用户名: 密码: 验证码:
长蛇鲻鱼肉蛋白制备分离降血压肽研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋生物蛋白是不同结构功能物质的理想、丰富的贮库,尤其是一些海洋低值鱼类是制备生物活性肽理想的初始原料。以海洋低值鱼类为原料制备、分离降血压肽正成为当今一个研究热点。
     长蛇鲻(Saurida elongata),长蛇鲻属,狗母鱼科,主要分布于西北太平洋,为广西北部湾经济鱼类之一。本实验以长蛇鲻为原料,蛋白组成分析显示长蛇鲻是一种高蛋白原料,湿基粗蛋白15.34%,干基粗蛋白78.35%,含有18种氨基酸,氨基酸总含量达到791.41mg·g-1,其中8种人体必需氨基酸占总量的44.92%,非极性、疏水性氨基酸39.13%,极性氨基酸占总含量的60.87%。
     本实验选用六种蛋白酶水解长蛇鲻鱼肉蛋白,通过体外ACE抑制活性测定,筛选中性蛋白酶作为制备血管紧张素转化酶抑制肽(ACEI)的蛋白酶,其酶解产物对ACE抑制活性IC50为0.182mg·mL-1。以水解度DH(Y1)和产物对ACE抑制率IP(Y2)双指标为参数,采用响应面设计法考察了酶解温度、pH值、酶/底(E/S)对水解度及抑制率的影响,优化得到二元多次方程:Y1=23.77-0.81X1+3.21X2-1.65X3-0.84X1X2-0.35X1X3-0.95X2X3-1.76X12-0.99X22-0.33X32;Y2=83.32-2.27X1+2.94X2-2.02X3-0.33X1X2-1.76X1X3+1.64X2X3-3.35X12-3.39X22-2.30X32,并确定了最适酶解工艺条件为:E/S为10000U-g-1、温度为48℃、pH为7.0及水解时间120min,在此工艺条件下水解度为24.07%,ACE抑制率为84.00%。
     利用超滤(UF)和凝胶层析(GFC)对酶解物进行初步分离。酶解物经超滤分离后活性组分得到富集,5kDa渗透液(LFPH-I)的IC50值为0.123mg·mL-1。采用凝胶层析对LFPH-I进一步分离,考察了各因素对凝胶层析的影响,得到最优条件:柱规格(1.6cm×45cm)、蒸馏水洗脱1.0mL·min-1、上样量为20mg。在此条件下,可将LFPH-I分成A. B、C、D、E五个组分,其中C组分(LFPH-I-C)活性最高,IC50为0.110mg·mL-1。考察了LFPH-I的抗胃肠道稳定性能,实验表明LFPH-I经胃蛋白酶消化后活性略有上升;经胰蛋白酶作用稳定性良好,但LFPH-I经胃蛋白酶作用后再用胰蛋白酶处理则活性有所下降。
     采用离子交换色谱-反相高效液相色谱法结合(IEC/RP-HPLC法)分离纯化LFPH-I-C,得到活性组分G3;同时研究了连续多步反相高效液相色谱法(RP-HPLC/RP-HPLC/RP-HPLC法)分离纯化LFPH-I-C,得到活性组分U73D。经反相高效液相色谱和高效毛细管电泳检测二者均为单一组分。通过飞行时间质谱鉴定了G3和U73D结构,解析其氨基酸序列分别为Arg-Val-Cys-Leu-Pro (RVCLP)和Ser-Pro-Arg-Cys-Arg (SPRCR),ICso值分别为175μM和41μM。
     固定化金属离子亲和分离技术(IMAC)在重组蛋白和重组多肽的分离纯化中己得到广泛应用。在采用IEC/RP-HPLC法及RP-HPLC/RP-HPLC/RP-HPLC法分离纯化LFPH-I-C得到长蛇鲻降血压肽结构基础上,探索了IMAC分离长蛇鲻降血压肽的方法。
     以反相悬浮法制备琼脂糖微球载体,确定了最佳制备工艺为琼脂糖浓度2.5%,乳化剂用量1.5%,乳化温度60℃,搅拌速度400rmin-1,此时获得的目标微球载体成球率为70.80%。以环氧氯丙烷为活化剂,确定了最佳活化条件为:NaOH溶液浓度为0.8mol·L-1,环氧氯丙烷体积分数为20%,NaBH4的浓度为3.0g.L-1,活化温度为40℃,活化时间为4h。以活化的琼脂糖微球为载体,亚氨基二乙酸(IDA)为连接臂,Cu2+、Ni2+、 Zn2+为螯合金属离子,分别制备了固定化AS-Cu2+、AS-Zn2+、AS-Ni2+三种亲和介质,其配基密度分别为32.05、33.22、29.17μmol·g-1。考察三种亲和介质在pH3.0-9.0的范围内金属离子的泄露百分率,结果表明酸性环境比碱性环境更容易让金属离子泄露,三种亲和介质中AS-Cu2+最稳定性,AS-Ni2+次之,AS-Zn2+最容易泄露。
     分别研究了三种亲和介质AS-Cu2+-、AS-Zn2+、AS-Ni2+对LFPH-I的吸附。以LFPH-I为原料,通过对比亲和介质分离ACEI的效果,筛选了AS-Ni2+作为长蛇鲻ACEI分离的亲和介质。其最优层析条件为:0.02mol·L-1磷酸缓冲盐(pH6.8,含1.0mol·L-1NaCl)为平衡液、0.02mol·L-1磷酸缓冲盐(pH4.0,含0.5mol·L-1NaCl)为洗脱液。经AS-Ni2+富集所得组分IC50值为0.116mg·mL-1.通过测定、分析粗蛋白LFPH-I及亲和层析富集组分的氨基酸摩尔百分比的变化,发现在实验条件下,相对其它氨基酸,AS-Ni2+对Met、His、 Tyr、Pro、Ile、Leu具有更高的富集作用。
     采用反相高效液相色谱对AS-Ni2+富集的组分进一步分离,得到活性组分N5,经反相高效液相色谱和高效毛细管电泳检测为单一组分。经飞行时间质谱测定、解析其氨基酸序列为Arg-Tyr-Arg-Pro (RYRP),其IC50值为52μM,具有较高的活性。
Marine proteins are rich reservoirs of structurally diverse biofunctional components. Being rich sources of protein, marine organisms especially some marine low-value fish are ideal starting materials for the preparation of bioactive peptides. The use of marine low-value fish as substrate for preparation and separation of angiotensin-I converting enzyme inhibitory peptides (ACEI) have become a hot topict for research in recent years.
     The lizard fish(Saurida elongata) is a small marine fish that lives in tropical and subtropical seas. In this paper, component protein of Saurida elongata were determined and18kinds of amino acids in protein of Saurida elongata were determined by RP-HPLC. As the results, protein content of Saurida elongata was15.34%(wet basis) and78.35%(dry basis), and18kinds amino acid of Saurida elongata proteins was about791.41mg·g-1and the total quality of8essential amino acid was about44.92%, aromatic amino acid contained39.13%, polar amino acid contained60.87%.
     Lizardfish muscle protein was hydrolysed by six proteases. Neutral protease derived hydrolysates showed highest angiotensin-I converting enzyme (ACE) inhibitory activity and have a IC50of0.182mg·mL-1and were used to produce angiotensin-I converting enzyme (ACE) inhibitory peptides. By using degree of hydrolysis (DH, Y1) and ACE-inhibitory activity (IP, Y2) as targets, several factors that influence DH and IP were investigated by response-surface methodology(RSM), including temperature, pH value and E/S. The linear regression models to describe the correlation between the variables and the response were Y1=23.77-0.81X,+3.21X2-1.65X3-0.84X,X2-0.35X1X3-0.95X2X3-1.76X,2-0.99X22-0.33X32and Y2=83.32-2.27X1+2.94X2-2.02X3-0.33X1X2-1.76X1X3+1.64X2X3-3.35X12-3.39X22-2.30X32, respectively. The optimum conditions for producing peptides with the highest angiotensin-I converting enzyme (ACE)-inhibitory activity were the following:E/S of10000U·g-1, temperature of48℃, pH7.0, and hydrolysis time of120min. Under this conditions, the hydrolysis degree of lizardfish was24.07%and ACE-inhibitory activity of the hydrolysates was84.00%.
     Lizard fish protein hydrolysate (LFPH) was fractionated by ultrafiltration and G15gel filtration chromatography (GFC). The fraction LFPH-I, which was able to pass through the5kDa membrane, have high ACE-inhibitory activity (IC50of0.123mg·mL-1). The fraction LFPH-I was used for further separation by GFC and several factors that affected GFC were investigated. The optimized condition was that loading quantity of LFPH-I was20mg and the column was eluted in a gel filtration column (1.6cm×45cm) with water at a flow rate of1mL·min-1. LFPH-I was fractionated by GFC into five portions:A, B, C, D, and E. Fraction C (LFPH-I-C) was found to possess the strongest activity and its IC50value was0.110mg·mL-1. LFPH-I was used to investigate stability against gastrointestinal proteases in vitro. The ACE-inhibitory activity of LFPH-I showed any change and slight increase after treatment with trypsin and pepsin alone, respectively. However, significant change was observed after combined digestion with pepsin and trypsin.
     LFPH-I-C was further separated by ion exchange chromatography(IEC) and RP-HPLC (IEC/RP-HPLC method). Fraction G3was obtained and exhibited the strong ACE-inhibitory activity. Furthermore, U73D with the strong ACE-inhibitory activity was isolated from LFPH-I-C by three-step RP-HPLC (RP-HPLC/RP-HPLC/RP-HPLC method). G3and U73D were identified to be single-components by HPLC and HPCE, respectively. The amino acid sequences of G3and U73D were identified by MALDI-TOF-TOF as Arg-Val-Cys-Leu-Pro (RVCLP) and Ser-Pro-Arg-Cys-Arg (SPRCR), and their IC50was175μM and41μM, respectively.
     Metal ion affinity chromatography(IMAC) has been widely used to fractionate recombinant proteins and polypeptides. After separation of two novel ACE inhibitory peptides by IEC/RP-HPLC and RP-HPLC/RP-HPLC/RP-HPLC methods, IMAC was used to isolate ACE inhibitory peptides from LFPH-I.
     Agarose microspheres were prepared by means of inverse suspension method. The optimum conditions for producing microspheres were the following:agarose concentration of2.5%, span-80of1.5%, temperature of60℃, stirring rate of400r·min-1. Under this conditions, the rate of target microspheres was70.80%. By using epichlorohydrin as activating agent, agarose microspheres were activated by the following conditions:NaOH concentration of0.8mol·L-1, epichlorohydrin concentration of20%, NaBH4concentration of3.0g·L-1, temperature of40℃, time of4h. IMAC adsorbent (AS-Cu2+、AS-Zn2+、AS-Ni2+) were prepared by using iminodiacetic acid (IDA) as the chelating ligand and Cu2+, Zn2+and Ni2+as metal ion. The concentration of AS-Cu2+、AS-Zn2+、AS-Ni2+was32.05、33.22、29.17μmol·g-1, respectively. Leakage of metal ion at pH3.0-9.0was investigated and the results showed that the IMAC adsorbents were more stable in acidic environment than in alkaline environment. AS-Cu2+was most stable among the three adsorbents and AS-Zn2+was most easily to leach in acidic environment.
     The adsorption of LFPH-I on AS-Zn2+, AS-Cu2+and AS-Ni2+was investigated. According to ACE-inhibitory activity of fractions separated by different metal ion affinity carrier from LFPH-I, AS-Ni2+was selected for purifying ACE-inhibitory peptides. The optimized conditions of separation of LFPH-I by AS-Ni2+were that the equilibrium solution was0.02mol·L-1phosphate buffer (pH6.8, containing1.0mol·L-1NaCl) and0.02mol·L-1phosphate buffer (pH4.0, containing0.5mol·L-1NaCl) as eluent. A fraction with IC50of0.116mgm·L-1was obtained after the separation of LFPH-I by AS-Ni2+. By comparing amino acid levels (mol%) of LFPH-I and fraction enriched from LFPH-I by AS-Ni2+, it was found that the IMAC fraction was enriched in Met、His、Tyr、Pro、He and Leu.
     The fraction enriched by AS-Ni2+was further separated by RP-HPLC and the results showed that fraction N5was found to possess the strongest activity. The amino acid sequence of N5was identified by MALDI-TOF-TOF as Arg-Tyr-Arg-Pro (RYRP) and its IC5Owas52μM.
引文
[1]Vermeirssen V, Van Camp J, Verstraete W. Bioavailability of angiotensin I converting enzyme inhibitory peptides[J]. British Journal of Nutrition,2004,92(3):357-366.
    [2]Zioudrou C, Streaty RA, Klee WA. Opioid peptides derived from food proteins. The exorphins[J]. Journal of Biological Chemistry,1979,254(7):2446-2449.
    [3]Ferreira S, Rocha e Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) fromBothrops jararaca venom[J]. Cellular and Molecular Life Sciences,1965,21(6):347-349.
    [4]Meisel H, Bockelmann W. Bioactive peptides encrypted in milk proteins:proteolytic activation and thropho-functional properties[J]. Antonie Van Leeuwenhoek,1999,76(1): 207-215.
    [5]Meisel H. Biochemical properties of bioactive peptides derived from milk proteins: potential nutraceuticals for food and pharmaceutical applications[J]. Livestock Production Science,1997,50(1):125-138.
    [6]Zucht HD, Raida M, Adermann K, et al. Casocidin-I:a casein-as2 derived peptide exhibits antibacterial activity[J]. FEBS letters,1995,372(2):185-188.
    [7]Korhonen H, Pihlanto A. Bioactive peptides:production and functionality [J]. International Dairy Journal,2006,16(9):945-960.
    [8]Becker G. Preserving food and health:antioxidants make functional, nutritious preservatives[J]. Food Processing,1993,12:54-56.
    [9]Byun HG, Lee JK, Park HG, et al. Antioxidant peptides isolated from the marine rotifer, Brachionus rotundiformis[J]. Process Biochemistry,2009,44(8):842-846.
    [10]Hartmann R, Meisel H. Food-derived peptides with biological activity:from research to food applications[J]. Current Opinion in Biotechnology,2007,18(2):163-169.
    [11]Itou K, Nagahashi R, Saitou M, et al. Antihypertensive effect of narezushi, a fermented mackerel product, on spontaneously hypertensive rats[J]. Fisheries Science,2007,73(6): 1344-1352.
    [12]蒋菁莉,任发政.食源性降压肽的评价方法[J].中国乳品工业,2006,34(6): 36-39.
    [13]Hong F, Ming L, Yi S, et al. The antihypertensive effect of peptides:A novel alternative to drugs?[J]. Peptides,2008,29(6):1062-1071.
    [14]Abassi Z, Winaver J, Feuerstein GZ. The biochemical pharmacology of renin inhibitors: implications for translational medicine in hypertension, diabetic nephropathy and heart failure:expectations and reality[J]. Biochemical Pharmacology,2009,78(8):933-940.
    [15]Bernstein KE, Shen XZ, Gonzalez-Villalobos RA, et al. Different in vivo functions of the two catalytic domains of angiotensin-converting enzyme (ACE)[J]. Current Opinion in Pharmacology,2011,11 (2):105-111.
    [16]Jao CL, Huang SL, Hsu KC. Angiotensin I-converting enzyme inhibitory peptides: Inhibition mode, bioavailability, and antihypertensive effects[J]. BioMedicine, 2012,2(4):130-136.
    [17]Hernandez-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: Production, bioavailability and incorporation into foods[J]. Advances in Colloid and Interface Science,2011,165(1):23-35.
    [18]Wilson J, Hayes M, Carney B. Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products [J]. Food Chemistry,2011,129(2):235-244.
    [19]Pina A, Roque A. Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme[J]. Journal of Molecular Recognition,2009,22(2): 162-168.
    [20]Oshima G, Shimabukuro H, Nagasawa K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase[J]. Biochimica et BiophysicaActa(BBA)-Enzymology,1979,566(1):128-137.
    [21]Yamamoto N, Ejiri M, Mizuno S. Biogenic peptides and their potential use[J]. Current Pharmaceutical Design,2003,9(16):1345-1355.
    [22]Kim SKM, Eresha M. Bioactive compounds from marine processing by products-A review[J]. Food Research International,2006,39(4):383-393.
    [23]Padraigin A. Harnedy RJF. Bioactive peptides from marine processing waste and shellfish:A review[J]. Journal of Functional Foods,2011,4(1):6-24.
    [24]Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides:a review[J]. Journal of Functional Foods,2010,2(1):1-9.
    [25]Tauzin J, Miclo L, Gaillard JL. Angiotensin-I-converting enzyme inhibitory peptides from tryptic hydrolysate of bovine αs2-casein[J]. FEBS letters,2002,531(2):369-374.
    [26]杨焱炯,杭晓敏,罗九甫.乳酸菌发酵产品的降血压功能及其机制[J].中国微生态学杂志,2006,18(2):141-144.
    [27]Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide[J]. Journal of the American Chemical Society,1963,85(14):2149-2154.
    [28]Iwaniak A, Dziuba, J. Animal and plant proteins as precursors of peptides with ACE inhibitory activity-An in silico strategy of protein evaluation[J]. Food Technology and Biotechnology,2009,47(4):441-449.
    [29]Yuchen Gu KM, Jianping Wu. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides[J]. Food Research International, 2011,44(8):2465-2474.
    [30]Vercruysse L, Smagghe G, Van Der Bent A, et al. Critical evaluation of the use of bioinformatics as a theoretical tool to find high-potential sources of ACE inhibitory peptides[J]. Peptides,2009,30(3):575-582.
    [31]Ferreira AJ, Raizada MK. Are we poised to target ACE2 for the next generation of antihypertensives?[J]. Journal of Molecular Medicine,2008,86(6):685-690.
    [32]Israili ZH, Hall W. Cough and angioneurotic edema associated with angiotensin-converting enzyme inhibitor therapy [J]. Annals of Internal Medicine, 1992,117(3):234.
    [33]Antonios TFT, MacGregor GA. Angiotensin converting enzyme inhibitors in hypertension:potential problems[J]. Journal of Hypertension,1995,13(3):S11-S31.
    [34]Messerli FH. Combinations in the treatment of hypertension:ACE inhibitors and calcium antagonists [J]. American Journal of Hypertension,1999,12(8):86S-90S.
    [35]Kawasaki T, Seki E, Osajima K, et al. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle hydrolyzate, on mild hypertensive subjects[J]. Journal of Human Hypertension,2000,14(8):519.
    [36]Zhuang Y, Sun L, Zhang Y, et al. Antihypertensive Effect of Long-Term Oral Administration of Jellyfish(Rhopilema esculentum) Collagen Peptides on Renovascular Hypertension[J]. Marine Drugs,2012,10(2):417-426.
    [37]Wijesekara I, Kim SK. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources:prospects in the pharmaceutical industry[J]. Marine Drugs,2010,8(4): 1080-1093.
    [38]Lopez-Fandino R, Otte J, Van Camp J. Physiological, chemical and technological aspects of milk-protein-derived peptides with antihypertensive and ACE-inhibitory activity[J]. International Dairy Journal,2006,16(11):1277-1293.
    [39]Pozo-Bayon M, Alcaide JM, Polo MC, et al. Angiotensin I-converting enzyme inhibitory compounds in white and red wines[J]. Food Chemistry,2007,100(1):43-47.
    [40]Mao XY, Ni JR, Sun WL, et al. Value-added utilization of yak milk casein for the production of angiotensin-I-converting enzyme inhibitory peptides[J]. Food Chemistry, 2007,103(4):1282-1287.
    [41]Lee SH, Qian ZJ, Kim SK. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats[J]. Food Chemistry,2010,118(1):96-102.
    [42]张绵松,孟秀梅,袁文鹏,等.海蜇血管紧张素转化酶抑制肽的超滤分离[J].食品与药品,2010,12(1):20-23.
    [43]杜璟,何慧,陈劭敏,等.超滤法制备高ACE抑制活性玉米肽[J].中国粮油学报,2010,25(8):10-14.
    [44]田万敏,马海乐,骆琳,等.超滤技术分离双低油菜ACE抑制肽及其性能研究[J].中国粮油学报,2011,26(9):87-91.
    [45]张宇昊,王强,周素梅.花生降血压肽的超滤分离研究[J].中国油脂,2007,32(7):28-31.
    [46]Je JY, Park PJ, Byun HG, et al. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis [J]. Bioresource Technology,2005,96(14):1624-1629.
    [47]Rho SJ, Lee JS, Chung YI, et al. Purification and identification of an angiotensin I-converting enzyme inhibitory peptide from fermented soybean extract[J]. Process Biochemistry,2009,44(4):490-493.
    [48]Byun HG, Kim SK. Purification and characterization of angiotensin Ⅰ converting enzyme (ACE) inhibitory peptides from Alaska pollack(Theragra chalcogramma) skin[J]. Process Biochemistry,2001,36(12):1155-1162.
    [49]Hyoung Lee D, Ho Kim J, Sik Park J, et al. Isolation and characterization of a novel angiotensin Ⅰ-converting enzyme inhibitory peptide derived from the edible mushroom Tricholoma giganteum [J]. Peptides,2004,25(4):621-627.
    [50]Qian ZJ, Jung WK, Kim SK. Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw[J]. Bioresource Technology,2008,99(6):1690-1698.
    [51]Wu J, Aluko RE, Muir AD. Production of angiotensin Ⅰ-converting enzyme inhibitory peptides from defatted canola meal[J]. Bioresource technology,2009,100(21): 5283-5287.
    [52]喇文军,刘冬,张丽君,等.离子交换层析法分离纯化玉米降血压肽的研究[J].食品工程,2007,3:57-59.
    [53]钟芳,张晓梅,麻建国.大豆肽的离子交换色谱分离及其活性评价[J].食品与机械,2006,22(5):16-19.
    [54]Pihlanto A, Virtanen T, Korhonen H. Angiotensin Ⅰ converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk[J]. International Dairy Journal,2010,20(1):3-10.
    [55]Nakade K, Kamishima R, Inoue Y, et al. Identification of an antihypertensive peptide derived from chicken bone extract[J]. Animal Science Journal,2008,79(6):710-715.
    [56]Quiros A, Ramos M, Muguerza B, et al. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis[J]. International Dairy Journal, 2007,17(1):33-41.
    [57]Suetsuna K, Chen JR. Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis[J]. Marine Biotechnology, 2001,3(4):305-309.
    [58]Fahmi A, Morimura S, Guo H, et al. Production of angiotensin Ⅰ converting enzyme inhibitory peptides from sea bream scales[J]. Process Biochemistry,2004,39(10): 1195-1200.
    [59]Contreras MM, Carron R, Montero MJ, et al. Novel casein-derived peptides with antihypertensive activity[J]. International Dairy Journal,2009,19(10):566-573.
    [60]Cheng FY, Wan TC, Liu YT, et al. Determination of angiotensin-I converting enzyme inhibitory peptides in chicken leg bone protein hydrolysate with alcalase[J]. Animal Science Journal,2009,80(1):91-97.
    [61]Yadav SC, Kumari A, Yadav R. Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation[J]. Peptides,2011,32(1):173-187.
    [62]Meng QC, Oparil S. Purification and assay methods for angiotensin-converting enzyme[J]. Journal of Chromatography A,1996,743(1):105-122.
    [63]孙彦,徐晓燕,王绍亭.配基修饰脂质体的制备及亲和分离胰蛋白酶的研究[J].化工学报,1993,44(3):359-365.
    [64]王涛,王为超,王连永,等.磷酸盐型低密度脂蛋白亲和吸附剂制备与体外吸附试验研究[J].中国生物医学工程学报,2008,27(1):132-136.
    [65]苏赛男,聂华丽,朱利民,等.尼龙亲和膜色谱法纯化半胱氨酸蛋白酶抑制剂[J].分析化学,2008,36(2):231-234.
    [66]吴熙然,胡红华,张相年,等.亲和层析法分离纯化蒜氨酸酶[J].食品科学,2009,30(19):244-247.
    [67]黄燕,田清清,李谭瑶,等.亲和色谱法筛选中药中血管紧张素转化酶抑制剂[J].中国科学:B辑,2009,39(8):760-766.
    [68]孙凤祥,刘长江,王守训,等.甲壳糖固定血管紧张素转换酶的制备及其性质[J].潍坊医学院学报,2004,26(3):169-170.
    [69]Megias C, Pedroche J, Yust MM, et al. Purification of angiotensin converting enzyme inhibitory peptides from sunflower protein hydrolysates by reverse-phase chromatography following affinity purification[J]. LWT-Food Science and Technology, 2009,42(1):228-232.
    [70]Megias C, Pedroche J, del Mar Yust M, et al. Affinity purification of angiotensin converting enzyme inhibitory peptides using immobilized ACE[J]. Journal of Agricultural and Food Chemistry,2006,54(19):7120-7124.
    [71]Kumada Y, Nogami M, Minami N, et al. Application of protein-coupled liposomes to effective affinity screening from phage library [J]. Journal of Chromatography A, 2005,1080(1):22-28.
    [72]Kumada Y, Hashimoto N, Hasan F, et al. Screening of ACE-inhibitory peptides from a random peptide-displayed phage library using ACE-coupled liposomes[J]. Journal of Biotechnology,2007,131(2):144-149.
    [73]Chaga GS. Twenty-five years of immobilized metal ion affinity chromatography:past, present and future[J]. Journal of Biochemical and Biophysical Methods,2001,49(1-3): 313-334.
    [74]Ueda E, Gout P, Morganti L. Current and prospective applications of metal ion-protein binding[J]. Journal of Chromatography A,2003,988(1):1-23.
    [75]Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography[J]. Journal of Biochemical and Biophysical Methods,2001,49(1): 335-360.
    [76]Andersson L, Sulkowski E. Evaluation of the interaction of protein a-amino groups with M(Ⅱ) by immobilized metal ion affinity chromatography [J]. Journal of Chromatography A,1992,604(1):13-17.
    [77]Sharma S, Agarwal GP. Interactions of proteins with immobilized metal ions:a comparative analysis using various isotherm models[J]. Analytical Biochemistry, 2001,288(2):126-140.
    [78]Winzerling JJ, Berna P, Porath J. How to use immobilized metal ion affinity chromatography[J]. Methods,1992,4(1):4-13.
    [79]夏海锋,张显,金雄华,等.镍离子亲和层析介质的制备及其用于组氨酸标记蛋白质的纯化[J].江南大学学报:自然科学版,2010,9(6):685-689.
    [80]刘琳琳,曾力希,刘婷,等.金属螯合载体定向固定化木瓜蛋白酶的研究[J].生物工程学报,2005,21(5):789-793.
    [81]Shi QH, Tian Y, Dong XY, et al. Chitosan-coated silica beads as immobilized metal affinity support for protein adsorption[J]. Biochemical Engineering Journal,2003,16(3): 317-322.
    [82]钟莺莺,叶俊超,邬建敏.壳聚糖-硅基凝胶微球作为固定化金属螯合亲和色谱基质的研究[J].分析化学,2007,35(11):1581-1585.
    [83]魏琪,鲍时翔.固定化金属螯合亲和膜纯化重组抗菌肽研究[J].生物化学与生物 物理进展,2000,27(4):401-403.
    [84]Liou CL, Chen YC, Lin SC. A poly (2-hydroxyethyl methacrylate)-based immobilized metal affinity chromatography adsorbent for protein purification[J]. Journal of the Chinese Institute of Chemical Engineers,2008,39(4):329-336.
    [85]Sugo K, Yoshitake T, Tomita M, et al. Simplified purification of soluble histidine-tagged green fluorescent protein from cocoon of transgenic silkworm in metal affinity hydroxyapatite chromatography[J]. Separation and Purification Technology, 2011,76(3):432-435.
    [86]McCarthy P, Chattopadhyay M, Millhauser G, et al. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization:Separation of synthetic prion peptides[J]. Analytical Biochemistry, 2007,366(1):1-8.
    [87]Pavanetto F, Conti B, Genta I, et al. Solvent evaporation, solvent extraction and spray drying for polylactide microsphere preparation[J]. International Journal of Pharmaceutics,1992,84(2):151-159.
    [88]Sinha V, Trehan A. Biodegradable microspheres for protein delivery[J]. Journal of Controlled Release,2003,90(3):261-280.
    [89]蒙敏,孙庆元,朱强,等.反相悬浮法制备多糖巨球的研究[J].日用化学工业,2007,37(6):378-381.
    [90]Ying X, Cheng G, Zhao K. Preparation and characterization of protein imprinted agarose microspheres [J]. Polymer Bulletin,2010,65(3):245-263.
    [91]李春蛟,林志勇,钱浩.反相悬浮法制备磁性高分子微球的研究[J].化学工程与装备,2010,(8):30-33.
    [92]Block H, Maertens B, Spriestersbach A, et al. Immobilized-Metal Affinity Chromatography (IMAC):A Review[J]. Methods in Enzymology,2009,463:439-473.
    [93]Radford RJ, Brodin JD, Salgado EN, et al. Expanding the utility of proteins as platforms for coordination chemistry [J]. Coordination Chemistry Reviews, 2011,255(7):790-803.
    [94]Jalili PR, Sharma D, Ball HL. Enhancement of ionization efficiency and selective enrichment of phosphorylated peptides from complex protein mixtures using a reversible poly-histidine tag[J]. Journal of the American Society for Mass Spectrometry,2007,18(6):1007-1017.
    [95]Leitner A, Sturm M, Lindner W. Tools for analyzing the phosphoproteome and other phosphorylated biomolecules:A review[J]. Analytica Chimica Acta,2011, 703(1):19-30.
    [96]Follmer C, Wassermann GE, Carlini CR. Separation of jack bean(Canavalia ensiformi) urease isoforms by immobilized metal affinity chromatography and characterization of insecticidal properties unrelated to ureolytic activity[J]. Plant Science,2004,167(2): 241-246.
    [97]Vancan S, Miranda EA, Bueno SMA. IMAC of human IgG:studies with IDA-immobilized copper, nickel, zinc, and cobalt ions and different buffer systems [J]. Process Biochemistry,2002,37(6):573-579.
    [98]Megias C, Pedroche J, Yust MM, et al. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin[J]. LWT-Food Science and Technology,2008,41(10):1973-1977.
    [99]Thewissen BG, Pauly A, Celus I, et al. Inhibition of angiotensin Ⅰ-converting enzyme by wheat gliadin hydrolysates[J]. Food Chemistry,2011,127(4):1653-1658.
    [100]Lo WMY, Li-Chan ECY. Angiotensin Ⅰ converting enzyme inhibitory peptides from in vitro pepsin-pancreatin digestion of soy protein[J]. Journal of Agricultural and Food Chemistry,2005,53(9):3369-3376.
    [101]颜云榕,王田田,侯刚,等.北部湾多齿蛇鲻摄食习性及随生长发育的变化[J].水产学报,2010,34(7):1089-1098.
    [102]中国水产杂志社.中国经济水产品原色图集[M].上海科学技术出版社,2001:21.
    [103]Iyer SN, Ferrario CM, Chappell MC. Angiotensin-(1-7) contributes to the antihypertensive effects of blockade of the renin-angiotensin system[J]. Hypertension, 1998,31(1):356-361.
    [104]Suetsuna K, Maekawa K, Chen J-R. Antihypertensive effects of Undaria pinnatifida(wakame) peptide on blood pressure in spontaneously hypertensive rats[J]. The Journal of Nutritional Biochemistry,2004,15(5):267-272.
    [105]Matsui T, Tamaya K, Seki E, et al. Absorption of Val-Tyr with in vitro angiotensin I-converting enzyme inhibitory activity into the circulating blood system of mild hypertensive subjects[J]. Biological and Pharmaceutical Bulletin,2002,25(9): 1228-1230.
    [106]Qian ZJ, Jung WK, Lee SH, et al. Antihypertensive effect of an angiotensin I-converting enzyme inhibitory peptide from bullfrog(Rana catesbeiana Shaw) muscle protein in spontaneously hypertensive rats[J]. Process Biochemistry,2007,42(10): 1443.1448.
    [107]Lacaille-Dubois M, Franck U, Wagner H. Search for potential angiotensin converting enzyme (ACE)-inhibitors from plants[J]. Phytomedicine,2001,8(1):47-52.
    [108]Byun HG, Kim SK. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin[J]. Process Biochemistry,2001,36(12):1155-1162.
    [109]Cushman D, Cheung H. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung[J]. Biochemical pharmacology, 1971,20(7):1637-1648.
    [110]Sentandreu MA, Toldra F. A rapid, simple and sensitive fluorescence method for the assay of angiotensin-I converting enzyme[J]. Food Chemistry,2006,97(3):546-554.
    [111]Ryan JW, Chung A, Ammons C, et al. A simple radioassay for angiotensin-converting enzyme[J]. Biochemical Journal,1977,167(2):501.
    [112]Vermeirssen V, Van Camp J, Verstraete W. Optimisation and validation of an angiotensin-converting enzyme inhibition assay for the screening of bioactive peptides[J]. Journal of Biochemical and Biophysical Methods,2002,51(1):75-87.
    [113]Mehanna AS, Dowling M. Liquid chromatographic determination of hippuric acid for the evaluation of ethacrynic acid as angiotensin converting enzyme inhibitor[J]. Journal of Pharmaceutical and Biomedical Analysis,1999,19(6):967-973.
    [114]Van Dyck S, Novakova S, Van Schepdael A, et al. Inhibition study of angiotensin converting enzyme by capillary electrophoresis after enzymatic reaction at capillary inlet[J]. Journal of Chromatography A,2003,1013(1):149-156.
    [115]Elased KM, Cool DR, Morris M. Novel mass spectrometric methods for evaluation of plasma angiotensin converting enzyme 1 and renin activity[J]. Hypertension, 2005,46(4):953-959.
    [116]Vohra A, Satyanarayana T. Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala[J]. Process Biochemistry,2002,37(9):999-1004.
    [117]Guo Y, Pan D, Tanokura M. Optimisation of hydrolysis conditions for the production of the angiotensin-I converting enzyme (ACE) inhibitory peptides from whey protein using response surface methodology[J]. Food Chemistry,2009,114(1):328-333.
    [118]Pan D, Guo Y. Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate[J]. International Dairy Journal,2010,20(7):472-479.
    [119]Van der Ven C, Gruppen H, de Bont D, et al. Optimisation of the angiotensin converting enzyme inhibition by whey protein hydrolysates using response surface methodology[J]. International Dairy Journal,2002,12(10):813-820.
    [120]李凌瑞,孙建华,黄秋霞,等.柱前衍生化-HPLC测定马氏珠母贝肉中氨基酸的含量[J].广西大学学报:自然科学版,2009,34(006):744-748.
    [121]张龙翔,张庭芳,生物化学,等.生化实验方法和技术[M].高等教育出版社,1997:116-123.
    [122]Wang J, Hu J, Cui J, et al. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats[J]. Food Chemistry,2008,111(2):302-308.
    [123]廖丹葵,孙秀华,万顺刚,等.酶法水解和筛选蛋黄蛋白质中的药物前驱型降血压肽[J].精细化工,2006,23(8):757-759.
    [124]Marquez M, Vazquez M. Modeling of enzymatic protein hydrolysis[J]. Process Biochemistry,1999,35(1):111-117.
    [125]张兆琴,伟刘,梁瑞红,等.动态高压微射流对茎菠萝蛋白酶性质和构象的影响[J].食品科学,2010,31(7):46-50.
    [126]王镜岩.生物化学[M].北京:高等教育出版社,2002:378-379.
    [127]韩虎子,杨红.膜分离技术现状及其在食品行业的应用[J].食品与发酵科技,2012,48(5):23-26.
    [128]陈灏,陈欢林.膜色谱技术在生物大分子分离与纯化中的应用[J].膜科学与技术, 2001,21(5):66-71.
    [129]杨歌德,姜玉梅.凝胶过滤层析分离蛋白质实验中三种过滤介质分离效果的比较[J].哈尔滨医科大学学报,2002,36(3):242-243.
    [130]赵钟兴,廖丹葵,孙建华,等.碱性蛋白酶水解蚕蛹蛋白集总动力学[J].化工学报,2011,62(9):2588-2594.
    [131]Miguel M, Aleixandre M, Ramos M, et al. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin[J]. Journal of Agricultural and Food Chemistry,2006,54(3):726-731.
    [132]Rui X, Boye JI, Simpson BK, et al. Angiotensin Ⅰ-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates:Effects of different thermal and enzymatic digestion treatments[J]. Food Research International,2012,49(2):739-746.
    [133]Hwang JS. Impact of processing on stability of angiotensin Ⅰ-converting enzyme (ACE) inhibitory peptides obtained from tuna cooking juice[J]. Food Research International,2010,43(3):902-906.
    [134]Hyun CK, Shin HK. Utilization of bovine blood plasma proteins for the production of angiotensin Ⅰ converting enzyme inhibitory peptides[J]. Process Biochemistry, 2000,36(1):65-71.
    [135]Iroyukifujita H, Eiichiyokoyama K, Yoshikawa M. Classification and Antihypertensive Activity of Angiotensin Ⅰ-Converting Enzyme Inhibitory Peptides Derived from Food Proteins[J]. Journal of Food Science,2008,65(4):564-569.
    [136]范国荣,林梅.蛋白质类生化产品的高效毛细管电泳分析[J].第二军医大学学报,1998,19(4):360-363.
    [137]Jensen B, Unger KK, Uebe J, et al. Proteolytic cleavage of soybean Bowman-Birk inhibitor monitored by means of high-performance capillary electrophoresis. Implications for the mechanism of proteinase inhibitors [J]. Journal of Biochemical and Biophysical Methods,1996,33(3):171-185.
    [138]陈晶,赵玉芬.质谱在肽和蛋白质序列分析中的应用[J].有机化学,2002,22(2):81-90.
    [139]Liland KH, Mevik BH, Rukke EO, et al. Quantitative whole spectrum analysis with MALDI-TOF MS, Part Ⅰ:Measurement optimisation[J]. Chemometrics and Intelligent Laboratory Systems,2009,96(2):210-218.
    [140]Fenn JB, Mann M, Meng CK, et al. Electrospray ionization-principles and practice[J]. Mass Spectrometry Reviews,2005,9(1):37-70.
    [141]Jiang W, Hearn MT. Protein interaction with immobilized metal ion affinity ligands under high ionic strength conditions[J]. Analytical Biochemistry,1996,242(1):45-54.
    [142]孙永亮,李淑娟,胡道道,等.纯化组氨酸标签蛋白金属螯合亲和色谱填料的制备与性能[J].陕西师范大学学报(自然科学版),2007,35(2):67-71.
    [143]Adkins NL, Hall JA, Georgel PT. The use of Quantitative Agarose Gel Electrophoresis for rapid analysis of the integrity of protein-DNA complexes[J]. Journal of Biochemical and Biophysical Methods,2007,70(5):721-726.
    [144]Li H, Dai HY, Zhang ZH, et al. Isolation and Identification of Virus dsRNA from Strawberry Plants[J]. Scientia Agricultura Sinica,2006,6(1):86-93.
    [145]Gutierrez R, Del Valle E, Galan M. Adsorption and mass transfer studies of Catalase in IMAC chromatography by dynamics methods[J]. Process Biochemistry,2006,41(1): 142-151.
    [146]Cao Y, Bai G, Chen J, et al. Preparation and characterization of magnetic microspheres for the purification of interferon a-2b[J]. Journal of Chromatography B, 2006,833(2):236-244.
    [147]史清洪,彭冠英,孙舒,等.环氧氯丙烷活化琼脂糖凝胶过程强化及性能评价[J].过程工程学报,2007,7(4):743-746.
    [148]张松平,丁锐,苏志国,等.无水体系中环氧氯丙烷活化琼脂糖凝胶制备高载量固定化金属亲和层析介质[J].过程工程学报,2010,10(5):971-975.
    [149]林楠,吴颉,郑国钧,等.微孔膜乳化法制备大粒径琼脂糖微球[J].过程工程学报,2009,9(5):953-961.
    [150]刘建荣,张昊,顾雅君,等.自制纤维素金属螯合亲和膜的部分吸附性能及纯化牛血SOD[J].河北大学学报:自然科学版,2009,29(4):427-432.
    [151]Oshima T, Tachiyama H, Kanemaru K, et al. Adsorption and concentration of histidine-containing dipeptides using divalent transition metals immobilized on a chelating resin[J]. Separation and Purification Technology,2009,70(1):79-86.
    [152]潘荷芳.锌试剂分光光度法测定头发中的微量锌[J].分析化学,1995,23(8):983.
    [153]张海龙,乔昕,姚红娟,等.多肽配基亲和吸附介质的配基密度控制规律[J].化学反应工程与工艺,2007,23(4):289-295.
    [154]张松平,丁锐,苏志国,等.无水体系中环氧氯丙烷活化琼脂糖凝胶制备高载量固定化金属亲和层析介质[J].过程工程学报,2010,10(5):971-975.
    [155]潘丹卓,陈葵,朱家文.琼脂糖凝胶微球活化度的考察[J].山东化工,2010,39(3):5-7.
    [156]嘎日迪,刘颖,包山虎.锌试剂显色树脂相分光光度法测定微量铜(Ⅱ)[J].内蒙古大学学报(自然科学版),1996,27(4):521-523.
    [157]石影,邓凡政,石燕.双水相体系中镍的光谱性能及测定[J].光谱学与光谱分析,2003,23(3):591-593.
    [158]李蓉,陈国亮,赵文明.固定金属离子亲和色谱-蛋白质分离的方法,原理,特性和应用[J].化学通报,2005,68(5):352-360.
    [159]Chen WY, Wu CF, Liu CC. Interactions of imidazole and proteins with immobilized Cu (II) ions:effects of structure, salt concentration, and pH in affinity and binding capacity[J]. Journal of Colloid and Interface Science,1996,180(1):135-143.
    [160]Hansen P, Lindeberg G. Importance of the a-amino group in the selective purification of synthetic histidine peptides by immobilised metal ion affinity chromatography[J]. Journal of Chromatography A,1995,690(2):155-159.
    [161]Hemdan ES, Porath J. Development of immobilized metal affinity chromatography:Ⅱ. Interaction of amino acids with immobilized nickel iminodiacetate[J]. Journal of Chromatography A,1985,323(2):255-264.
    [162]Wong JW, Albright RL, Wang NHL. Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications[J]. Separation and Purification Methods,1991,20(1):49-106.
    [163]El Rassi Z, Horvath C. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support[J]. Journal of Chromatography A,1986,359:241-253.
    [164]谭天伟,邓利.用膨胀床金属亲和层析从淡菜匀浆液中分离纯化纤维素酶[J].生物工程学报,1998,14(4):434-438.
    [165]Vunnum S, Gallant S, Cramer S. Immobilized metal affinity chromatography: displacer characteristics of traditional mobile phase modifiers[J]. Biotechnology Progress,1996,12(1):84-91.
    [166]Li R, Wang Y, Chen GL, et al. Effects of Immobilized Metal Ion on Retention Behaviors of Proteins in Metal Chelate Affinity Chromatography[J]. Journal of the Chinese Chemical Society,2011,58(2):215-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700