用户名: 密码: 验证码:
纳米粒子的制备及其与有序分子薄膜的组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米尺度组件的构筑与未来的纳米电子学和生物分子识别器件密切相关。将纳米粒子由材料转化为器件的过程中,必须将纳米粒子以某种方式固定或与其它基体复合起来,组装成预定二维结构的纳米有序薄膜。探索纳米有序薄膜的组装方法,研究纳米薄膜的特性与结构之间的关系,为纳米电子器件、微型光电材料等提供新的思路是当今纳米科技研究的前沿。
     本论文的研究目标是制备有序的纳米粒子复合薄膜,研究重点着眼于薄膜的有序性或图案化,并在此基础上与纳米粒子进行组装,并对其结构特性进行了表征。采用共沉淀法制备Fe_3O_4纳米粒子,将所得的Fe_3O_4纳米粒子分散在水中形成Fe_3O_4溶胶,研究Fe_3O_4溶胶的稳定性。以花生酸为成膜物质,Fe_3O_4溶胶为亚相,通过LB膜技术进行组装制备有序的纳米粒子复合薄膜。将Gemini阳离子表面活性剂分子与十二烷基苯磺酸钠(SDBS)改性的Fe_3O_4溶胶进行组装,制备有序的纳米粒子复合薄膜。采用布儒斯特角显微镜(BAM)原位监测了亚相Fe_3O_4溶胶气液界面上花生酸分子和Gemini分子成膜过程中单分子膜区域形貌的动态变化,分析其成膜过程。以巯基丙酸作稳定剂,采用水相法制备CdSe纳米晶,通过静电自组装方法制备PDDA/CdSe多层自组装膜,探索自组装膜的光学特性。
     本论文得到的主要结论如下:
     采用共沉淀法制备了粒径约为10nm、分布均匀的Fe_3O_4纳米粒子。将所得粒子分散到高纯水中获得Fe_3O_4溶胶,其等电点约为pH=6.9,浓度为0.96×10~(-5)mol·L~(-1)。测定了花生酸在纯水亚相上和Fe_3O_4溶胶(pH=4)亚相气/液界面上的π-A曲线。当以Fe_3O_4溶胶作为亚相时,相对于纯水亚相而言,由于表面带正电荷的Fe_3O_4纳米粒子受到花生酸分子中阴离子基团-COO~-的静电作用而进入花生酸单分子层内,花生酸单分子所占的面积由0.22nm~2提高到0.28nm~2;花生酸单分子层崩溃压从62mN·m~(-1)上升到67mN·m~(-1)。
     布儒斯特角显微镜观测花生酸单分子层在Fe_3O_4溶胶亚相上的成膜情况,结果表明当表面压较低时,花生酸两亲分子聚集形成岛状区域;当表面压增加至30mN·m~(-1)时,花生酸分子在Fe_3O_4溶胶亚相上形成完整的单分子膜;继续增大表面压,薄膜出现裂纹,单分子膜重叠,形成多层膜。选择表面压为30mN·m~(-1)时,利用花生酸分子与表面带正电的Fe_3O_4纳米粒子之间的相互静电作用,在花生酸单分子层内组装了分布较为均匀的Fe_3O_4纳米粒子。
     SDBS改性后Fe_3O_4粒子之间的团聚现象明显减轻,平均粒径约为10nm。所得Fe_3O_4溶胶的浓度为1.30×10~(-5)mol·L~(-1)。分别以高纯水和改性后的Fe_3O_4溶胶为亚相测定了Gemini单分子层的π-A曲线,Fe_3O_4粒子进入Gemini单分子层使得其平均单分子面积由1.00nm~2增大到1.28nm~2,崩溃压由34mN·m~(-1)升高到40mN·m~(-1),薄膜的稳定性增强。
     pH=4时SDBS分散的Fe_3O_4粒子表面带负电荷,利用它与Gemini分子中阳离子基团的静电相互作用在气/液界面与Gemini分子进行了组装。当Gemini单分子层表面压较小时,所组装得到的复合单分子膜中Fe_3O_4纳米粒子分布不均,且形成大小不一的聚集体。当表面压逐渐增大时,气液界面上Gemini单分子层内的电荷密度增加,吸引更多的Fe_3O_4纳米粒子进入其中。当Gemini单分子层表面压为12mN·m~(-1)~15mN·m~(-1)时,由于Gemini分子特殊的分子结构在Fe_3O_4溶胶气液界面上形成聚集并规则地排列在一起形成六边形的区域,受到Gemini分子中带电基团的静电吸引,Fe_3O_4纳米粒子进入六边形区域内与Gemini分子组装形成复合单分子膜。当表面压为15mN·m~(-1)时组装得到的复合单分子膜上的Fe_3O_4纳米粒子排布相当均匀。
     以巯基丙酸作稳定剂,通过水相法制备了高荧光强度的CdSe纳米晶。所得粒子呈球状、粒子大小分布均匀、粒径约为5nm。通过静电自组装方法在石英基片上成功制备了PDDA/CdSe多层自组装膜,薄膜的紫外-可见光谱、荧光光谱分析结果表明所得的多层自组装薄膜成膜质量良好,且具有很高的荧光光致发光性。
The building of nanoscaled subassembly is interrelated with the coming nanoelectronics and biomolecular recognition devices nearly. In the process of nanomaterial converting to devices, the nanoparticles must be immobiled or deposited onto some substrate slice to fabricate composite nano-films with prearranged two-dimensional (2D) structures. Having a knowledge of how to prepare nano-film using molecular assembly technique such as Langmuir-Blodgett (LB) film technique and self-assembly (SA) technique, and what is the relation between the properties and the structures in the obtained composite thin film contribute to provide novel approach to prepare nanoelectronics devices and micro-optical and electronic materials etc and is still the focus of the modern research of nanotechnology.
    The aim in this paper is to prepare ordered assembled composite thin film and the emphasis of the research is to prepare well-arrayed two-dimensional thin film or nanopattern, then assembly them with nanoscaled particles to build ordered composite nano-film. Fe_3O_4 nanoparticles were first synthesized from cotrolled chemical coprecipitation of aqueous Fe~(3+) and Fe~(2+) ions and then they were dispersed into the high purity water to obtain Fe_3O_4 hydrosol. The resulted Fe_3O_4 hydrosols were assembled with arachidic acid (AA) to obtain ordered Fe_3O_4-AA composite monolayer using LB film technique. Also in this way we assembled Gemini surfactant monolayer with magnetite nanoparticles which were modified by sodium dodecyl benzene sulfonate (SDBS) at the air/liquid interface. Dynamic domains morphology of monolayer of arachidic acid and Gemini at the air/liquid interface of magnetite hydrosol have been studied by Brewster angle microscopy (BAM) .The CdSe nanocrystal was synthesized in aqueous phase, and then
     multilayers of cationic polyelectrolyte Poly (diallyldimethylammonium chloride) (PDDA) and CdSe nanocrystal were deposited onto glass substrate using electrostatic self-assembly method (ESAM). The properties of the self-assembly PDDA/CdSe multilayer thin film was investigated by the means of UV-VIS spectra and photoluminescence spectra. The results in this paper are shown as follow:
     The prepared nanoscaled Fe_3O_4 particles is of about 10 nm, and the concentration of the obtained magnetite hydrosol is 0.96×10~(-5) mol·L~(-1) and its isoelectric point is pH=6.9. The surface pressure-area per molecule isotherm (π-A isotherm) of AA chloroformic solution at the air/liquid interface of high purity water and Fe_3O_4 hydrosol (pH=4) were measured respectively. The results indicates that the mean molecular area of AA is about 0.22nm~2, and the collapse pressure of the monolayer is 62 mN·m~(-1) with the subphase of puried water. While the two value are 0.28 nm~2 and 67 mN·m~(-1) respectively at the air/liquid of magnetite hydrosol due to the significant interaction between the positively charged Fe_3O_4 nanoparticles and the negatively charged AA molecules on the surface, which results in the magnetite nanoparticles moving into AA monolayer through the electrostatic interaction.
     Dynamic domains morphology of arachidic acid monolayer at the air/liquid interface of magnetite hydrosol have been researched by BAM. The results shows that AA molecules distribute randomly just as insular domain originally during the formation process of the monolayer, then they are shaped into a whole condensed monolayer at a surface pressure of 30mN·m~(-1). The monolayer cracks with the increased pressure, and then they overlap and form multilayer. Finally we assembled Fe_3O_4 in the whole condensed and ordered AA monolayer at a pressure of 30 mN·m~(-1) through the interaction of AA and magnetite molecules.
     Magnetite nanoparticles of about 10 nm were synthesized by cotrolled chemical co- precipitations method in the presence of SDBS. As-surface modified magnetite nanoparticles were dispersed into the pure water and the resulted SDBS-Fe_3O_4 hydrosols whose surface are taking positive charge at pH=4 has a concentration of 1.30×10~(-5) mol·L~(-1). Theπ-A isotherm of Gemini surfactant chloroformic solution at the air/liquid interface of puried water and Fe_3O_4 hydrosol were measured respectively. The results indicates that the collapse pressure of the monolayer and the aera per molecule of Gemini are increased to 1.28 nm~2 and 40 mN·m~(-1) in contrast to the results of pure water as subphase which are 1.00 nm~2 and 34 mN·m~(-1) respectively because there is a significant interaction between the positively charged Fe_3O_4 nanoparticles and the negatively charged cationic ammonium groups of Gemini molecules on the surface, which result in the magnetite nanoparticles moving into Gemini monolayer through the electrostatic interaction. However, the shape of theπ-A isotherm of Gemini dislikes the results of AA in a degree because of the special structure of Gemini molecules.
     Using magnetite hydrosols as subphase, we assembled Gemini surfactant monolayer with magnetite nanoparticles at the air/liquid interface. At the beginning, a low concentration of the Fe_3O_4 nanoparticles, randomly distributed on the Gemini monolayer. Aggregates of nanoparticles are apparent on the film, leading to larger irregular shapes. As the surface pressure increases, the surface concentration of the Gemini repeat unit increases, which leads to a higher negative surface charge and a stronger electrostatic interactions between the Fe_3O_4 nanoparticles and the monolayer, causing more of the positively charged nanoparticles to adhere to the monolayer at higher surface pressures. The attachment of the nanoparticles at the surface of the monolayer should make the collapse of the monolayer more difficult. Extraordinarily between the surface pressure of 12mN·m~(-1) and 15mN·m~(-1), Gemini molecules are likely to have a specific hexagonal configuration which attracted the magnetite nanoparticles into the aera forming a composite monolayer. While the Fe_3O_4 nanoparticles arrange well in the Gemini monolayer when the surface pressure is more than 15mN·m~(-1).
     The nanocrystal CdSe quanta dots were synthesized in aqueous phase with the materials of CdCl_2·2H_2O, NaBH4 and selenium powder using 3-mercaptopropionic acid(MPA)as stabilization reagent. As-prepared CdSe particles has a narrow size distribution and an average sizes of about 5nm. With PDDA and the resulted nanocrystal CdSe hydrosol, we deposited multilayers of PDDA and CdSe nanocrystal onto pre-treated glass substrate using layer-by-layer electrostatic self-assembly method. The self-assembly PDDA/CdSe multilayer thin film was characterized by the means of UV-VIS spectra and photoluminescence spectra. The results indicates that the PDDA/CdSe multilayer has a good quality and shows very strong luminescence intensity.
引文
[1] Roberts G E. Langmuir-Blodgett Film [M]. Plenum Press, New York, 1990.
    [2] Sagiv J. Organized monolayers by adsorption. 1: Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. American Chemistry Society, 1980, 102(1): 92-98.
    [3] 黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001.
    [4] 毕亚东,韩恩山,张西慧.LB膜技术的应用研究进展[J].化工进展,2002,21(12):894-902.
    [5] 何卫江,朱龙根,郭子建.Langmuir膜及LB膜中的金属参与[J].无机化学报,2004,20(7):753-762.
    [6] 沈钟,王果庭.胶体与表面化学[M].北京:化学工业出版社,1997.
    [7] Lefebure S, Me'nager C, Cabuil V, et al. Langmuir monolayers of monodispersed magnetic nanoparticles coated with a surfactant[J]. Journal of Physical Chemistry B, 1998, 102(15): 2733-2738.
    [8] 刘向阳,张忠锁,张兴堂,等.1,4双二茂铁噻吩/纳米二氧化锡异质结光伏性质研究[J].物理化学学报,2004,20(9):1167-1171.
    [9] 李亚军.超分子有机薄膜[J].发光学报,2003,24(1):8-18.
    [10] Birdi K S. Self-assembly monolayer structures of lipids and macromolecules at interface[M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [11] James R S, Paul F B. Molecular materials in electronic and optoelectronic devices[J]. Accounts of Chemical Research. 1999, 32(3): 191-192.
    [12] Kang Y S , Risbud S, Rabolt J, et al. Brewster Angle Microscopy Study of a Magnetic Nanoparticle/Polymer Complex at the Air/Water Interface[J]. Langmuir, 1996, 12(18): 4345-4349.
    [13] Kang Y S, Oh Y O, Choi J H, Langmuir behaviors of the complex of anionic and cationic surfactant at the air/water interface[J].Synthetic Metals, 2001,117(1-3): 173-175.
    [14] 范迎菊,陈艳丽,王雪莹,等.稀土三酞菁夹心化合物混合LB膜的研究[J].无机化学学报,2004,20(10):1197-1102.
    [15] 王文军,李淑红,张山彪,等.一种新型材料的LB膜及非线性光学特性研究[J].中国激光,2004,31(3):289-292.
    [16] 王文军,张山彪,李淑红,等.中心对称萘酞菁分子二次谐波产生的实验研究[J].光子 学报,2004,33(4):489-494.
    [17] 王恭明,艾慧,刘秀,等.适合倍频光波导的多层LB膜结构研究[J].物理化学学报,2001,17(11):995-999.
    [18] 袁迅道,曹立新,任延志,等.SnO_2纳米粒子-花生酸LB膜有序组合体的研究[J].物理化学学报,1997,13(11):1014-1019.
    [19] 马国宏,杜祖亮,赵伟利.ZnS超微粒有序组装体系制备与结构研究[J].化学物理学报,1998,11(3):253-255.
    [20] 刘成林,李远光,钟菊花,等.用LB膜技术组装α-Fe_2O_3超微粒的研究[J].化学物理学报,1998,11(2):156-159.
    [21] Victor E, Vladimir T, Svetlana E, et al. In-plane patterning of aggregated nanoparticle layers[J]. Langmuir, 2002, 18(8): 3185-3190.
    [22] 王荔军,李林松,玉占君,等.LB型Q态CdS复合膜构象有序性研究[J].高等学校化学学报,1997,18(2):281-284.
    [23] 叶险峰,章献民,陈杭生.C_(60)-AALB膜光学三次非线性特性及机理的研究[J].功能材料,1995,26(6):484-487.
    [24] 肖童,穆劲,徐旭荣,等.芪类盐与花生酸混合LB膜的结构研究[J].化学研究与应用,1995,7(4):413-417.
    [25] 韩奎,徐永生,马世红,等.半花菁LB多层膜的光学非线性各向异性研究[J].物理化学学报,1996,12(7):589-593.
    [26] 华炳增,胡文云,陈衍珍,等.硬脂酸镍L-B膜对甲醇的电催化氧化[J].电化学,1997,3(3):282-286.
    [27] Watanabe I, Hong K, Rabner M F. Fabrication of novel electrically conductive Langmuir-Blodgett thin films of the poly(3-alkyl-thiophenes) [J]. Thin Solid Film. 1989, 179: 199-206.
    [28] 徐又一,陈元胜,徐志康.光电导性聚酰亚胺的研究(Ⅲ)-含咔唑、酞菁铜聚酰亚胺LB膜的制备及其光电导性能[J].功能材料,1997,28(6):629-632.
    [29] 袁锋,黎甜楷,沈涛,等.荧光素衍生物LB膜对TiO_2电极的光敏化作用[J].物理化学学报,1995,11(6):526-531.
    [30] 纪军,辛德瑗,胡真.萘酞菁铜LB膜在气敏传感器中的应用研究[J].云南大学学报(自然科学版),1997,19(2):231-234.
    [31] 刘玉文,赵玉娥,王立波,等.长脂肪碳链卟啉的合成及其LB膜的制备和气敏性质研究[J].1997,18(5):682-684.
    [32] Zhang P Y, Lu J J, Xue Q J, et al. Microfrictional behavior of C_(60) particles in different C_(60) LB films studied by AFM/FFM[J]. Langmuir, 2001, 17(7): 2143-2145.
    [33] Wu Z K, Wu S X, Liang Y Q, et al. Monolayer behavior and LB film structure of poly (2-methoxy-5-(n-hexadecyloxy)-p-phenylene vinylene)[J]. Langmuir, 2001, 17(23): 7267-7273.
    [34] Gail E F, Renal B, Fu R Q, et al, Multiple bilayer dipalmitoylphosp-hatidylserine LB films stabilized with transition metal Ions[J]. Langmuir, 2001, 17(5): 1660-1665.
    [35] Huang Y Y, Cheng T R, Li F Y, et al. Photophysical studies on the mono- and dichromopboric hemicyanine dyes Ⅱ. Solvent effects and dynamic fluorescence spectra study in chloroform and in LB films[J]. Journal of Physical Chemistry B, 2002, 106(39): 10031-10040.
    [36] Pang S F, Zhu D B. Studies on molecular structure of Schiff base derivatives in LB films[J]. Journal of Colloid and Interface Science, 2003, 265(1): 65-69.
    [37] Ranieri N, Wegner G. Study of the properties of LB films of a new cellulose derivative bearing terthienyl side groups[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 171(1-3): 65-73.
    [38] Antonio J F C, Marystela F, Debora T B, et al. Synthesis of poly (styrene- co-methyl methacrylate)-based ionomers and their Langmuir and Langmuir-Blodgett (LB) film formation [J]. Journal of Physical Chemistry B, 108(22): 7033-7039.
    [39] Jin B K, He P S, Sheng Y N, et al. The growth mechanism of SiC film from polyimide LB film[J]. Journal of Physics and Chemistry of Solids, 2003, 64(2): 339-342.
    [40] Victor E, Vladimir T, Svetlana E, et al. In-plane patterning of aggregated nanoparticle layers[J]. Langmuir, 2002, 18(8): 3185-3190.
    [41] Prieto I, Pedrosa J M, Martin-Romero M T, et al. Characterization and structure of molecular aggregates of a tetracationic porphyrin in LB films with a lipid anchor[J]. Journal of Physical Chemistry B, 2000, 104(43): 9966-9972.
    [42] 方程,周性尧.自组装膜研究进展及其在传感器技术中的应用[J].分析科学学报,2003,19(1):81-85.
    [43] 刘海林,马晓燕,袁莉,等.分子自组装研究进展[J].材料科学与工程学报,2004,22(2):308-311.
    [44] 惠文杰,杨荣,张玉琦,等.自组装成膜技术及其进展[J].延安大学学报(自然科学版),2004,23(2):70-74.
    [45] Jones C A, Petty M C, Roberts G G, et al. IR studies of pyroelectric Langmuir-Blodgett films[J]. Thin Solid Films, 1987, 155(2): 187-195.
    [46] Davies G H, Yarwood J, Petty M C, et al. Fourier transform IR studies of alternate layer acidamine Langmuir-Blodgett films with pyroelectric properties. Thin Solid Films, 1988, 159, 461-467.
    [47] Ulman A. An introduction to ultrathin organic films from Langmuir Blodgett to self-assembly[M]. Boston: Acdemic Press, 1991, 238.
    [48] Caruso F, Niikura K, Furlong D N, et al. Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing[J]. Langmuir, 1997, 13(13): 3427-3433.
    [49] Li D Q, Rather M A, Marks T J, et al. Chromophoric self-assembled multilayer.Organic superlattice approaches to thin-film nonlinear optical materials[J]. Journal of American Chemical Society, 1990, 112(20): 7389-7390.
    [50] Christie P, Roberts G G, Spontanous polarization in organic superlattices[J]. Applied Physics Letters,1986,48(6): 1101-1103.
    [51] 何静,冯桃,段雪,等.原位自组装形成二氧化硅/十六烷基三甲基溴化铵纳米网络粒子[J].高分子学报,2001,10(5):639-644.
    [52] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process. Ⅰ. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces [J]. Makromol Chem Macromol Symp, 1991, 46: 321-327.
    [53] Decher G, Hong J D. Buildup of ultrathin multilayer films by a self-assembly process. Ⅱ. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces[J]. Ber Bunsen-Ges Phys Chem, 1991, 95(11): 1403-1434.
    [54] Decher G, Hong J D, Schmitt J.. Buildup of ultratin multiayer films by a self-assembly process. Ⅲ. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces [J]. Thin Solid Films, 1992,210-211: 831-835.
    [55] Decher G, Schmitt J. Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic polyelectrolytes[J]. Prog Colloid Polym Sci, 1992, 89: 160-164.
    [56] Lvov Y, Decher G, Mohevald H. Assembly, structural characterization and thermal behavior of layer-by-layer deposited ultrathin films of poly (vinyl sulfate) and poly (allyamine) [J]. Langmuir,1993, 9(2): 481-486.
    [57] Decher G, Lvov Y, Schmitt J. Proof of multilayer structural organization in self-assembled polycation-polyanion molecular films [J]. Thin Solid Films,1994, 244: 772-777.
    [58] Decher G. Fuzzy nanoassemblies: toward layered polymeric multicomposites[J]. Science, 1997, 277 (5330): 1232-1237.
    [59] Lvov Y, Yamada S, Kunitake T. Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion [J]. Thin Solid Films, 1997, 300(1-2): 107-112.
    [60] Schmitt J, Decher G, Dressick W J, et al. Metal nanoparticle/polymer superlattice films. Fabrication and control of layer structure [J]. Advanced Materials, 1997, 9(1): 61-65.
    [61] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite Films[J]. Journal of Physical Chemistry, 1995, 99(35): 3065-13069.
    [62] 潘力佳,何平笙.纳米器件制备的新方法—微接触印刷术[J].化学通报,2000,63(12):12-18
    [63] 钱林茂,雏建斌,温诗铸.二氧化硅及其硅烷自组装膜微观摩擦力与粘着力的研究(Ⅰ)(Ⅱ)[J].物理学报,2000,49(11):2240 2246;2247-2253.
    [64] 肖敏,刘平桂,龚克成.静电自组装纳米复合膜及其应用[J].高技术通讯,2000,10(6):99-102.
    [65] Levasalmi J M, McCarthy T J. Poly(4-methyl-1-pentene)-supported polyelectrolyte multilayer films: preparation and permeability[J]. Macromolecules, 1997, 30(6): 1752-1757.
    [66] Pieter S, Victor V, Manuel A. N C, et al. Gas transfer in supported films made by molecular self-assembly of ionic polymers[J]. Thin Solid Film 1996, 284-285: 708-712.
    [67] Klizing R , Moehwald H. Transport through ultrathin polyelectrolyte films[J]. Thin Solid Film, 1996, 284-285: 352-356.
    [68] Cheung J H, Fou A F, Rubner M F. Molecular self-assembly of conducting polymers[J]. Thin Solid Film, 1994, 244: 985-989.
    [69] Ferreira M, Rubner M F. Molecular-level processing of conjugated polymers: 1, Layer-by-layer manipulation of conjugated polyions[J]. Macromolecules, 1995, 28(21): 7107-7114.
    [70] Gero D, Birgit L, Klaus L, et al. New nanocompoite films for biosensors: layer-by-layer adorbed films of polyelectrolyte, proteins of DNA[J]. Biosensors and Bioelectronics, 1994, 9(9-10): 677-684.
    [71] Chen W, McCarthy T J. Layer-by-layer deposition: a tool for polymer surface modification[J]. Macromolecules, 1997, 30(1): 78-86.
    [72] Hsieh M C, Farris R J, McCarthy T J. Surface 'priming'for layer-by-layer deposition: polyelectrolyte multilayer formation on allylamine plasma-modified poly (tetrafluoroethylene)[J]. Macromolecules, 1997, 30(26): 8453-8458.
    [73] Laschewsky A, Mayer B, Wischerhoff, E, et al. A new route to thin polymeric, noncentrosymmetic coatings[J]. Thin Solid Film, 1996, 284-285: 334-337.
    [74] 孙启龙,王朝阳,童真.纳米自组装聚电解质超薄多层膜[J].功能高分子学报,2000,13(3):332-336.
    [75] Chollet P A, Messier J. IR dichroism of anisotropic Langmuir-Blodgett multilayers. Thin Solid Films, 1983, 99(1-3): 197-204.
    [76] Jinsong Yin, Self-assembly of ordered nanostructures[D]. Georgia Institute of Technology, April, 2000.
    [77] Yin J S, Wang Z L, Template-assisted self-assembling and cobalt doping of ordered meroporous titania nanostructures[J]. Advanced. Materials. 1999, 11(6): 469-472.
    [78] Lu W. Self-organizing nanophases on solid surfaces[D]. Dept. of Mechanical and Aerospace Engineering. November, 2001.
    [79] 李景虹,程广金,董绍俊.一种新型有序超薄有机膜-自组膜[J].化学通报,1995,10:11-18.
    [80] Calvert P, Mann S. The negative side of crystal growth[J]. Nature, 1997,386(6621): 127-129.
    [81] 欧阳建明,段荔,何建华,等.囊泡、微乳和胶束有序体系中纳米无机矿物的生长及其在生物矿化领域的应用前景[J].化学世界,2003,44(7):387-391.
    [82] Kovtyukhova N I, Martin B R, Mbindyo J K N, et al. Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices[J]. Materials Science and Engineering, C: Biomimetic and Supramolecular Systems, 2002, 19(1-2): 255-262.
    [83] Siegel R W, Hu E, Roco M C, et al. Nanostructure science and technology: World technology evaluation center (WTEC) panel report on R&D status and trends in nano-particles, nanostructured materials, and nanodevices. Kluwer Academic Publishers, Dordrecht, September 1999, 335.
    [84] Smyntyna V, Golovanov V, Kaciulis S, et al. Influence of chemical composition on sensitivity and signal reproducibility of CdS sensors of oxygen[J]. Sens Actuators B, 1995, 25(1-3): 628-630
    [85] Zhang H L, Evans S D, Henderson J R. Spectroscopic ellipsometric evaluation of gold nanoparticle thin films fabricated using layer-by-layer self-assembly[J]. Advanced Materials, 2003, 15(6): 531-534.
    [86] Sheats J R, arbara P F. Molecular Materials in Electronic and Optoelectronic Devices[J]. Accounts of Chemical Research, 1999, 32(3): 191-192.
    [87] Makoto H, Tetsuo O. Ion exchange at a surface monolayer[J]. Langmuir, 2004, 20(1): 30-32.
    [88] Wang X Y, Wang Y L. Effect of the nature of the spacer on the aggregation properties of Gemini surfactants in an aqueous solution[J]. Langmuir, 2004, 20(1): 53-56.
    [89] Valkovska D S, Bain C D. Adsorption of Ionic surfactants at an expanding air-water interface[J]. Langmuir, 2004, 20(11): 4436-4445.
    [90] Chan D C F, Kirpotin D, Bunn P A. Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency induced hyperthermia of cancer [J]. Journal of Magnetism and Magnetic Materials, 1993, 12(8): 374-379.
    [91] Andreas J, Regina S, Peter W, et al. Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro[J]. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 185-196.
    [92] 张诚,钦华,王治国,等.纳米级氧化铁-蝎毒素肽靶向神经胶质瘤的实验研究[J].中华显微外科杂志,2003,6(4):276-278.
    [93] Ruuge E K, Rusetski A N. Magnetic fluids as drug carriers: Targeted transport of drugs by a magnetic field [J]. Journal of Magnetism and Magnetic Materials, 1993, 122: 335-339.
    [94] 姜炜,李凤生,杨毅,等.纳微米磁性复合粒子在放射治疗中的应用研究进展[J].现代化工,2004,24(6):18-21.
    [95] Ma M, Zhang Y, Yu W, et al. Preparation and characterization of magnetite nanoparticles coated by amino silane [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212(2-3): 219-226.
    [96] 李凤生,罗付生,杨毅,等.磁响应纳米四氧化三铁壳聚糖复微球的制备及特性[J].磁性材料及器件,2002,33(6):1-4.
    [97] 陈国璋,周玲玲,陈惠晓,等.复乳化法制备磁性微囊工艺因素的研究[J].生物医学工程与临床,1999,3(1):21-26.
    [98] 程新宝,袁曙光.经动脉导管四氧化三铁微粒栓塞临床应用价值[J].实用放射学杂志,2003,19(7):631-634.
    [99] 程新宝,袁曙光.四氧化三铁微粒栓塞兔肾动脉价值研究[J].实用放射学杂志,2003,19(9):774-776.
    [100] Hai Y, Pai V, Chen C J. Development of magnetic device for cell separation [J]. Journal of Magnetism and Magnetic Materials, 1999, 194(1-3): 254-261.
    [101] Chen D, Liao M, Prepation and characterization of YADH-bound magnetic nanopaticles [J]. Journal of Molecular Catalysis, 2002, 16(5-6): 283-291.
    [102] Clouly C, Pouliquen D, Lucet I, et al. Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution [J]. Journal of Microencapsulation, 1996, 13(3): 245-255.
    [103] Gunther L. Magnetic nano-particles for high density recording [J]. Physical World, 1990, 3: 28-38.
    [104] 陈瑞福,周朝晖.磁化Fe_3O_4吸附溶液中铬(Ⅵ)的研究[J].水处理技术,1995,21(3):171-174.
    [105] Rabelo D, Lima E C D, Reis A C. Preparation of magnetite nanoparticles in mesoporous copolymer template [J]. Nanoletters, 2001, 1(2): 105-108.
    [106] Lin Y J, Wang L, Lin J G, et al. Preparation and properties of poly(acrylic acid)-stabilized magnetite nanoparticles [J]. Synthetic Metals, 2003, 135-136: 769-770.
    [107] Bhatt R K. Applications of magnetic fluid[J]. Indian Journal of Engineering and Materials Sciences, 1998, 5(6): 477-481.
    [108] Lin H, Watanabe Y, Kimura M, et al. Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix [J]. Journal of Applied Polymer Science, 2003, 87: 1239-1247.
    [109] 邱广亮,邱广明.磁性明胶复合微球的制备和性质[J].食品科学,1998,19(11):7-11.
    [110] 艾康云,刘寰,常柏年.悬浮液法显现潜在指印的研究(Ⅱ)[J].刑事技术,1994,3:6-8.
    [111] Isabelle Dumazet-Bonnamour, Pierre Le Perchec. Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene di-phosphonates [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173: 61-71.
    [112] Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media[J]. IEEE Transactions on Magnetics, 1981, MAG-17(2): 1247-1248.
    [113] Shen L F, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces [J]. Langmuir, 1999, 15(2): 447-453.
    [114] 李凤生,罗付生,杨毅,等.磁响应纳米四氧化三铁壳聚糖复微球的制备及特性[J].磁性材料及器件,2002,33(6):1-4.
    [115] Siles-Dotor M G, Bokhimi, Morales A, et al. Synthesis of nanostructured goethite and magnetite particles from the oxidation of Fe(OH)_2 in a high-oxygen-flow-rate medium [J]. Nanostructured Materials, 1997, 8(6): 657-673.
    [116] 陈龙武,姜继森,林奋,等.均匀Fe_3O_4胶体粒子形成过程的Mossbauer研究[J].化学学报,1991,49:529-534.
    [117] 姜继森,徐鸿志,陈龙武,等.均匀Fe_3O_4胶体粒子形成机理Ⅱ,低温Mossbauer谱研究[J].化学学报,1994,52:47-52.
    [118] 陈龙武,章萍萍,姜继森,等.均匀球状Fe_3O_4胶体粒子的制备[J].物理化学学报,1990,6(1):88-90.
    [119] 邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J].厦门大学学报(自然科学版),1999 38(5):711-715.
    [120] Correa-Duarte M A, Giersig M, Kotov N, et al. Control of packing order of self-assembled monolayers of magnetite nanoparticles with and without SiO_2 coating by microwave irradiation[J].Langmuir, 1998, 14: 6430-6435.
    [121] 韩志萍,王立,谢涛,等.纳米级Fe_3O_4磁性超微粒的制备和饱和磁化强度研究.纳米级Fe_3O_4磁性超微粒的制备和饱和磁化强度研究[J],磁性材料及器件,1995,26(2):52-54.
    [122] 刘颖,王长葆,王建华,Fe_3O_4超细粉分散体系的制备[J],功能材料.1999,30(1):24-25.
    [123] 章永化,陈守明,陈建华,等.纳米Fe_3O_4聚苯乙烯均匀分散体系的制备及结构[J],高等学校化学学报.2003,24(9):1717-1720.
    [124] Lee D K, Kang Y S, Lee C S, et al. Structure and Characterization of Nanocomposite Langmuir-Blodgett Films of Poly(maleic monoester)/Fe_3O_4 Nanoparticle Complexes [J]. Journal of Physical Chemistry B, 2002, 106(29): 7267-7271.
    [125] 姚素薇,赵培忠,班春梅,等.花生酸单分子膜诱导PbS晶体取向生长的研究[J].物理化学学报,2003,19(8):701-704.
    [126] 欧阳健明,邓穗平,钟玖平.单分子膜诱导下尿大分子对草酸钙晶体物相和晶面的调控作用[J].高等学校化学学报,2004,25(5):802-805.
    [127] Kang Y S, Risbud S, Rabolt J, et al. Brewster Angle Microscopy Study of a Magnetic Nanoparticle/Polymer Complex at the Air/Water Interface[J]. Langmuir, 1996, 12(18): 4345-4349.
    [128] Kang Y S, Lee D K, Stroeve P. FTIR and UV-vis spectroscopy studies of Langmuir-Blodgett films of stearic acid/γ-Fe_2O_3 nanoparticles[J]. Thin Solid Films, 1998, 327-329: 541-544.
    [129] 刘成林,李远光,钟菊花,等.用LB膜技术组装α-Fe_2O_3超微粒的研究[J].化学物理学报,1998,12(2):156-160.
    [130] Johann R, Vollhardt D. Texture features of long-chain fatty acid monolayers at high pH of the aqueous subphase [J]. Materials Science and Engineering C: Biomimetic and Supramolecular Systems, 1999, C8-C9: 35-42.
    [131] Tsao M W, Ficher T M, Knobler C M. Quantitive analysis of Brewster-angle microscope image of tilt order in Langmuir monolayer domain[J]. Langmuir, 1995, 11(8): 3184-3188.
    [132] Volinsky R, Gaboriaud F, Berman A, et al. Morphology and organization of phospholipid/diacetylene Langmuir films studied by Brewster angle microscopy and fluorescence microscopy[J]. Journal of Physical Chemistry B, 2002, 106(36): 9231-9236.
    [133] 陈启斌,董亚明,刘洪来,等.偶联剂在气/液界面上的区域形貌[J],物理化学学报,2003,19(11):1069-1072.
    [134] Cerichelli G, Mancini G, Luchetti, et al. Surfactant effects upon cyclization of o-(omegeHaloalkoxy)phenoxide ions.The Role of Premicellar Assemblies [J]. Langmuir, 1994, 10(11): 3982-3987.
    [135] Dam T, Engberts J. B. F. N, Karthauser J, et al. Synthesis, surface properties and oil solubilization capacity of cationic Ggemini surfactants[J]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 1996, 118(1-2): 41-49.
    [136] Michael D. Cationic amphitropic Gemini surfactants with hydrophilic oligo(oxyethylene) spacer chains[J]. Chemical Communications, 1998, 13: 1371-1372.
    [137] Zana, R, Talmon, Y. Dependence of aggregate morphology on structure of dimeric surfactants[J]. Nature, 1993, 362(6417): 228-230.
    [138] Tsubone K. The interaction of an anionic gemini surfactant with conventional anionic surfactants[J]. Journal of Colloid and Interface Science, 2003, 261: 524-528.
    [139] 施云海,陈启斌,刘洪来,等.双烷链阳离子型偶联表面活性剂的合成与定量分析[J],分析化学,2003,31(3):322-325.
    [140] Isabelle Dumazet-Bonnamour, Pierre Le Perchec. Colloidal dispersion of magnetite nanoparticles via in situ preparation with sodium polyoxyalkylene di-phosphonates [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 173: 61-71.
    [141] Mikhaylova M, Kim D K, Bobrysheva N, et al. Superparamagnetism of magnetite nanoparticles dependence on surface modification [J]. Langmuir, 2004, 20(6): 2472-2477.
    [142] Butterworth M D, Illum L, Davis S S. Preparation of ultrafine silica- and PEG-coated magnetite particles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179: 93-102.
    [143] Matsuno R, Yamamoto K, Otsuka H, et al. Polystyrene-grafted magnetite nanoparticles prepared through surface-initiated nitroxyl-mediated radical polymerization [J]. Chem Mater, 2003, 15: 3-5.
    [144] Matsuno R, Yamamoto K, Otsuka H, et al. Polystyrene-and poly(3-vinylpyridine)-grafted magnetite nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization [J]. Macromolecules, 2004, 37: 2203-2209.
    [145] Lee J, Isobe T, Senna M. Preparation of ultrafine Fe_3O_4 particles by precipitation in the presence of PVA at high pH [J]. Journal of Colloid and Interface Science, 1996, 177: 490-494.
    [146] Lin H, Watanabe Y, Kimura M, et al. Preparation of magnetic poly(vinyl alcohol) (PVA) materials by in situ synthesis of magnetite in a PVA matrix [J]. Journal of Applied Polymer Science, 2003, 87: 1239-1247.
    [147] 徐雪青,沈辉,邓润坤,等.一种N-酰肌氨酸在四氧化三铁纳米颗粒表面的吸附特征[J].化学研究与应用,2003,15(2):187-190.
    [148] 张军华,丁小斌,彭宇行,等.具有光导性的磁性高分子粒子的合成与表征[J].高分子学报,2001,6:730-734.
    [149] G'omez-Lopera S A, Plaza R C, Delgado A V. Synthesis and characterization of spherical magnetite biodegradable polymer composite particles [J]. Journal of Colloid and Interface Science, 2001, 240: 40-47.
    [150] Pierre A D, Vladimir S Z, Richard J G, et al. Preparation and properties of magnetite and polymer magnetite nanoparticles [J]. Langmuir, 1999, 15(6): 1945-1951.
    [151] Yamaura M, Camilo R L, Felinto M C F C. Synthesis and performance of organic-coated magnetite particles [J]. Journal of Alloys and Compounds, 2002, 344: 152-156.
    [152] Lin Y J, Wang L, Lin J G, et al. Preparation and properties of poly(acrylic acid)-stabilized magnetite nanoparticles [J]. Synthetic Metals, 2003, 135-136: 769-770.
    [153] 程海斌,刘桂珍,李立春,等.纳米Fe_3O_4的ζ电位和分散稳定性[J].武汉理工大学学报,2003,25(5):4-6.
    [154] Lee D K, Kang Y S, Lee C S, et al. Structure and Characterization of nanocomposite Langmuir-Blodgett films of poly(maleic monoester)/Fe_3O_4 nanoparticle complexes [J]. Journal of Physical Chemistry B, 2002, 106: 7267-7271.
    [155] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of American Chemistry Society, 1992, 114(27): 10834-10843.
    [156] Kresge C T, Leonowicz M E, Roth W J, et al. Ordeded mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(22): 710-712.
    [157] McConnell H M, Moy V T. Shapes of finite two-dimensional lipid domains [J]. Journal of Physical Chemistry, 1988, 92(15): 4520-4525.
    [158] Lvov Y, Yamada S, Kunitake T. Non-linear optical effects in layer-by-layer alternate films of polycations and an azobenzene-containing polyanion[J].Thin Solid Films, 1997, 300(1-2): 107-112
    [159] Schmitt J, Decher G, Dressick W J, et al. Metal nanoparticle/polymer superlattice films. Fabrication and control of layer structure[J]. Advanced Matterials,1997, 9(1): 61-65.
    [160] Kotov N A, Dekany I, Fendler J H. Layer-by-layer self-assembly of polyelectrolyte-semiconductor nanoparticle composite films[J]. Journal of Physical Chemistry, 1995, 99(35): 13065-13069.
    [161] Clark S L, Hammond P T. Engineering the microfabrication of layer-by-layer thin films[J]. Advanced Matterials, 1998, 10(18): 1515-1519.
    [162] Sun J Q, Hao E C, Sun Y P, et al. Multilayer assemblies of colloidal ZnS doped with silver and polyelectrolytes based on electrostatic interaction[J]. Thin Solid Films, 1998, (327-329): 528-531
    [163] 郑文杰,曾鑫华,白燕,等.硒杂环化合物(4,5-苯并苤硒脑)在金表面上的自组装[J].化学物理学报,2002,15(6):461-464.
    [164] Mamedova N N, Kotov N A. Rogach A L, et al. Albumin-CdTe nanoparticle bioconjugates preparation, structure, and interunit energy transfer with antenna effect[J]. Nano Letters, 2001, 1(6): 281-286.
    [165] Wang S P, Mamedova N N, Kotov N A. Antigen/Antibody Immunocomplex from CdTe nanoparticle bioconjugates[J]. Nano Letters, 2002, 2(8): 817-822.
    [166] Lee J, Govorov A O, Dulka J, et al. Bioconjugates of CdTe nanowires and Au nanoparticles plasmon-exciton interactions, luminescence enhancement, and collective effects[J]. Nano Letters, 2004, 4(12): 2323-2330
    [167] 林章碧,苏星光,张皓.用水溶液中合成的量子点作为生物荧光标记物的研究[J].高等学校化学学报,2003,24(2):216-220.
    [168] 李鸿梅,刘含智,张皓.量子点荧光标记在重组噬菌体表面展示肽与胰岛素受体相互作用中的应用[J].高等学校化学学报,2004,25(5):982-984.
    [169] Qian H F, Li L, R J C .One-step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature [J]. Materials Research Bulletin, 2005, 40: 1726-1736.
    [170] Li L, Qian H F, Fang N H, et al. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions[J]. Journal of Luminescence, 2006, 116: 59-66
    [171] Zhang P D, Li L, Dong C Q, et al. Sizes of water-soluble luminescent quantum dots measured by fluorescence correlation spectroscopy[J]. Analytica Chimica Acta, 2005, 546: 46-51.
    [174] 郝维昌,潘锋,王天民,等.TiO_2/PSS自组装薄膜的光催化性能[J].稀有金属材料与工程,2004,33(1):63-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700