用户名: 密码: 验证码:
玉米木质素合成相关基因在干旱胁迫下的差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱是玉米生产的主要非生物限制因素。耐旱性是众多形态结构与生理生化性质综合作用的结果,其分子机制非常复杂。研究玉米耐旱性的分子遗传特性,克隆与耐性相关的基因,研究其在干旱胁迫条件下的表达特性,可为功能基因选择标记的开发提供依据,以期通过分子标记辅助选择改良提高耐旱性。
     本研究以玉米耐旱自交系“81565”和不耐旱自交系“200B”为材料,用16%PEG模拟干旱处理,正常浇水为对照,分别于胁迫17,24和48h,取芯叶下第一片叶提取总蛋白。用等电聚焦和SDS-聚丙烯酰胺凝胶双向电泳分离总蛋白样品,GS-170光密度成相系统扫描2-DE凝胶,然后用PDQuest-6.0图象分析软件比对分析耐旱自交系和不耐旱自交系在干旱胁迫与对照条件下叶片蛋白质的表达差异。从12块样品胶生成的参照图谱中鉴定出的500多个蛋白点中,有58个在干旱胁迫条件下差异表达。其中,蛋白点2506,3507和4506在干旱胁迫下被诱导表达,最高表达量出现在胁迫24h。将这3个蛋白点酶切后,用基质辅助激光解吸离子化-飞行时间质谱(MALDI-TOF-MS)根据酶切片段荷质比的不同来测定其分子量。然后在Mascot和Ms-Fit数据库中比对,根据MOWSE分值来鉴定蛋白质。点2506、3507和4506与拟南芥肉桂醇脱氢酶(CAD)、拟南芥细胞色素96A8(CYP96A8)和Elaeagnus umbellata的S-腺苷酸-L-甲硫氨酸合成酶(SAMS)的序列比对结果,MOWSE分值分别为66、68和68。
     因为上述三个功能蛋白都参与木质素生物合成,所以在分析木质素合成途径生化过程的基础上,我们用实时定量PCR技术分析了耐旱性不同的玉米自交系,在干旱胁迫条件下,木质素合成关键酶—肉桂醇脱氢酶(CAD)和咖啡酸-O-甲基转移酶(COMT)的mRNA表达差异。在耐旱自交系“81565”、“200B”和“87-1”中,CAD和COMT的表达量在胁迫初期都有大幅度下降,但随着胁迫时间延长表达量又会明显回升;而在不耐旱自交系“丹340”中,CAD和COMT的表达量在胁迫初期大幅度下降后就再也没有明显的回升。
     为在表型上进一步分析木质素合成与耐旱性的关系,我们选用“81565”、“87-1”、“200B”、“18-599”、“18-599M”和“ES40”6个耐旱性不同的玉米自交系,在不同干旱胁迫强度及正常浇水条件下,测定叶片本质素含量,同时调查雌雄花期间隔和单株籽粒产量,并转换为耐旱系数进行相关分析。结果表明,耐旱性不同的自交系的叶片木质素含量对干旱胁迫的反应大不相同。在干旱胁迫条件下,耐旱性较强的自交系木质素含量显著升高,平均耐旱系数较大,耐旱性中等的自交系木质素含量比正常灌水对照略有升高,耐旱性较弱的自交系木质素含量与对照相当或下降。在中等干旱和严重干旱条件下,叶片木质素含量平均耐旱系数与单株籽粒产量和雌雄花期间隔耐旱系数的相关系数,分别为r=0.848和r=0.889,均达显著水平。
     综上所述,叶片的木质化是玉米对干旱胁迫的一种主动防御反应,木质素合成相关基因的差异表达与不同自交系的耐旱性有关,是造成其耐旱性差异的原因之一。在进一步研究这些基因与耐旱性分子遗传机制关系的基础上,可根据其在不同自交系中的单核苷酸多态性及表达调控方面的差异,开发功能基因选择标记,应用于玉米耐旱育种的分子标记辅助选择。
Drought is the most widespread abiotic constraints in maize production. The molecular mechanism is believed to be complex because drought tolerance is the result of cooperative interactions among multiple morphological, physiological and biochemical characters. Information of molecular genetic properties, cloning and differential expression of drought-tolerant candidate genes is useful to selection marker development of functional genes and their application to marker assisted selection to improve drought tolerance in maize.
     Drought-tolerant inbred line '81565' and sensitive line '200B' were treated by using 16% PEG to simulate drought stress at 7 leaf stage, with well-watering control. The top first fully open leaf was sampled at 17, 24 and 48 h after drought treatment for total protein extraction. The total protein samples were separated by two-dimensional electrophoresis of isoelectric focusing and SDS-polyacrylamide gel, scaned by GS-170 scan system and analysed by PDQuest-6.0 image analying software for their differential expression in drought tolerant and sensitive inbred lines under drought stress and well-watering control. More than 500 protein spots were identified from the consensus master map constructed from 12 scaned images. Fifty-eight of them were found in response to drought stress. The expression of spot 2506, 3507 and 4506 was induced under drought stress. The highest expression amount was found at 24 h of drought stress. These three protein spots were digested and used for measurement of mass to charge ratio and molecular weight by MALDI-TOF-MS. Alignment was conducted against Mascot and Ms-Fit databases and MOWSE scores were used for protein identification. The result showed that spots 2506, 3507 and 4506 had MOWSE scores of 66, 68 and 68 with cinnamyl alcohol dehydrogenase (CAD), cytochrome protein 96A8 (CYP96A8) and S-adenosyl-L-methionine synthase (SAMS), respectively.
     Because these three functional proteins are involved in lignin biosynthesis, we used real time PCR technique to analyse the mRNA differential expression of two key enzymes in lignin biosynthesis pathway, cinnamyl alcohol dehydrogenase (CAD) and caffeic acid 3-O-methyltransferase (COMT), in different inbred lines under drought stress. In drought-tolerant lines '81565', '200B' and '87-1', the expression of CAD and COMT showed an obvious picking up after the significant decrease at the early stage of drought stress. However, in sensitive line 'Dan340', this kind of picking up was not found after the decrease at the early stage.
     To analyse the phenotypic relationships between lignin biosynthesis and drought tolerance, leaf lignin content, anthesis-silking interval and per plant grain yield were investigated with inbred lines '81565', '87-1', '200B', '18-599', '18-599M' and 'ES40' of different drought tolerance under strong and moderate drought stress as well as well-watered control, and converted into drought tolerant coefficients for correlation analysis. Significant difference was found in the response of leaf lignin content of inbred lines with different drought tolerance to drought stress. Under drought stress, the leaf lignin content of highly tolerant inbred lines increased significantly with a high average drought coefficient, the leaf lignin content of intermediate tolerant inbred lines increased slightly, while the leaf lignin content of drought sensitive inbred lines matched with the well-watered control or decreased slightly. Under the strong and moderate drought stress, significant correlation coefficients (r = 0.848 and r = 0.889) were estimated between the average drought tolerant coefficient of leaf lignin content and the drought tolerant coefficients of per plant grain yield and anthesis-silking interval.
     As a conclusion, lignification of leaf can be speculated to be a kind of active response of maize to drought stress. The differential expression of the candidate genes to lignin biosynthesis is relative to drought tolerance of different inbred lines. Based on detail research on the relation of these genes to molecular genetic mechanism of drought tolerance, selection markers of functional genes can be developed according to the difference of single nucleotide polymorphism and expression regulation among different inbred lines, and applied to molecular assisted selection of drought tolerance breeding in maize.
引文
1.G.O.Edmeades,J.Bolanos,M.Hernandez,Causes for silk delay in a lowland tropical maize popμlation,Crop Sci.33(1993)1029-1035.
    2.Yang FY Maize climate condition assessment.In:National Climate Center(eds).China climate impact assessment.Beijing,Meteorology Press,2004,pp73-79
    3.Blum A;Crop responses to drought and the interpretation of adapta-tion;Plant Growth Regul;1996
    4.王晓琴,袁继超,熊庆娥;玉米抗旱性研究的现状及展望;玉米科学;2002年01期
    5.Yoshiba Y,Kiyosue T.Correlation between the induction of a gene for pyrrodine-5-carboxy latesynthetase and the accumoation of proline in A.thaliana under osmotic stress.Plant J,1995,7(5):751-760
    6.Asada K.Production and action of active oxygen in photosynthetic tissue,CRC Press,Boca Raton FL,1994,pp.77-104
    7.蒋明义,荆家海,王韶唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响.植物生理学报,1991,17:80-84
    8.万东石,李红玉,张立新,梁厚果:Gene expression and signal transduction of plants under drought stress in vivo.西北植物学报2003年01期
    9.Shinozaki K,Dennis E S.Cell signalling and gene regulation global analyses of signal transduction and gene expression profiles.Current Opinion in Plant Biology,2003,6:405-409.
    10.张蕾,吕应堂;植物受体蛋白激酶的研究进展《生命科学》-2002年14卷2期,94
    11.陈硕,陈珈,王学臣,CHEN Shuo,CHEN Jia,WANG Xue-Chen玉米根尖细胞液泡膜结合的蛋白激酶的存在及其性质Existence and Characteristics of Tonoplast-bound ProteinKinase in the Tip Cell of Maize Root
    12.Schwacke R,Grallath S,Breitkreuz KE,et al.LeProT 1,a transporter for proline,glycine betaine,and y-amino butyricarid in tnmatn nn11Pn.Plant Cell,1999,33(9):77-91
    13.Verslues PE,Sharp RE.Proline accumoation in maize(Zea mays L)primary roots at low water potentials.11.metabolic source of increased proline deposition in the elongation zone.Plant Physiol,1999,119:1349-1360
    14.Maurel C.Aquaporins and water permeability of plant membranes.Rev Plant Physiol PlantMol Biol,1997,48:399-429
    15.Hsing YC,Chen Z,Chow T.Nucleotide sequences of a soybean complementary DNA encoding a 50-Kilodalton late embryogenesis abundant protein.Plant Phvcinl,1992,99:350-355
    16.Straub PF,Shen QX,Ho T-HD.Structure and promoter analysis of an ABA-and stress-regμlated barley gene HVA I.Plant Mol Biol,1994,26:617-630
    17.Kaji N,Kuwabara C,Takezawa D,et al.Cold acclimation2in2duced WAP27 localized in endoplasmic reticμlum in cortical parenchyma cells of mμlberry tree was homologous to group3late-embryogenesis abundant proteins.Plant Physiol,2001,126(4):1588-1597
    18.Bressan,et al.Hormonal Regulation of Protein Synthesis Associated with Salt Tolerance in Plant Cells PNAS,1987,84:739-743
    19.何宝坤,李德全.植物渗调蛋白的研究进展.生物技术通报,2002,(02)
    20.Kazuko Yamaguci-Shinozaki,Mie Kasuga,et al.Biologial mechanisms of drought stress response.JIRCAS Working Report,2002,1-8
    21.Kluge and Ting,1979.Grassulacean acid metabolism.Springerverlag,Berlin
    22.Jacqueline G P,Deborah G.Lignin genetic engineering revisited.Plant Science,1999,145,51-65.
    23.中野三编,高洁,鲍禾,李忠正译.木质素的化学[M].北京:轻工业出版社,1988
    24.Mechin V Hebert Y Hebert Y Genetic analysis of QTL mapping of cell wall digestibility and lignification in silage maize,Crop Science,2001/41/P 690-697
    25.S.A.Campbell,D.E.Crone,T.L.Ceccardi,T.J.Close,A ca.40kDa maize(Zea mays L.)embryo dehydrin is encoded by the dhn2 locus on chromosome 9,Plant Mol.Biol.38(1998)417-423.
    26.Bate N,Orr J,Ni W.Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis.Proc Natl Acad Sci USA,1994,91:7608-7612
    27.Sewalt V J H,et al.Lignin impact on fiber degradation:Increased enzymatic digestibility of genetically engineered tobacco stems re-duced in lignin content.J of Agricμltural and Food Chemistry(1997)45:1977
    28.L-G.Li,J.L.Popko,X.-H.Zhang,K.Osakabe,C.-J.Tsai,C.P.Joshi,V.L.Chiang,A novel mμltifunctional O-methyltransferase implicated in a dual methylation pathway associated with lignin biosynthesis in loblolly pine.Plant Biol.94(1997)5461-5466
    29.Schmitt D,Pakusch A E,Matern U.Molecμlar cloning,induction and taxonomic distribution of caffeoyl_CoA 3_O_methyltransferase,an enzyme involved in disease resistance.J Biol Chem, 1991,266:17416-17423.
    30.Laigeng Li,Yuriko Osakabe,Chandrashekhar P et al.Secondary xylem-specific expression of caffeoyl-coenzyme a 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine.Plant Molecμlar Biology,1999,40(4):555-565
    31.Bjellqvist,B.,Ek,K.,Righetti,PG et al.Isoelectric focusing in immol/Lol/Lobilized pH gradients:principle,methodology and some applications.J.Biochem.Biophys.Methods,1982,6(4):317-339
    32.王台,童哲.双向聚丙烯酰胺凝胶电泳中的问题及解决方法.植物生理学通讯,1994,30:283-285
    33.Drake TJ,Tan W.Molecular beacon DNA probes and their bioanalytical applications.Appl Spectrosc,2004,58:269-280.
    34.Yamamoto H,Itoh F,Sakamoto H,et al;Association of reduce cell adhesion regμlator messenger RNA expression with tumor progression in human hepatoeellμlar carcinoma;Gastroenterology;1997年
    35.Hardick J,Yang S,Lin S.Use of the Roche LightCyeler instrument in a real-time PCR for Trichomonas vaginalis in urine samples from females and males.J Clin Microbiol,2003,41(12):5619-5622.
    36.Amutan,M.and Batey,D.Real-time quantification of lamda and human genomic DNA using DyNAzyme Ⅱ DNA polymerase in combination with SYBR Green Ⅰ dye.Application Note Vol.1,No.1.MJ Research,Inc.(2002).
    37.朱元招 尹靖东 李德发 王凤来 抗草甘膦转基因大豆PCR定量检测研究 中国农业大学农业部饲料工业中心,北京,2005
    38.Weller S A Detection of root mat associated Agrobacterium strains from plant material and other sample types by post enrichment PCR 《Applied Microbiology》 2002/92/01 P 118-126
    39.Liu Yongming RT-PCR法测定脂肪组织解偶联蛋白mRNA表达水平的探讨 广西医科大学学报 1999年03期
    40.Seki M,Caminci P,Nishiyama Y,Hayashizaki Y,Shinozaki K.High-efficiency cloning Arabidopsis fμll-length cDNA by biotinylated CAP trapper.Plant J,1998,15:707-720.
    41.Ohara O,Dorit RL,Gilbert W.One-sided polymerase chain reaction:The amplification of cDNA.Proc Natl Acad Sci U S A,1989,86:5673.
    42.Borson N D,Salo W L,Drewes L R.A lock-docking oligo(dT)primer for 5' and 3' RACE PCR.PCR Meth Appl,1992,2:144.
    43.Fritz J D,Greaser M L,Wolff J A.Nucleic Acids Res,1991;19:3747
    44.Sanguinetti C J,Dias Nero,Simpson A J.Rapid silver staining and recovery of PCR products separated on polyacrylamide gels.Biotechniques,1994,17:914-921.
    45.Brenner S.The human genome:the nature of the enterprise.In Human Genetic Information:Science,Law and Ethics.Ciba Foundation Symposium,1990,149 6-12
    46.Adams MD,Kelley JM,Gocayne JD,et al:Complementary DNA sequencing:expressed sequence tags and human genome project.Science 1991,252:1651-6
    47.MS Boguski,TMJ Lowe,CM Tolstoshev.dbEST-database for 'expressed sequence tags'.Nature Genetics,1993,4:332-333
    48.Trilia T,Peterson MG,Kemp DJ.A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences.Nucleic Acids Research,1988,16(16):8186
    49.李竹红,刘德培,梁植权;改进的反向PCR技术克隆转移基因的旁侧序列;生物化学与生物物理进展;1999年06期;79-81
    50.Sergio Oliveira De P,Cristiane de M L,Maria P T,et al.One-Step RT-PCR protocols improve the rate of dengue diagnosis compared to Two-Step RT-PCR approache[J].J Clin Virol,2004,30:297-301
    51.B.Monties,K.Fukushima,The distribution,function and biosynthesis of lignin,in:M.Hofrichter,A.Steinbuchel(Ed.),Biopolymers,Volume Ⅰ:lignin,humic substances and CoAl,WILEY-VCH Verlag GmbH & Co.KGaA,Weinheim(2001)1-200.
    52.Hibino T,Shibata D,Chen JQ,Higuchi T.Cinnamyl alcohol dehydrogenase from Aralia cordata:cloning of the cDNA and expression of the gene in lignified tissues.Plant Cell Physiology,1993,34,659-66
    53.Yamada Y,Kuboi T:Significance of caffeic acid-O-methyltransferase in hgnification of cμltured tobacco cells.Phytochemistry 15:(1976)395-396.
    54.Proffitt J,Fenton J,Pratt G,et al.Isolation and characterisation of recombination events involving immunogiobulin heavy chain switch regions in multiple myeloma using long distance vectorette PCR (LDV-PCR). Leukemia, 1999, 13 : 1100 -1107.
    
    55. R.T. Cruz, W.R. Jordan, M.C. Drew, Structural changes and associated reduction of hydraulic conductance in roots of sorghum bicolor L. following exposure to water deficit. Plant Physiol. 99 (1992)203-212
    
    56. F. Riccardi, P. Gazeau, D.D. Vienne, M. Zivy, Protein Changes in response to progressive water deficit in maize quantitative variation and polypeptide identification, Plant Physiol. 117 (1998) 1253-1263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700