用户名: 密码: 验证码:
汶川地震液化特征及砂砾土液化预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震液化震害调查是获取液化震害经验最直接的手段,是抗震理论和分析方法发展的重要基础,而地震液化场地的现场测试与分析,是建立液化预测方法最可靠的途径。以往国内几次大地震液化现场深入的考察和分析研究,对我国乃至世界工程抗震技术的发展都起到了很大的推动作用。
     2008年5月12日我国四川汶川县发生的8.0级大地震是新中国成立以来破坏性最强、波及范围最大的一次地震,其强度、烈度都超过了1976年的唐山大地震。关于此次地震液化问题尚少报道,目前占主导的认识是认为此次地震液化现象不多,甚至有观点认为此次地震中没有液化现象。我们的考察结果表明,此次汶川地震的液化范围为建国以来大地震中液化分布范围最广的一次,已经调查到以村为单位的118个液化点(带),涉及长约500公里、宽约200公里的区域,据不完全统计,共有20余个村庄的水井、近千亩农田、120多个村庄(自然村)房屋、8所学校、5个工厂不同程度地受到了液化震害的影响,一些房屋建筑、学校教学楼、厂房和水井等废弃。本文分析结果表明,Ⅵ度区内液化、深层土液化以及砂砾土液化是本次地震液化的三个主要特征,液化加重震害以及液化伴随地裂缝现象也较为普遍。但以往关于这些问题的经验尚少,获取系统知识、掌握规律、解释成因、剖析机理和提炼出反映此次地震液化特点的科学和工程问题,是提高关于汶川地震液化问题认识、开展相关深入研究工作的前提和基础。
     此次地震砂砾土液化分布范围广,造成的危害突出。我国四川省境内特别是成都平原砂砾层分布十分普遍,由于以往工程建设中直接认定砂砾土为非液化土,而忽视了砂砾土的液化可能性,导致砂砾土液化震害十分明显。而目前国内外砂砾土液化场地资料十分有限,对砂砾土液化的认识也存在误区,积累实测资料对于丰富国际液化数据库以及推动砂砾土液化预测方法发展十分重要。同时,目前工程上能够使用的砂砾土液化判别方法均是由砂土液化判别方法间接转换而来,基于实际资料直接建立的砂砾土液化判别方法尚属空白。应指出的是,我们一直认为,砂砾土与砂土分属不同土类,像判别液化这样的力学性能方面的分析,用砂土的公式来计算砂砾土理论上不成立,实际的结果也证明了这一点。我国部分地区砂砾土分布广泛,土石坝很多采用砾石作为垫层,人工填海、高速公路、铁路等工程建设中人工砂砾料应用日益广泛,砂砾土的液化判别方法问题亟待解决。因此,借助汶川地震出现大量砂砾土液化的契机,获取实测数据,检验现有方法,发展合理可靠、符合国际发展趋势、便于工程应用的砂砾土液化判别方法,是势在必行的工作。
     本文主要工作和成果包括:
     1.通过大量现场调查,取得了汶川地震液化问题系统和深入的认识,揭示了液化及其震害分布规律,阐明了此次地震液化的宏观特征和震害特征,并从中提炼出了反映此次地震液化特点的科学和工程问题。
     2.采用实地考察,资料分析以及现场测试的方法,确认了Ⅵ度区内液化、砂砾土液化、深层土液化是此次地震的三个主要特征,依据实测结果合理解释了此次地震液化区内地裂缝的成因,剖析了液化导致建筑物典型破坏的机理。
     3.研究了震区地质环境和工程地质条件,揭示了本次地震砂砾土液化分布规律,通过试验及与国内、外砂砾土液化实例的对比分析,掌握了此次地震液化砂砾土的土性特点。
     4.通过现场勘察获取了几十个砂砾土液化场地超重型动力触探和剪切波速资料,极大丰富了现有液化数据库内容,以此检验和分析了现有液化判别方法对砂砾土的可行性,指出了其不适用的根源。
     5.建立了基于现场测试指标的砂砾土液化判别方法的基本思路,提出了基本指标的选取原则和模型的构造思想,给出了初判条件,根据地震动参数不同确定了复判模型的基本模式。
     6.建立了基于烈度和加速度以及超重型动力触探击数和剪切波速为基本指标的四种砂砾土液化判别方法,通过了本次和其他砂砾土液化实例的检验,填补了以往基于实际资料直接建立砂砾土液化判别方法方面的空白,公式表达简单明了,为工程应用及规范修订提供了参考和依据。
It is remarkably important for seismic resistant design theories and analytical tools improvement to investigate the liquefaction-induced damage and field test in detail. Many significant lessons have been learned from the post-earthquake damage investigation in the past. Field test conducted in the liquefied site is the reliable way to establish a procedure for liquefaction evaluation.
     The 2008 Wenchuan Earthquake was the most destructive and widely influencing earthquake occurred in China since the 20th century. The intensity and magnitude was larger than those of the Tangshan Earthquake. However,“there was rare occurrence of soil liquefaction”and“the influence of liquefaction was small”are the main opinions in the academe as lack of detailed report of liquefaction. A specific liquefaction investigation team was organized by Institute of Engineering Mechanics, China Earthquake Administration shortly after the great Wenchuan Earthquake. Through months of wide and detailed field investigation, amount to 118 liquefied sites have been investigated, most of which located in the Chengdu plain and Mianyang district Sand boils and water spouts occurred extensively, involving in thousands of mus of farmland, 120 villages, 8 schools and 5 factories, which caused some rural houses, school buildings, manufactory buildings and wells etc. losing function in service. Three main characterizations of liquefaction in the Wenchuan earthquake were: the gravelly soils liquefaction, the liquefaction occurred in seismic intensityⅥ(PGA≈0.05g), and the liquefaction occurred in deep soil layer. Meanwhile, the ground fissures occurred widely in the liquefied zone. It’s very important to examine these phenomenon and explore the mechanism for further corresponding study.
     In general, the gravelly soils has been regarded as non-liquefiable soils for its large grain size and well drainage condition. However, the geological conditions and soil profiles show that the gravelly soils layer distributed extensively in the Chengdu plain, almost 75% to 80% of 118 liquefaction investigated cases were gravelly soils liquefafied sites. Comparing to the limited data of global gravelly soils liquefaction, the gravelly soils liquefied cases in the Wenchuan Earthquake will enrich the global database enormously. The empirical SPT- and CPT- based procedures for sand liquefaction evaluation are not reliable for gravelly soils because these two types of test could not be conducted in the gravelly soils site. Meanwhile, the currently empirical liquefaction evaluating methods were established almostly based on the sand liquefaction data, which also are not reliable for gravelly soils liquefaction assessment. A new approach is strongly demand to be proposed for gravelly soils liquefaction evaluation according to the field test index, because the gravelly soils has been used very commonly in engineering.
     The main objects and fruits of this paper are:
     1. To understand the distribution and characterization of soil liquefaction and liquefaction-induced damage in the Wenchuan Earthquake by detailed field investigating, and to learn useful lessons for further study.
     2. To examine the truth of the liquefaction occurred in seismic intensityⅥ, the gravelly soils liquefaction, and the liquefaction occurred in deep layer soil by field investigating, collecting and analyzing the material, and field testing. To explore the mechanisms of liquefaction-induced ground fissures and liquefaction-induced structure damage.
     3. To explore the geology background and soil conditions, to obtain the distribution and characteristics of gravelly soils liquefaction in the Wenchuan Earthquake, and to compare the gravelly soils liquefied case in the Wenchuan Earthquake with the case histories in other earthquakes.
     4. To conduct the Dynamic Penetration Test (DPT) and Shear Wave Velocity Test (Vs) in several decades gravelly soils liquefied sites, and to verify the reliability of currently SPT-, CPT- and Vs- based procedures for liquefaction evaluation by using the gravelly soils measured data.
     5. To propose the fundamental model for gravelly soils liquefaction assessment based on the field test index and different ground motion parameter.
     6. To propose the DPT- and Vs- based procedures for gravelly soils liquefaction evaluation, to verify these procedures by using the gravelly soils liquefied case histories in other earthquakes, and to propose suggestions for seismic code amendment especially in gravelly soils liquefaction resistance evaluation.
引文
1. B.C Burchfiel,L.H. Royden, R.D. Vander Hilst.中国四川2008年5月12日汶川地震的地质与地球物理背景[J].国际地震动态, 2008, (8):13-21.
    2.曹振中,侯龙清,袁晓铭.汶川8.0级地震液化震害及特征[J].岩土力学,已接受待发表.
    3.曹振中,袁晓铭,陈龙伟等.汶川大地震液化宏观现象概述[J].岩土工程学报,2010年第4期.
    4.曹振中,袁晓铭,孙锐,等.汶川大地震液化问题初探[C].成都:纪念汶川地震一周年地震工程与减轻地震灾害研讨会, 2009.
    5.曹振中,袁晓铭.砂砾土液化的剪切波速判别方法[J].岩石力学与工程学报,已接受待发表.
    6.常亚屏,王昆耀,陈宁.关于一个饱和砂砾料液化性状的试验研究[C].第五届全国土动力学学术会议论文集,大连, 1998, pp.161-166.
    7.常亚屏.高土石坝抗震关键技术研究[J].水力发电, 1998, (3):36-40.
    8.陈达生,时振粱,徐宗和,等.中国地震烈度表(GB/T17742-1999)[S].北京:中国标准出版社, 2004.
    9.陈国兴,李方明.基于径向基函数神经网络模型的砂土液化概率判别方法[J].岩土工程学报, 2006, 28(3):301-305.
    10.陈国兴,胡庆兴,刘雪珠.关于砂土液化判别的若干意见[C].南京:第六届土动力学研讨会, 2002, pp.119-133.
    11.陈国兴,张克绪,谢君斐.以剪切波速为指标的液化判别方法及其适用性[J].哈尔滨建筑大学学报, 1996, 29(1):97-103
    12.陈国兴.液化判别的可靠性及液化危险性分析[D].国家地震局工程力学研究所,硕士学位研究生学位论文, 1988.
    13.陈永祥.地震砂土液化危险性分析[D].国家地震局工程力学研究所,硕士研究生学位论文, 1987.
    14.陈致铭.动力三轴试验应用于评估土壤液化潜能之适用性研究[D].台湾:国立成功大学硕士学位论文, 2007.
    15.程国勇.饱和砂土剪切波速与抗液化强度相关性的研究[D].天津:天津大学博士学位论文, 2003.
    16.邓康龄.四川盆地形成演化与油气勘探领域[J].天然气工业, 1992, 12(5):7-12.
    17.地面运动组.海城地震震害分布与场地条件的关系[R].中国科学院工程力学研究所地震工程研究报告, 1975.9.
    18.董贤哲.基于补偿模糊神经网络的砂土液化势评价研究[D].北京:中国地质大学硕士学位论文, 2005.
    19.范恩硕.以九二一集集地震案例探讨细料对液化潜能评估之影响[D].台湾:国立成功大学博士学位论文, 2004.
    20.范士凯,粟怡然.砂土液化的工程地质判别法[J].资源环境与工程, 2006, 20(63):595-600.
    21.《工程地质手册》编辑委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社, 1992.
    22.郭孟明,德阳幅H-48-9 1/20万区域地质调查报告[R].四川省地矿局航空区域地质调查队研究报告, 1980.
    23.昊爱样,孙业志,黎剑华.饱和散体振动液化的波动机理研究[J].岩石力学与工程学报, 2002, V21(4):558-562.
    24.何银武.论成都盆地的成生时代及其早期沉积物的一般特征[J].地质论评,1992, 38(2): 149-156.
    25.胡博,邓帅奇,高密度电法在复杂场地地基勘察中的应用[J]. 2008, 32(3):218-220.
    26.黄博,陈云敏,殷建华,吴世明.基于动三轴试验的现场液化判别剪切波速法[J].水利学报, 2002, (10):21-26.
    27.李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报, 2005, 14(2):108-114.
    28.李海兵,王宗秀,付小方. 2008年5月1 2日汶川地震(Ms8.0)地表破裂带的分布特征[J].中国地质, 2008, 35(5):803-813.
    29.李远图.灌县幅H-48-8 1/20万区域地质调查报告[R].四川省地质局第2区测队研究报告, 1975.
    30.李志强,袁一凡,李晓丽,等.对汶川地震宏观震中和极震区的认识[J].地震地质, 2008, 30(3):768-777.
    31.李宗坤.土石坝结构性态安全评价方法研究[D].大连理工大学博士学位论文,2003.
    32.梁久亮.工程场地高密度电法探测典型剖面的分析与探讨[J].西北地震学报, 2008, 30(2):189-192.
    33.林商裕.台中都会区卵砾石层动态特性之研究[D].台湾:国立中央大学博士学位论文, 2001.
    34.刘红军,薛新华.砂土地震液化预测的人工网络模型[J].岩土力学, 2004, 25(12):1942-1950.
    35.刘恢先主编.唐山大地震震害[M].北京:地震出版社,1989.
    36.刘惠珊,周根寿,李学宁,等.液化层的减震机理及对地面地震反应的影响[J],冶金工业部建筑研究总院院刊,1994, (2):19-22.
    37.刘惠珊. 1995年阪神大地震的液化特点[J].工程抗震, 2001, (1):22-26.
    38.刘惠珊.砾石的液化判别探讨[C].北京:第五届全国地震工程学术会议论文. 1998, pp.183-188..
    39.刘令瑶,李桂芬,丙东屏.密云水库白河主坝保护层地震破坏及砂料振动液化特性[C].水利水电科学研究院论文集第8集(岩土工程)[C],北京:水利出版社, 1982, pp.46-54.
    40.刘兴诗.四川盆地的第四系[M].成都:四川科学技术出版社, 1983.
    41.刘颖,谢君斐等.砂土震动液化[M].地震出版社, 1984.
    42.刘颖.海城地震砂土液化的若干问题[R].中国科学院工程力学研究所地震工程研究报告, 1975.
    43.刘勇健.基于聚类-二叉树支持向量机的砂土液化预测模型[J].岩土力学, 2008, 29(10):2764-2768.
    44.刘云从.成都市及邻近地区水循环系统特征及水资源开放管理对策研究[R].四川省地矿局成都水文工程地质队研究报告, 1989.
    45.鲁晓兵,谈庆明等.饱和砂土液化研究新进展[J].力学进展, 2004, 34(1):87-96.
    46.钱洪,唐荣昌.成都平原的形成与演化[J],四川地震, 1997, (3):1-7.
    47.全国1:250万地质图空间数据库[R],中国地质调查局, 2001.
    48.砂土液化的现场研究[R].中美合作研究报告,国家地震局工程力学研究所、美国加州大学戴维斯分校,哈尔滨,1984.
    49.沈珠江,徐志英. 1976年7月28日唐山地震时密云水库白河主坝有效应力动力分析[J].水利水运科学研究. 1981, (3):46-63
    50.石海亮.用MAM和SASW反演场地剪切波速度结构比较研究[D].哈尔滨:哈尔滨工业大学硕士学位论文, 2005.
    51.石兆吉,陈国兴.自由场地深层液化可能性研究[J].水利学报, 1990, (12): 55-61.
    52.石兆吉,郁寿松,丰万玲.土壤液化式的剪切波速判别方法[J].岩土工程学报, 1993, 15(1): 74-80.
    53.石兆吉,郁寿松.液化对房屋震害影响的宏观分析[J].工程抗震, 1993, (1):25-28.
    54.石兆吉.剪切波速液化势判别的机理和应用[R],哈尔滨:国家地震局工程力学研究所研究报告, 1991.
    55.石兆吉.液化地区房屋震害预测[J].自然灾害学报, 1992, 1(2):80-93.
    56.石兆吉.判别水平土层液化势的剪切波速法[J].水文地质和工程地质, 1986, (4):9-11.
    57.四川地质局区测2队,绵阳幅H-48-3 1/20万区域地质测量报告[R].四川地质局区测2队研究报告, 1970.
    58.四川省质量技术监督局,四川省建设厅.成都地区建筑地基基础设计规范[S]. DB51/T5026-2001.
    59.苏栋,李相崧.地震历史对砂土抗液化性能影响的试验研究[J].岩土力学, 2006,
    27(10):1815-1818.
    60.唐山强震区地震工程地质研究-第二部分场地液化[R].中国建筑科学研究院勘察技术研究所. 1980.10.
    61.汪闻韶,常亚屏,左秀泓.饱和砂砾料在振动和往返加荷下的液化特性[C].水利水电科学研究院论文集第23集(结构材料、岩土工程、抗震与爆破),水利出版社, 1986, pp.195-203.
    62.汪闻韶,土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报, 2005, 27(1):1-10
    63.汪闻韶,土的动力强度和液化特性[M].北京:中国电力出版社, 1997.
    64.汪闻韶.土工地震减灾工程中的一个重要参量—剪切波速[J].水利学报, 1994, (3): 80-84.
    65.汪闻韶.土体液化与极限平衡和破坏的区别和关系[J].岩土工程学报, 2005, 27, No.1:1-10.
    66.王昆耀,常亚屏,陈宁.饱和砂砾料液化特性的试验研究[J].水利学报2000,(2): 37-41.
    67.王士鹏.高密度电法在水文地质和工程地质中的应用[J].水文地质工程地质, 2000, (1):52-56.
    68.向衍,马福恒,刘成栋.土石坝工程安全预警系统关键技术[J].河海大学学报(自然科学版), 2008, 36(5):635-639.
    69.谢君斐,江近仁.与编制样板规范有关的基础研究[R].中国地震局工程力学研究所研究报告. 2000. 5
    70.谢君斐.关于修改抗震规范砂土液化判别式的几点意见[J].地震工程与工程振动,1984, 4(2): 95-125.
    71.徐斌,孔宪京,邹德高,等.饱和砂砾料液化后应力与变形特性试验研究[J].岩土工程学报, 2007, Vo1.29(1):103-106.
    72.徐斌.饱和砂砾料液化及液化后特性试验研究[D].大连:大连理工大学博士学位论文, 2007.
    73.杨成林.瑞雷波勘探[M].北京:地质出版社, 1993.
    74.杨志文.全机率土壤液化评估法之研究[D].台湾:国立中央大学博士学位论文, 2003.
    75.尹之潜,鄢家全,徐锡伟,等.地震现场工作第3部分:调查规范(GB/T18208.3-2000)[S].北京:中国标准出版社, 2004.
    76.于海英,王栋,杨永强,等.汶川8.0级地震强震动加速度记录的初步分析[J].地震工程与工程振动. 2009, 29(1): 1-13.
    77.袁晓铭,曹振中,孙锐,等.汶川8.0级地震液化特征初步研究[J].岩石力学与工程学报, 2009, 28(6): 1288-1296.
    78.袁晓铭,曹振中.砂砾土液化判别的基本方法及计算公式[J].岩土工程学报,已接受待发表.
    79.袁晓铭,孙锐,曹振中,等.液化调查资料内部验收报告[R].汶川地震工程震害科学考察场地条件专题液化组, 2009.1.
    80.袁一凡.四川汶川8.0级地震损失评估[J].地震工程与工程振动, 2008, 28(5): 10-19.
    81.袁一凡.汶川地震烈度核定考察报告[R].中国地震局工程力学研究所, 2008.10.
    82.张克绪,谢君斐.土动力学[M].北京:地震出版社, 1980.
    83.张伦玉.四川省工程地质图说明书:1/100万[R].四川省地矿局南江水文工程地质队研究报告,1984.
    84.郑向高.贝克锤贯入试验应用于砾石土液化潜能分析之研究[D].台湾:国立中兴大学硕士学位论文, 2001.
    85.中国地震局.2008.汶川8.0级地震烈度分布图. http://www.cea.gov.cn/manage/html/8a8587881632fa5c0116674a018300cf/_content/08_08/29/1219979564089.html
    86.中国地震局工程力学研究所海城地震砂土液化考察[R].中国科学院工程力学研究所研究报告, 1975.9.
    87.中国地震局汶川8.0级地震现场应急工作队. 2008年5月12日四川汶川8.0级地震灾害损失评估报告[R].中国地震局, 2008.6.
    88.中国科学院工程力学研究所,河北省地震局抗震组.唐山地震震害调查初步总结[M].北京:地震出版社, 1978.
    89.中国科学院工程力学研究所.海城地震震害[M].北京:地震出版社, 1979.
    90.中华人民共和国地质图集地层简表[M].中国地质科学研究院主编.
    91.中华人民共和国国家标准编写组.岩土工程勘察规范[S]. GB50021-94.北京:中国建筑工业出版社,1995.
    92.中华人民共和国行业标准.建筑抗震设计规范(GBJ50011-2001)[S].北京:中国建筑工业出版社, 2001.
    93.周国强.绵竹县H-48-17-C 1/5万区域地质图说明书[R].四川地矿局化探队研究报告, 1995.
    94. Alex Sy, R.G. Campanella, Raymond A. Stewart. BPT-SPT correlations for evaluation of liquefaction resistance in Gravelly soils[C]. ASCE National Convention, San Diego, California, Session on Dynamic Properties of Gravelly soils, 1995, pp.1-19.
    95. Al-Qasimi E.M.A., Charlie W.A, Woeller D.J. Canadian liquefaction experiment (CANLEX) blast-induced ground motion and pore pressure experiments[J]. Geotechnical Testing Journal. ASTM International, 2005, 28(1):1-13.
    96. Amini F., Qi G. Z. Liquefaction testing of stratified silty sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2000, 126(3):208-217.
    97. Andrus R. D., Youd T.L. Subsurface investigation of a liquefaction-Induced lateral spread Thousand Springs Valley, Idaho[R]. U.S. Army Corps of Engineers, Misc,GL-87-8.
    98. Andrus R.D. and Stokoe K.H. Liquefaction resistance of soils from shear-wave velocity[J]. Journal of Geotechnical and Geoenviromental Engineering, ASCE, 2000, 126(11): 1015-1025.
    99. Arango I. Magnitude scaling factors for soil liquefaction evaluations[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(11):929-936.
    100. Ashford S.A. Rollins K.M. Blast-induced liquefaction for full-scale foundation testing[J]. Journal of Geotechnical and Geoenvironmental Engineering. American Society of Civil Engineers, 2004, 130(8):798-806.
    101. Boulanger R.W., Mejia L.H., Idriss I.M. Liquefaction at moss landing during Loma Prieta earthquake[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1997, 123(5):453-467.
    102. Brady Ray Cox. Development of a direct test method for dynamically assessing the liquefaction resistance of soils in situ[D]. Ph.D. dissertation, Austin: The University of Texas at Austin, 2006.
    103. Byrne P.M., Park S.S., Beaty M. et al. Numerical modeling of dynamic centrifuge tests[C]. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver, B.C. 2004, Paper No. 3387.
    104. C. Hsein Juang, David V. Rosowsky, Wilson H. Tang. Reliability-Based Method for assessing liquefaction potential of soils[J]. Journal of geotechnical and geoenvironmental engineering, ASCE, August 1999.
    105. C.Hsein Juang, Caroline J.Chen, Tao Jiang. Probability framework for liquefaction potential by shear wave velocity[J]. Journal of geotechnical and geoenvironmental engineering, August 2001.
    106. C.Hsein Juang, Susan Hui Yang, Haiming Yuan. Model Uncertainty of Shear Wave Velocity-Based Method for Liquefaction Potential Evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2005, 1274-1282
    107. C.Hsein Juang, Tao Jiang, Ronald D. Andrus. Assessing Probability-based Methods for Liquefaction Potential Evaluation[J]. Journal of Geotechnical and Geoenvironmental Engineering. July 2002. 580-589.
    108. Cao Zhenzhong, Hou Longqing, Xu Hongmei, et al.. The Distribution and characteristics of gravelly soils liquefaction in the Wenchuan Ms8.0 Earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, Accepted, in press.
    109. Cao Zhenzhong, Hou Longqing, Yuan Xiaoming, et al.. The characteristics of liquefaction-induced damage in Wenchuan Ms8.0 Earthquake[J]. Joournal of Harbin Institute of Technology, 2009, 16(S1):37-43.
    110. Charlie W.A., Jacobs P.J. Doehring D.O. Blast-Induced liquefaction of an Alluvial sand deposit[J]. Geotechnical Testing Journal, 1992, 15(1):14-23.
    111. Chih-Sheng Ku, Der-Her Lee, Jian-Hong Wu. Evaluation of soil liquefaction in the Chi-Chi Taiwan earthquake using CPT[J], Soil Dynamics and Earthquake Engineering, 24 (2004):659-673
    112. Duncan J.M. Factors of safety and reliability in geotechnical engineering[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2000, 126(4):307-316.
    113. Erten D., Maher M.H. Cyclic Undrained behavior of silty sand[J]. Soil Dynamics and Earthquake Engineering, 1995, (14):115-123.
    114. Farhang Ostadan,Nan Deng,Ignacio Arango. Energy-Based method for liquefaction potential evaluation, Phase 1-feasibility study[R]. NIST GCR 96-701, August 1996.
    115. Finn W.D.L., Bransby P.L., Pickering D.J. Effect of strain history on liquefaction of sand[J]. Journal of Soil Mechanics and Foundation Division, ASCE, 1970, 96(SM6):1917-1934.
    116. Goh A.T.C. Neural-network modeling of CPT seismic liquefaction data[J]. Journal of Geotechnical Engineering, ASCE, 1996, 122(1):70-73.
    117. Gohl W.B., Howie J.A. Rea C. E. Use of controlled detonation of explosives for liquefaction testing[C]. Proceedings, 4th Int. Conf. on Recent Advances in Geotechnical Earthquake Geotechnical Engineering and Soil Dynamics a Symposium in Honor of Professor W. D. Liam Finn, 2001,Paper No. 9.13, San Diego, CA, USA, March 26-31.
    118. Gu W., Wang Y. An approach to the quadratic nonlinear formulae for predicting earthquake liquefaction potential by stepwise discriminant analysis[C]. Proc., 8th World Conference on Earthquake Engineering, San Francisco, 1984, 3, 119-126.
    119. Hatanaka M., Suzuki Y., Kawasaki T. et al. Cyclic undrained shear properties of high quality undisturbed Tokyo gravel[J]. Soils and Foundations, 1988, 28(4):57-68.
    120. Holzer T. L., Youd T. L. Hanks T. C. Dynamics of liquefaction during the Superstition Hills Earthquake (M=6.5) of November 24,1987[J]. Science, 1989, (244):56-59.
    121. Holzer T.L., Bennett M. J., Ponti D.J., Tinsley J.C.I. Liquefaction and soil failure during 1994 Northridge Earthquake[J]. Journal of Geotechnical Engineering, 1999, 125(6):438-452.
    122. Hushmand B., Scott R.F. Crouse C.B. In-Situ calibration of USGS transducers at Wildlife liquefaction site, california, USA[C]. Proc. 10th World Conference on Earthquake Engineering, A.A.Balkema Publishers, Rotterdam, Netherlands, 1992,pp.1263-1268.
    123. Hwang Jin-Hung, Yang Chin-Wen. Verification of critical cyclic strength curve by Taiwan Chi-Chi earthquake data[J]. Soil Dynamics and Earthquake Engineering, 2001, 21, pp.237-257.
    124. I.M. Idriss, R.W. Boulanger. Semi-empirical procedures for evaluating liquefaction potential during earthquakes[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(2006) 115-130.
    125. Idriss I.M. The role of modeling in geotechnical earthquake engineering[C]. Proceedings of NSF International Workshop on Earthquake Simulation in Geotechnical Engineering. Case Western Reserve University, Cleveland, OH, 2001.
    126. Ishihara K. Yoshimine M. Evaluation of settlement in sand deposits following liquefaction during earthquakes[J]. Soils and Foundations, 1992, 32(1):173-188.
    127. Ishihara K., Shimizu K. Yamada Y. Pore water pressure measured in sand deposits during an earthquake[J]. Soils and Foundations, 1981, 2(4): 85-100.
    128. J. M. Ferritto. Seismic Design Criteria for Soil liquefaction[R]. Naval Facilities Engineering Service Center Port Hueneme, California. Technical Report TR-2077-SHR, June, 1997.
    129. J. Ohbayashi, K. Harada, H. Fukada H.Tsuboi. Trends and Development of Countermeasure Against Liquefaction in Japan[C]. Proceedings of the 8th U.S. National Conference on Earthquake Engineering. No.1936, April 18-22, 2006.
    130. Japan Road Association. Specification for Highway Bridges, part 5: seismic design[S].,1996.
    131. Jin-Hung Hwang, Chin-Wen Yang. Verification of Critical Cyclic Strength Cure By Taiwan Chi-Chi Earthquake Data[J]. Soil Dynamics and Earthquake Engineering 21 (2001) 237-257.
    132. Joseph P. Koester, Chris Daniel, Michael Anderson. In situ investigation of liquefied gravels at Seward, Alaska[J]. Innovations and Applications in Geotechnical Site Characterization, 2000, GSP 97, pp.33-48.
    133. Juang C.H., Yuan H., Lee, D.H., Lin, P.S. Simplified cone penetration test-based method for evaluating liquefaction resistance of soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2003, 129(1):66-80.
    134. K. Onder Cetin, Raymond B. Seed, Armen Der Kiureghian et. Standard Penetration Test-Based Probabilistic and Deterministic Assessment of Seismic Soil Liquefaction Potential[J]. Journal of geotechnical and geoenvironmental engineering, December 2004.
    135. Kasim A.G., Chu M.Y. Jensen C.N. Field correlation of cone and standard penetration tests[J]. Journal of Geotechnical Engineering, 1986, 112(3):368-372.
    136. Kurt Jelinek. In situ measurement of shear wave velocity after blast-induced soil liquefaction[D]. Utah: Utah State University, M.S. dissertation, 2000.
    137. Kurup P.U., Voyiadjis G.Z., Tumay M.T. Calibration chamber studies of piezocone test in cohesive soils[J]. Journal of Geotechnical Engineering, 1994, 120(1): 81-107.
    138. Lane J.D. Static and cyclic lateral load testing of a full-scale pile group during blast-induced liquefaction[D]. Ph.D. dissertation, Provo: Brigham Young University, 2004.
    139. Liao S.S.C., Veneziano D., Whitman R.V. Regression models for evaluating liquefaction probability[J]. Journal of Geotechnical Engineering, ASCE, 1988, 114(4):389-411.
    140. Liu A.H., Stewart J.P., Abtahamson N.A., et al.Equivalent number of uniform stress cycles for soil liquefaction analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2001, 127(12):1017-1026.
    141. Livio Sirovich. Repetitive liquefaction at a gravelly site and liquefaction in overconsolidated sands[J]. Soils and Foundations, 1996, 36(4):23-34.
    142. Loh C.H., Cheng C.R. Probabilistic evaluation of liquefaction potential under earthquake loading[J], Soil Dynamic and Earthquake Eegineering, 1995, 16, pp. 269-278.
    143. M.K. Yegian, V.G. Ghahraman, R.N. Harutiunyan. Liquefaction and embankment failure case histories, 1988 Armenia Earthquake[J]. Journal of Geotechnical Engineering, 1994, 120(3):581-596.
    144. Mark D. Evans, H. Bolton Seed, Raymond B. Seed, Membrane compliance and liquefaction of sluiced gravel specimens [J]. Journal of Geotechnical Engineering, 1992, 118(6):856-872.
    145. Mark D. Evans, Shengping Zhou. Liquefaction behavior of sand-gravel composites[J]. Journal of Geotechnical Engineering, 1995, 121(3): 287-298.
    146. Masood T., Mitchell J.K. Estimation of in situ lateral stresses in soils by cone-penetration test[J]. Journal of Geotechnical Engineering, 1993, 119(10):1624-1639.
    147. Moss R.E.S., Collins B.D. Whang D.H. Retesting of liquefaction/nonliquefaction case histories in the Imperial Valley[J]. Earthquake Spectra, 2005, 21, No. 1.
    148. Mourad Zeghal, Ahmed-W. Elgamal. Analysis of site liquefaction using earthquake records[J]. Journal of Geotechnical Engineering, 1994, 120(6):996-1017.
    149. Munenori Hatanaka, Akihiko Uchida, Hiroshi Oh-oka. Correlation between the liquefaction strengths of saturated sands obtained by in-situ freezing method androtary-type triple tube method[J]. Soils and Foundations, 1995, 35(2):67-75.
    150. Munenori Hatanaka, Akihiko Uchida, Junryo Ohara. Liquefaction characteristics of a gravelly fill liquefied during the 1995 Hyogo-Ken Nanbu Earthquake[J]. Soils and Foundations, 1997, 37(3):107-115.
    151. Nagase H., Ishihara K. Liquefaction-induced compaction and settlement of sand during earthquake[J]. Soils and Foundations, 1988, 28(1):65-76.
    152. NCEER. Proceedings of the NCEER Workshop on evaluation of liquefaction resistance of soils[R]. Technical Report No. NCEER-87-0022, 1997.
    153. Onoue A. Mori N. Takano J. In-situ experiment and analysis on well resistance of gravel drains[J]. Soils and Foundations, 1987, 27(2):42-60.
    154. Park S.S., Byrne P.M. Numerical modeling of soil liquefaction at slope site[C]. The 2004 International Conference on Cyclic Behaviour of Soils and Liquefaction Proceedings, 2004.
    155. Ping-Sien Lin, Chi-Wen Chang, Wen-Jong Chang. Characterization of liquefaction resistance in gravelly soil : large hammer penetration test and shear wave velocity approach[J]. Soil Dynamics and Earthquake Engineering 24 (2004):675-687.
    156. Prevost J.H. A simple plasticity theory for cohesionless frictional soils[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17.
    157. R.B. Seed, K.O. Cetin, R.E.S. Moss, A.M. Kammerer, R.E. Kayen, et al.. Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framwork[R]. Earthquake Engineering Research Center. EERC 2003-6.
    158. R.D.Andrus , K.H.Stokoe. Evaluation of liquefaction Resistance of soils[R]. National Center for Earthquake Engineering Research (NCEER) Workshop. January 5-6,1996.
    159. R.D.Andrus, K.H.Stokoe, R.M.Chung, J.A.Bay. Liquefaction evaluation of densified sand at approach to pier 1 on Treasure Island, California, using SASW method[R]. NISTIR6230, October 1998.
    160. Rathje E.M., Chang W.J. Stokoe K.H.II. Development of an in situ dynamic liquefaction test[J]. ASTM Geotechnical Testing Journal, 2005, 28(1):50-60.
    161. Robb Eric S. Moss. CPT-Based Probability Assessment of Seismic Soil Liquefaction Initiation[D]. Ph.D. dissertation, University of California at Berkeley. May, 2003.
    162. Robertson P.K., Campanella R.G., Wightman A. SPT-CPT correlations[J]. Journal of Geotechnical Engineering, 1983, 109(11):1449-1459.
    163. Rolando P. Orense. Assessment of liquefaction potential based on peak ground motion parameters[J]. Soil Dynamics and Earthquake Engineering, 25(2005):225–240.
    164. Rollins K.M., Lane J.D., Gerber T.M. Measured and computed lateral response of a pile group in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering. American Society of Civil Engineers, 2005, 131(1):103-114.
    165. Rosenblueth E, Estra L. Probabilistic design of reinforced concrete buildings[M]. ACI Special Publication 1972.
    166. Seed H.B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquake[J]. ASCE, Journal of the Geotechnical Engineering Division, 1979, 105(GT2):201-255.
    167. Seed H.B., Idriss I.M. Simplified procedure for evaluating soil liquefaction potential[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 107(SM9):1249-1274.
    168. Seed H.B., Tokimatsu K., Harder L.F. et al. The influence of SPT procedures in soil liquefaction resistance evaluation[J]. Journal of Geotechnical Engineering, ASCE,1985, 111(12):1425-1445.
    169. Seed H.B., Wong R.T., Idriss I.M. et al. Module and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, ASCE, 1986, 112(11):1016-1032.
    170. Seed R.B, Cetin K.O. et al. Recent advances in soil liquefaction engineering, a unified and consistent framework[R]. EERC , USA : Earthquake Engineering Research Center,2003.
    171. Sheng-Yao Lai, Wen-Jong Chang, Ping-Sien Lin. Logistic Regression Model for Evaluation Soil Liquefaction Probability Using CPT Data[J]. Journal of geotechnical and geoenvironment engineering, June 2006, 694-704
    172. Skempton A.K. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation[J]. Geotechnique, 1986, 36(3):425-447.
    173. Stark T.D. Olson S.M. Liquefaction resistance using CPT and field case histories[J]. Journal of Geotechnical Engineering, 1995, 121(12):856-869.
    174. Susan Hui yang. Reliability analysis of soil liquefaction using in-situ tests[D]. 2003, Clemson University, PhD. Dissertation
    175. Suzuki Y., Hatanaka M. Ishinara K. et al. Engineering properties of undisturbed gravel sample[C]. Proceedings of 10th World Conference on Earthquake Engineering, 1992, 3, pp.1281-1286.
    176. Sykora D. W. Creation of A Data Base of Seismic Shear Wave Velocities for Correlation Analysis[R]. Geotech. Lab. Misc. Paper 1987, GL-87-26, U.S. Army Engr. Waterways Experiment Station, Vicksburg, Miss.
    177. T. Leslie Youd, and Thomas L.Holzer. Piezometer Performance at Wildlife Liquefaction Site, California[J]. Journal of Geotechnical Engineering, Vol 120, No.6, June, 1994.
    178. T. Leslie Youd, Christopher T. Garris. Liquefaction-induced ground surface disruption[J]. Journal of Geotechnical Engineering, 1995, 121(11): 805-809.
    179. T. Leslie Youd, Harp E L, Keefer D K, et al. The Borah Peak, Idaho Earthquake of October 28, 1983; Liquefaction[J]. Earthquake Spectra, 1985, 2(1):71-89.
    180. Takeji Kokusho, Tadashi Hara, Ryousuke Hiraoka. Undrained shear strength of granular soils with different particle gradations[J]. Journal of Geotechnical and Geoenvironmental Engineering, June, 2004: 621-629.
    181. Taylor C.A., Dar A.R., Crewe A.J. Shaking table modeling of seismic geotechnical problems[C]. Proceedings of 10th European Conference on Earthquake Engineering, 1995, Duma, pp.441-446.
    182. Tokimatsu K. Yoshimi Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content[J]. Soils and Foundations, 1983, 23(4):56-74.
    183. Tokimatsu K., Kojima H., Kuwayama S., et al. Liquefaction-induced damage to buildings in 1990 Luzon Earthquake[J]. Journal of Geotechnical Engineering, 1994 120(2): 290-307.
    184. Tokimatsu K., Yoshimi Y. Ariizumi. Evaluation of liquefaction resistance of sand improved by deep vibratory compaction[J]. Soils and Foundations, 1990, 30(3):153-158.
    185. Vaid Y.P., Chern J.C. Lee K.L. Liquefaction of saturated sands during cyclic loading[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1985, 111(3):1229-1235.
    186. Valle-Molina. Measurements of Vp and Vs in dry, unsaturated and saturated sand specimens with piezoelectric transducers[D]. Ph.D. dissertation, The University ofTexas at Austin, 2006.
    187. Vito Nicola Ghionna, Daniela Porcino. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, February, 2006: 194-202.
    188. Wayne Y. Lee. Numerical modeling of blast-induced liquefaction[D]. Provo: Brigham Young University, PhD. dissertation, 2006.
    189. Wen-Jong Chang. Development of an In Situ Dynamic Liquefaction Test[D]. 2002, The University of Texas at Austin, M.S. dissertation.
    190. Whitman R.V. Evaluating calculated risk in geotechnical engineering[J]. Journal of Geotechnical Engineering, 1984, 110(2):145-188.
    191. Yoshimi Y., Tokimatsu K. Kaneko O. et al. Undrained cyclic shear strength of a dense Niigata sand[J]. Soils and Foundation, 1984, 24(4):131-145.
    192. Yoshio Suzuki, Shigeru Toto, Munenori Hatanaka, et al. Correlation between strengths and penetration resistances for gravelly soils[J]. Soils and Foundations, 1993, 33(1):92-101.
    193. Youd T L,Idriss I M. Liquefaction Resistance of Soils:Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils[J]. Journal of Geotechnical and Geoenvironment Engineering, 2001, 127(4): 297-313.
    194. Youd T. L. Bennett M. J. Liquefaction sites, Imperial Valley, California[J]. Journal of Geotechnical Engineering, 1983, 109(3): 440-457.
    195. Youd T.L., Idriss I.M. Proceedings of the NCEER Workshop on evaluation of liquefaction resistance of soils[R]. NCEER Technical Report, 1997, NCEER-97-0022, Buffalo, NY.
    196. Youd T.L., Steidel J.H., Nigbor R.L. Lessons learned and need for instrumented liquefaction sites[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(9): 639-646.
    197. Yu H. S. Mitchell J.K. Analysis of cone resistance: review of methods[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(2):140-149.
    198. Zeghal M., Elgamal A.W. Analysis of site liquefaction using earthquake records[J]. Journal of the Geotechnical Engineering Division, ASCE, 1994, 120(6):996-1017.
    199. Zhang L. Assessment of liquefaction potential using optimum seeking method[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 1998, 124(8):739-747.
    200. Zhang Z. Tumay M.T. Statistical to fuzzy approach toward CPT soil classification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(3):179-186.
    201. ZZ Cao, XM Yuan, LW Chen. A formula for calculating liquefaction probability based on Chinese seismic code[C]. 14th World Conference on Earthquake Engineering , Beijing, 04-01-0126,2008.
    202. ZZ Cao, XM Yuan, R Sun. Reliability analysis of liquefaction evaluation discriminant of Chinese seismic code[C]. 14th World Conference on Earthquake Engineering, Beijing, 08-01-0064, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700