [63] Herbert I., Rolf J., Klaus G. et al Disorazol A, an efficient inhibitor of eukaryotic organisms isolated from Myxobacteria. J.Antibiotics, 1995,48:21-25
    [64] 胡玮,李越中,张禹清,等.天然有机氮源对珊瑚状珊瑚球菌Cc9736生物活性组分产生的影响.中国抗生素杂志,2000,26(3):181-183
    [65] 李越中,Klaus Gerth,Hans Reichenbach. 纤维堆囊菌So ce90菌株发酵合成新型抗癌物质epothilones的营养控制.中国抗生素杂志,1998,23(6):420-424
    [66] 陈锡时,韩梅,Femando de Castro. 理化因子对橙色粘球菌色素形成的影响.沈阳农业大学学报,1999,30(2):106-108
    [67] Herbert I., Rolf J., Klaus G. et al Chivosazol A, an new inhibitor of eukaryotic organisms isolated from Myxobacteria. J.Antibiotics. 1995, 60: 803-816
    [68] Hodgkin, J. & Kaiser, D. Mol. Gen. Genet, 1979, 172: 177-191
    [69] W Shi and DR Zusman. The Two Motility Systems of Myxococcus xanthus Show Different Selective Advantages on Various Surfaces. Proceedings of the National Academy of Sciences, 1993, 90: 3378-3382
    [70] Daniel Wall and Dale Kaiser. Alignment enhances the cell-to-cell transfer of pitus phenotype. PNAS, 1998,95(6): 3054-3058
    
    
    [71] Mark J. McBride. BACTERIAL GLIDING MOTILITY: Multiple Mechanisms for Cell Movement over Surfaces. Annu. Rev. Microbiol, 2001, 55: 49-75
    [72] Daniel Wall, Paul E. Kolenbrander, and Dale Kaiser. The Myxococcus xanthus pilQ (sglA) Gene Encodes a Secretin Homolog Required for Type Ⅳ Pilus Biogenesis, Social Motility, and Development. Journal of Bacteriology, 1999, 181(1): 24-33
    [73] Zhaomin Yang, Xiaoyuan Ma, Leming Tong, Heidi B. Kaplan, Lawrence J. Shimkets, and Wenyuan Shi. Myxococcus xanthus dif Genes Are Required for Biogenesis of Cell Surface Fibrils Essential for Social Gliding Motility. Journal of Bacteriology, 2000,182(20): 5793-5798
    [74] Gregory J. Velicer, Richard E. Lenski, and Lee Kroos. Rescue of Social Motility Lost during EvolutiOn of Myxococcus xanthus in an Asocial Environment. Journal of Bacteriology, 2002,184(10): 2719-2727
    [75] Robby M. Weimer, Chad Creighton, Angela Stassinopoulos, Philip Youderian, and Patricia L. Hartzell. A Chaperone in the HSP70 Family Controls Production of Extracellular Fibrils in Myxococcus xanthus. Journal of Bacteriology, 1998,180(20): 5357-5368
    [76] Yoshio Kimura, Saori Ishida, Hideki Matoba and Naoki Okahisa. RppA, a transducer homologue, and MmrA, a multidrug transporter homologue, are involved in the biogenesis and/or assembly of polysaccharide in Myxococcus xanthus. Microbiology, 2004,150:631-639
    [77] Patricia L. Hartzell. Complementation of sporulation and motility defects in a prokaryote by a eukaryotic GTPase. Proc. Natl. Acad. Sci. USA, 1997,94:9881-9886
    [78] Zhaomin Yang, Yongzhi Geng, and Wenyuan Shi. A DnaK Homolog in Myxococcus xanthus Is Involved in Social Motility and Fruiting Body Formation. J Bacteriol, 1998,180(2): 218-224
    [79] Anders Boysen, Eva Ellehauge, Bryan Julien, and Lotte S(?)gaard-Andersen. The DevT Protein Stimulates Synthesis of FruA, a Signal Transduction Protein Required for Fruiting Body Morphogenesis in Myxococcus xanthus. Journal of Bacteriology, 2002,184(6): 1540-1546
    [80] Oleg A. Igoshin, Roy Welch, Dale Kaiser and George Oster. Waves and aggregation patterns in myxobacteria. PNAS, 2004, 101(12): 4256-4261
    [81] Roy Welch and Dale Kaiser. Cell behavior in traveling wave patterns of myxobacteria. Proc. Natl. Acad. Sci. USA, 2001,98(26): 14907-14912
    
    
    [82] Oleg A. Igoshin, Alex Mogilner, Roy D. Welch, Dale Kaiser, and George Oster. Pattern formation and traveling waves in myxobacteria: Theory and modeling. Proc. Natl. Acad. Sci. USA, 2001, 98(26): 14913-14918
    [83] Kim SK, Kaiser D. C-factor: a cell-cell signaling protein required for fruitingbody morphogenesis of M. xanthus. Cell, 1990, 61(1): 19-26
    [84] Lotte S(?)gaard-Andersen and Dale Kaiser. C factor, a cell-surface-associated intercellular signaling protein, stimulates the cytoplasmic Frz signal transduction system in Myxococcus xanthus. PNAS, 1996, 93(7): 2675-2679
    [85] Yongzhi Geng, Zhaomin Yang, John Downard, David Zusman, and Wenyuan Shi. Methylation of FrzCD Defines a Discrete Step in the Developmental Program of Myxococcus xanthus. Journal of Bacteriology, 1998,180(21): 5765-5768
    [86] Mandy J. Ward, Kenny C. Mok, and David R. Zusman. Myxococcus xanthus Displays Frz-Dependent Chemokinetic Behavior during Vegetative Swarming. J Bacteriol,1998, 180(2): 440-443
    [87] M.J.Ward, H.Lew, A.Treuner-Lange, and D.R.Zusman, J.Bacteriol, 1998,180:5668-5675
    [88] Mandy J. Ward, Helen Lew, and David R. Zusman. Disruption of aldA Influences the Developmental Process in Myxococcus xanthus. Journal of Bacteriology, 2000, 182(2): 546-550
    [89] Anders Boysen, Eva Ellehauge, Bryan Julien, and Lotte S(?)gaard-Andersen. The DevT Protein Stimulates Synthesis of FruA, a Signal Transduction Protein Required for Fruiting Body Morphogenesis in Myxococcus xanthus. Journal of Bacteriology, 2002, 184(6): 1540-1546
    [90] Lisa Gorski, Thomas Gronewold, and Dale Kaiser. A (?)54 Activator Protein Necessary for Spore Differentiation within the Fruiting Body of Myxococcus xanthus. Journal of Bacteriology, 2000, 182(9): 2438-2444
    [91] Hong Sun and Wenyuan Shi. Genetic Studies of mrp, a Locus Essential for Cellular Aggregation and Sporulation of Myxococcus xanthus. Journal of Bacteriology, 2001, 183(16): 4786-4795
    [92] Anders A. Rasmussen and Lotte S(?)gaard-Andersen. TodK, a Putative Histidine Protein Kinase, Regulates Timing of Fruiting Body Morphogenesis in Myxococcus xanthus. Journal of
    
    Bacteriology, 2003, 185(18): 5452-5464
    [93] Gronewold TM, Kaiser D. The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol, 2001, 40(3): 744-56
    [94] Sune Lobedanz and Lotte S(?)gaard-Andersen .Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes and development, 2003, 17: 2151-2161
    [95] Toshiyuki Ueki and Sumiko Inouye. Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. PNAS, 2003, 100(15): 8782-8787
    [96] Takayuki Horiuchi, Masato Taoka, Toshiaki Isobe, Teruya Komano, and Sumiko Inouye. Role of fruA and csgA Genes in Gene Expression during Development of Myxococcus xanthus. J. Biol. Chem, 2002, 277(30): 26753-26760
    [97] L Plamann, A Kuspa and D Kaiser. Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J. Bacteriol., 1992, 174(10): 3311-3318
    [98] Davis JM, Mayor J, Plamann L. A missense mutation in rpoD results in an A-signalling defect in Myxococcus xanthus. Mol Microbiol, 1995, 18(5): 943-52
    [99] L Plamann, Y Li, B Cantwell and J Mayor. The Myxococcus xanthus asgA gene encodes a novel signal transduction protein required for multicellular development. J. Bacteriol, 1995, 177(8): 2014-2020
    [100] Baruch Z. Harris, Dale Kaiser, and Mitchell Singer. The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes and Development, 1998, 12(7): 1022-1035
    [101] Ingrid M. Keseler and Dale Kaiser. (?)54, a vital protein for Myxococcus xanthus. Proc. Natl. Acad. Sci. USA, 1997, 94: 1979-1984
    [102] John R. Kirby and David R. Zusman. Chemosensory regulation of developmental gene expression in Myxococcus xanthus. PNAS, 2003, 100(4): 2008-2013
    [103] Kyungyun Cho, Anke Treuner-Lange, Kathleen A. O'Connor, and David R. Zusman. Developmental Aggregation of Myxococcus xanthus Requires frgA, an frz-Related Gene. Journal of
    
    Bacteriology, 2000, 182(23): 6614-6621
    [104] Anthony G. Garza, Jeffrey S. Pollack, Baruch Z. Harris, Albert Lee, Ingrid M. Keseler, Ellen F. Licking, and Mitchell Singer. SdeK Is Required for Early Fruiting Body Development in Myxococcus xanthus. Journal of Bacteriology, 1998, 180(17): 4628-4637
    [105] Jeffrey S. Pollack and Mitchell Singer. SdeK, a Histidine Kinase Required for Myxococcus xanthus Development. Journal of Bacteriology, 2001, 183(12): 3589-3596
    [106] Hong Sun and Wenyuan Shi. Analyses of mrp Genes during Myxococcus xanthus Development. Journal of Bacteriology, 2001, 183(23): 6733-6739
    [107] Bryan Julien, A. Dale Kaiser, and Anthony Garza. Spatial control of cell differentiation in Myxococcus xanthus. PNAS, 2000, 97(16): 9098-9103
    [108] Yoshio Kimura,Yukako Mishima, Hiromi Nakano, and Kaoru Takegawa. An Adenylyl Cyclase, CyaA, of Myxococcus xanthus Functions in Signal Transduction during Osmotic Stress. Journal of Bacteriology, 2002, 184(13): 3578-3585
    [109] Ueki T, Inouye S. SigB, SigC, and SigE from Myxococcus xanthus homologous to sigma32 are not required for heat shock response but for multicellular differentiation. J Mol Microbiol Biotechnol, 2001, 3(2): 287-93
    [110] Tong Hao, Dvora Biran, Gregory J. Velicer, and Lee Kroos. Identification of the Ω4514 Regulatory Region, a Developmental Promoter of Myxococcus xanthus That Is Transcribed In Vitro by the Major Vegetative RNA Polymerase. Journal of Bacteriology, 2002,184(12): 3348-3359
    [111] Nora B. Caberoy, Roy D. Welch, Jimmy S. Jakobsen, Steven C. Slater, and Anthony G. Garza. Global Mutational Analysis of NtrC-Like Activators in Myxococcus xanthus: Identifying Activator Mutants Defective for Motility and Fruiting Body Development Journal of Bacteriology, 2003, 185(20): 6083-6094
    [112] John K. Cusick, Elizabeth Hager, and Ronald E. Gill. Characterization of bcsA Mutations That Bypass Two Distinct Signaling Requirements for Myxcococcus xanthus. Development. Journal of Bacteriology, 2002, 184(18): 5141-5150
    [113] Hager E, Tse H, Gill RE. Identification and characterization of spdR mutations that bypass the BsgA protease-dependent regulation of developmental gene expression in Myxococcus xanthus. Mol
    
    Microbiol, 2001, 39(3): 765-80
    [114] 卢振祖.细菌分类学.形成子实体的滑行细菌—粘细菌,1994,267-273
    [115] Rukert, G. Myxobakterien-Artenspektren von Boden in Abhangigkeit von bodenbildenden Faktoren unter besonderer Berucksichtigung der Bodenreaktion. Zschr. Pflanzenemahr. Bodenk. 1979, 42: 330-343
    [116] Rukert, G., and G, Heym. Bakteriotrophe Myxobakterien In ariden Substraren. Karlsruher Geographische Heft, 1977, 8: 101-111
    [117] Bolllag D M, McQucncy P A, Zhu J et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res, 1995, 55(11): 2325-2333
    [118] Muhlradt P F, Sasse F. Epothilone B stabilizes micro-tubule of macrophages like taxol without showing taxol-like endotox in activity. Cancer Res, 1997, 57: 3344
    [119] Mann J. Myxobacteria bounty. Nature, 1997, 385: 117
    [120] 胡玮,李越中.珊瑚状珊瑚球菌Cc9736抗肿瘤活性组分的分离纯化.中国抗生素杂志,2000,25(4):309-311
    [121] 李永明,赵玉琪著,实用分子生物学方法手册[M].李电东译.北京:科学出版社.1998.6(1)版:169
    [122] 李丹,凌定厚.五种提取马尾松基因组DNA方法的比较.植物学通报,2000,17(2):168-173
    [123] Kutehma, A. J., Roberts, M. A., Knaebel, D. B., Crawford, D. L. Small-scale isolation of genomic DNA from Streptomyces mycelia or spores. Biotech, 1998, 24: 452-457
    [124] Couch J A. Isolation of DNA from plant high polyphenolie. Plant Molecular Biology Reporter, 1990, 8: 8-12
    [125] 郭宝林,李家实,阁玉凝.中药材DNA分子标记研究的技术问题Ⅰ.植物药基因组DNA的提取.中草药,2000,31(12):951-954
    [126] 李晓波,冯波,张朝晖,等.植物药材总DNA提取.中草药,2002,33(7):652-654
    [127] 宋敏,张云孙,胡卫红.4种提取水稻基因组DNA方法的比较.云南大学学报,2001,23(1):74-76
    [128] 洪付祥,徐金森,熊玲媛,等.鹤望兰基因组DNA的提取方法.应用与环境生物学报,2002,8(4):366-370
    
    
    [129] 江玉姬,谢宝贵,陈文校.草菇DNA提取方法初探.福建农业学报,2000,15(2):61-64
    [130] 农向群.快速提取白僵菌DNA方法的比较与改进.中国病毒学,2000,15:126-129
    [131] 单志萍,孟妤,姜文侯.丝状真菌三孢布拉霉DNA的提取研究.生物技术,2001,11(3):5-7
    [132] Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., Higgins, D. G.. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 25: 4876-4882
    [133] Page, R. D.. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci, 1996, 12: 357-358
    [134] Lyudmila, I. E., Taran, V. V., Akimov, V. N., Kroppenstedt, R. M., Tiedje, J. M., & Stackebrandt, E.. Nocardiopsis tropica sp. nov., Nocardiopsis trehalosi sp. nov., nom. rev. and Nocardiopsis dassonvillei subsp, albirubida subsp, nov., comb. nov.. Int J Syst Environ Microbiol, 2000, 50: 73-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700