用户名: 密码: 验证码:
光电稳定伺服机构的关键测控问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代高技术装备的飞速发展,光电武器装备在侦察、监视、定位、导航和通信等场合的作用越来越重要。光电稳定跟踪系统是该类装备的重要组成部分,且稳定跟踪精度的要求越来越高。本文围绕着如何提高光电稳定跟踪系统的稳定跟踪精度这个重要问题,对三框架光电稳定伺服机构中的运动学、动力学、微机电陀螺信号处理、伺服回路快速设计、摩擦补偿和速度估计等问题进行了较为深入的分析和研究。
     论文的研究工作包含以下几个部分:
     1.分析了常用三框架光电稳定跟踪平台对基座扰动的隔离原理,推导了该类机构的角速度和角加速度方程,由此从理论上分析了直接稳定和捷联稳定的工作原理,说明了载体和视轴运动所引起的图像特性变化。从运动学的角度进行了光电稳定跟踪机构的精度分析,给出了陀螺安装精度和控制精度对整体稳定精度的定量影响关系。
     2.应用牛顿力学原理分析了光电稳定跟踪机构的惯量耦合关系和动力学模型,推导了平台单轴伺服回路的控制方程,比较了直接稳定和捷联稳定方案在测量噪声和外部扰动共同作用下的性能特点,仿真结果表明,在同等噪声和扰动条件下,捷联稳定面临更多的误差源,因而最终的稳定精度较难达到直接稳定系统的水平。
     3.分析了基于哥氏振动原理的微机电陀螺的基本工作原理和误差模型,建立了微机电陀螺随机噪声的时间序列模型。研究表明,速率陀螺噪声不仅会在电机输出轴产生相同数量级的速率抖动,还会导致平台的角度漂移。针对普通数字滤波方法在光电稳定回路中应用的局限性,运用基于二阶自回归模型的Kalman滤波方法和小波阈值决策滤波方法,进行了陀螺噪声信号的去噪处理,研究结果表明,相对普通数字滤波方式而言,Kalman滤波具有相对较小的时间滞后,同时实时性较好,但滤波效果比小波阈值决策滤波稍差。
     4.总结了光电稳定系统速率稳定和位置跟踪回路设计时的基本问题,提出了速率陀螺作为反馈元件的速率回路和以普通角位置传感器作为反馈元件的位置回路具有“低频位置跟踪、高频速率隔离”的频率特性,并通过理论和半实物仿真实验进行了验证。以dSPACE半实物仿真系统为工具,提出并实现了光电稳定回路控制系统的快速设计方法。
     5.通过理论和半实物仿真实验,揭示了摩擦力矩对光电稳定跟踪机构动态性能的影响,指出摩擦“死区”会导致速率稳定的“尖峰”误差,而经典控制器设计方法不能从根本上抑制此误差。提出了利用三次谐波对具有“死区”非线性环节的直流伺服系统进行辨识的方法。为了进一步提高光电稳定精度,论文使用自适应滑模变结构控制器进行摩擦补偿,仿真结果表明,该方法有效减少了由于摩擦非线性造成的“尖峰”误差。针对摩擦补偿中速度观测的问题,提出了一种组合角加速度估计器,并进行了实验验证。
     6.介绍了某机载光电稳定伺服机构的硬件组成,进行了控制器设计和试验,进一步验证了论文有关理论和方法的有效性。
Developing with the modern equipments of high technology, Opto-Electronic (O-E) equipments play a more and more important role in reconnaissance, surveillance, orientation, navigation, communication systems. As an essential part of these weapons, the O-E stabilization and tracking systems should gradually been improved accuracy. The dissertation mainly focuses on the following content on O-E stabilization servo system with three-axis gimbal: kinematics, dynamics, signal process of MEMS gyro, fast design technique of servo loop, friction compensation and angular rate estimating.
     The main work is organized as follows:
     1. Using the relational methods of spatial mechanism, the author first illuminated the isolating principium of O-E stabilization and tracking platform of three-axis gimbal against the base disturbance, and derived the angular rate and acceleration equations. Based on those equations, the stabilization of direct and strapdown stabilization were analyzed respectively. And then the image characteristic change caused by the motion was derived. From the viewpoint of kinematics, the relationships between the O-E stabilization accuracy and the error of both the rate gyro’s installation and the control error were analyzed.
     2. Based on Newton mechanics, the inertia coupling and dynamic equations of the O-E stabilization and tracking mechanism were analyzed. Then, the single axis servo loop control equation was derived. Following that, the different performances of the direct and strapdown stabilization system were compared from the impact of noise and disturbance. The analysis results showed that the strapdown approach will be faced to more error sources with sensor noise and motion disturbance. The simulation results verified this and indicated that the performance of the strapdown approach would not be as efficient as that of the direct approach.
     3. Analyzing the principle and error model of MEMS QRS gyro for the purpose of practical applications, the paper presented an autoregressive (AR) model for the gyro signal by means of time series theory. Then,the following conclusions were obtained the noise of rate gyro would cause not only the angular rate dithering which almost having equal quantitative rank to the noise, but also the long time angular drift. Aiming at the limitation of ordinary digital filter methods, Kalman filter based on AR model and the threshold filter according to wavelet were proposed and compared to process and compensate the gyro’s signal. The denoising results showed that Kalman filter had the relatively small lag time to the ordinary filters, but( had) the bigger residuary error than wavelet filter.
     4. The basic problems of angular rate stabilization and position tracking loop of O-E stabilization system were primarily summarized. And the paper concluded that special frequency characteristic between the stabilization and tracking loop, which using rate gyro and angular position sensor respectively as feedback component, namely Low Frequency Position Tracking and High Frequency Rate Stabilizing, which was proved by the following theoretical and HIL (Hardware in the Loop) simulation. Using the tool of dSPACE, a normal method of fast design to the O-E stabilization control system was introduced and realized.
     5. The friction torque and its impact on the O-E stabilization accuracy were researched in the following part. The results showed that the friction torque existence of dead-zone in the movement caused by friction torque would be a main origin for the high precision O-E system, and in this situation, the servo algorithm generally used would not be so valid. Therefore, the third-harmonic test method was proposed to identify the dead-zone parameter in order to improve the O-E stabilization precision. And an adaptive slide mode controller is presented to compensate the nonlinear friction torque. The simulation results showed that the accuracy was improved. To the problem of the angular rate observing, a combined low acceleration estimation method was proposed so as to further improve the accuracy.
     6. The hardware configurations of a certain airborne O-E stabilization and tracking servo mechanism were illustrated in the last part. The controllers were designed and tested, and the experiment results showed the validity of the research work.
引文
[1] 范大鹏. 《光电稳定伺服机构控制技术》专题文章导读[J]. 光学 精密工程, 2006,14(4) : p673
    [2] 贾平, 张葆. 航空光电侦察平台关键技术及其发展[J]. 光学 精密工程, 2003. 11(1) : 82~88
    [3] Masten, Michael K. and Sebesta, Henry R. LINE-OF-SIGHT STABILIZATION /TRACKING SYSTEMS:AN OVERVIEW[A]. Proceedings of the American Control Conference. 1987 : p1477~1482.
    [4] 郁文贤, 郭桂蓉. ATR 的研究现状和发展趋势. 系统工程与电子技术. 1994,16(6) : 25-32
    [5] 中国人民解放军国防科技大学. 桅杆式光电侦察平台技术. 装备预先研究项目建议书, 2006
    [6] 中国人民解放军国防科技大学. 超声速巡航导弹红外成像导引头图像跟踪控制技术. 装备预先研究项目建议书, 2006
    [7] 郭富强, 于波, 王叔华. 陀螺稳定装置及其应用[M]. 西安:西北工业大学出版社, 1995
    [8] 成刚. 光电稳定跟踪的机械结构分析与研究[D]. 西安:西安电子科技大学,2000
    [9] RICHARD L. PIO. Euler Angle Transformation. IEEE TRANSACTIONS ON AUTOMATIC, VOL. AC-11, NO. 4, OCTOBER, 1966 : p707~715
    [10] C.J.Cooper, Hamilton. Sensor line-of-sight stabilization[A]. SPIE Vol. 1498 ,1991: p39~51
    [11] 沈宏海, 刘晶红. 摄像稳定技术[J]. 光学 精密工程.2001,9(2) : p115~120
    [12] 陈非凡, 张高飞, 陈益峰. 小卫星动量轮非线性特性建模与仿真方法[J]. 宇航学报. 2003, 24(6) : 651~655
    [13] 李季苏, 曾海波. 地球观测卫星轮控系统单通道全物理仿真[J]. 系统仿真学报, 2002, 14(2) : p211~214
    [14] Patel, Mukund R., Energy-momentum-wheel for satellite power and attitude control systems[A]. Intersoiety Energy Conversion Engineering Conferene and Exhibit (IECEC), 35th, Las Vegas, NV, July 24-28, 2000, Papers. Vol. 1 (A00-37701 10-44) : p609~612
    [15] 赵跃进. 平行光路中的三轴稳像反射镜组[J]. 光学技术,2000,26(5) : p437~439
    [16] 汪遵懋. 光学稳像扫描头稳像条件分析计算研究[J]. 光学技术.1992(6) : p26~30
    [17] 周庆方, 王志坚, 王春艳. 光学稳像技术在空间通信及航空、航天中应用的探讨[J].空间科学学报. 2004,24(1) : p74~80
    [18] 赵跃进, 连铜淑. 三轴稳像棱镜组的扫描稳像作用[J]. 北京理工大学学报. 1993, 13(1) : p39~43
    [19] Ho Dong Seok, Joon Lyou .Digital image stabilization using simple estimation of the rotational and translational motion[A]. SPIE Vol. 5810,2005 : p170~181
    [20] Ping Zhong. Research on methods of motion estimation and compensation in electronic image stabilization technique[A]. SPIE Vol.5637,2005 : p182~188
    [21] Jenkins, Steven T. Hilkert, J.M. LINE OF SIGHT STABILIZATION USING IMAGE MOTION COMPENSATION[A]. SPIE Vol. 1111, 1989 : p98~115
    [22] Vella, F.; Castorina, A.; Mancuso, M.; Messina, G. Digital image stabilization by adaptive block motion vectors filtering[J]. IEEE Transactions on Consumer Electronics, 2002 : p796~801
    [23] 韩绍坤 赵跃进. 电子稳像技术及其发展[J]. 光学技术.2001,27(1) : p71~73
    [24] 赵红颖, 金宏. 电子稳像技术概述[J]. 光学 精密工程-2001.9(4) : p353~359
    [25] Kevin Murphy, Scott Goldblatt, Jeffery Warren, Rickey Chapman, James Hemler, Craig Mitchell and George Moe. Pointing and stabilization system for use in a high-altitude hovering helicopter[A]. SPIE Vol. 3692 ,1999 : p23~32
    [26] Karl Wandner and Hans J. K?rcher, The Pointing Control System of SOFIA[A]. Proceedings of SPIE Vol. 4014,2000 : p360~369
    [27] Donald Ruffatto, Donald Brown, Richard Pohle, Michael Reiley and Delmar Haddock. STABILIZED HIGH-ACCURACY OPTICAL TRACKING SYSTEM(SHOTS)[A]. SPIE Vol. 4365, 2001 : p10~18
    [28] Delin.Xie, Jiahu.Yuan, Hu.Yang. STABILIZATION OF LINE-OF-SIGHT FOR AIRBORNE O-E TRACKING AND IMAGING SYSTEM[A]. SPIE. Vol. 3365, 1998 : p191~201
    [29] Germann, Lawrence M. MICRORADIAN-LEVEL INERTIAL LINE OF SIGHT STABILIZATION SYSTEMS WITH WIDE ANGLE-SEARCH CAPABILITY[A]. SPIE Vol. 1696, 1992 : p16~26
    [30] Anderson, Daves, Schulthess, Marcus; Sebesta, Henry; Blackburn, John; Aaugh, Steve. DESIGN OF THE HIGH ALTITUDE BALLOON EXPERIMENT LINE-OF-SIGHT STABILIZATION AND POINTING SYSTEM[A]. Proceedings of the Annual Meeting - Institute of Navigation, 1993 : p735~746
    [31] Iecovich, Meir. LINE OF SIGHT STABILIZATION REQUIREMENTS FOR TARGET TRACKING SYSTEMS[A]. SPIE Vol. 1304,1990 : p100~111
    [32] Kennedy, Peter J. Kennedy, Rhonda L. DIRECT VERSUS INDIRECT LINE OF SIGHT (LOS) STABILIZATION[J]. IEEE Transactions on Control Systems Technology, Vol. 11,n1,2003 : p3~15
    [33] Luniewicz, Michael F. Gilmore, Jerold P.; Chien, Tze T. Negro, James E.; Wingler, Randy L. COMPARISON OF WIDEBAND INERTIAL LINE-OF-SIGHT STABILIZATION REFERENCE MECHANIZATIONS[A]. SPIE Vol. 1697,1992 : p378~398
    [34] Germann, Lawrence M. SPECIFICATION OF FINE-STEERING MIRRORS FOR LINE-OF-SIGHT STABILIZATION SYSTEMS[A]. SPIE Vol. 1543,1992 : p202~212
    [35] Joerck, H. Lange, G. Wolf, D. Zinner, H. HIGH PRECISION LINE OF SIGHT STABILIZATION FOR A 1M SPACE TELESCOPE WITH ONBOARD IMAGE PROCESSING[A]. SPIE Vol. 1306,1990 : p148~161
    [36] 范大鹏, 张智永, 范世珣, 李岩. 光电稳定跟踪装置的稳定机理分析研究[J]. 光学 精密工程. 2006.14(4) : p673~680
    [37] 罗护, 范大鹏, 张智勇, 吴正洪. 两轴陀螺稳定系统中陀螺安装的几种方法. 兵工学报, 2005,26(3) : 426~428
    [38] 纪明. 多环架光电稳定系统及分析[J]. 应用光学, 1994,15(3) : p60~64
    [39] 纪明. 多频谱光电综合系统高精度稳定技术研究[J]. 应用光学, 1996,17(3) : p55~60
    [40] 王惠林, 纪明.一种新颖的瞄准线高精度稳定补偿方法研究[J]. 应用光学, 2001,22 (5) : p40~42
    [41] 纪明. 车载机载稳瞄系统 FSM 补偿技术[J]. 火力与指挥控制, 1997,1 : p58~63
    [42] 纪明. 武装直升机瞄准线粗/精组合二极稳定技术[J]. 航空学报, 1997.18(3) : p289~293
    [43] 纪明. 光电二级稳定系统控制通道融合技术[J]. 兵工学报,2000,4 : p318~321
    [44] Masten, Michael K. APPLICATIONS OF CONTROL THEORY TO DESIGN OF LINE-OF-SIGHT STABILIZATION SYSTEMS. Proceedings of the American Control Conference, 1985 : p1219~1222
    [45] 张智永, 范大鹏, 范世珣. 光电稳定跟踪装置的控制系统设计[J]. 光学 精密工程. 2006.14(4) : p681~688
    [46] 毕永利. 多框架光电平台控制技术研究[D]. 长春:中国科学院长春光机所博士学位论文,2003
    [47] 王连明. 机载光电平台的稳定与跟踪伺服控制[D]. 长春:中国科学院长春光机所博士学位论文,2002
    [48] 王小军,李殿璞,赵阳,舰载三轴雷达波束稳定跟踪的研究,哈尔滨工程大学学报,2002,23(1): p58~63
    [49] 王小军,李殿璞,于宏明,顶空无盲区跟踪的舰载三轴雷达的研究,哈尔滨工程大学学报,2002,23(2): p37~42
    [50] 尹建龙. 高精度陀螺稳定随动系统研究[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2000
    [51] 徐达. 光纤陀螺稳定随动系统研究[D]. 哈尔滨:哈尔滨工业大学硕士学位论文, 2002
    [52] 胡浩军. 运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D]. 长沙:国防科技大学博士学位论文, 2005
    [53] 赵长德, 徐力.用于瞄准线稳定和跟踪的计算机控制系统[J]. 电光与控制, 1997, 3 : p20~25
    [54] 严武升,刘宏,基于前馈补偿的舰载雷达三轴稳定跟踪的研究[J],西安电子科技大学学报,1998,25(5) : p650~654
    [55] 严武升,刘宏,舰载雷达三轴稳定跟踪的研究[J],电子机械工程,1996, 1 : p26~30
    [56] 王楚清,杨坤涛,潜艇潜望镜瞄准线三轴稳定研究,舰船科学技术,2004,26(1):50~52
    [57] 柳朝军,廖晓钟. 捷联式三轴稳定跟踪系统的运动学建模与仿真[J],北京理工大学学报,2000,20(3):313~316
    [58] 柳朝军. 捷联式三轴稳定跟踪台的建模及动态模糊神经网络控制器研究[D]. 北京理工大学博士学位论文, 2000
    [59] 王永富. 高精度陀螺稳定随动系统研究[D]. 哈尔滨:哈尔滨工业大学博士学位论文,1999
    [60] 沈宏海. 摄像稳定平台速率环控制方法的研究[D]. 长春:中国科学院长春光学精密机械与物理研究所硕士学位论文, 2001
    [61] 李东明, 党纪红, 郝颖. 惯性平台稳定回路的双闭环控制[J]. 应用科技, 2003, 30(8) : p48~50
    [62] 黄永梅, 张桐, 马佳光, 付承毓. 高精度跟踪控制系统中电流环控制技术研究[J]. 光电工程, 2005,32(1) : p16~19,35
    [63] 毕永利, 刘洵. 机载多框架陀螺稳定平台速度稳定环设计[J]. 光电工程, 2004, 31(2) : p16~18
    [64] 魏宗康, 徐强, 夏刚, 杨雨. 平台稳定回路有饱和特性时的控制方案设计[J]. 惯导与仪表, 2002,(1) : p27~31,38
    [65] 姬伟, 李奇. 陀螺稳定平台伺服系统非线性特性补偿控制[J]. 电气传动, 2005, 25(7) : p31~34
    [66] 骆顺奇. 光电桅杆瞄准稳定最优控制系统[J]. 舰船光学, 1999,2 : p1~4,9
    [67] 骆顺奇. 光电桅杆瞄准稳定最优控制系统(续)[J]. 舰船光学, 1999,3 : p11~16
    [68] Haessig, David Jr. DeCotiis, James. MODERN CONTROL METHODS APPLIED TO A LINE-OF-SIGHT STABILIZATION AND TRACKING SYSTEM[A]. Proceedings of the American Control Conference, 1987 : p1491~1498
    [69] J.M. Hilkert, David A. Hullender, Adaptive control system techniques applied to inertial stabilization systems[A]. SPIE Vol.1306 : p190~206
    [70] Lee,T.H. ; Tan,K.K.; Lee, M.W. VARIABLE STRUCTURE-AUGMENTED ADAPTIVE CONTROLLER FOR A GYRO-MIRROR LINE-OF-SIGHT STABILIZATION PLATFORM[J]. Mechatronics, v 8, n 1, Feb, 1998 : p47~64
    [71] Lee, T.H. Tan, K.K.; Mamun, A. Lee, M.W. Khoh, C.J. COMPOSITE CONTROL OF A GYRO MIRROR LINE-OF-SIGHT STABILIZATION PLATFORM - DESIGN AND AUTO-TUNING[A]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), v 5, 2000 : p3150~3155
    [72] Lee, T.H. Ge, S.S. Hang, C.C. Zhao, Q. Au, A.S. REAL-TIME NEURAL NETWORK BASED CONTROL OF A GYRO-MIRROR LINE-OF-SIGHT STABILIZATION PLATFORM[A]. International Journal of Systems Science, v 29, n 7, Jul, 1998 : p745~758
    [73] Ge, S.S. Lee, T.H. Zhao, Q. REAL-TIME NEURAL NETWORK CONTROL OF A FREE GYRO STABILIZED MIRROR SYSTEM[A]. Proceedings of the American Control Conference, v 2, 1997 : p1076~1080
    [74] Lee, T.H. Nie, J.H. Lee, M.W. FUZZY CONTROLLER WITH DECOUPLING FOR MULTIVARIABLE NONLINEAR SERVO-MECHANISMS, WITH APPLICATION TO REAL-TIME CONTROL OF A PASSIVE LINE-OF-SIGHT STABILIZATION SYSTEM[J]. Mechatronics, v 7, n 1, Feb, 1997 : p83~104
    [75] Marathe, Rajeev . Krishna Moorty, J.A.R. Sule', V.R. H∞ CONTROL LAW FOR LINE-OF-SIGHT STABILIZATION FOR MOBILE LAND VEHICLES[J]. Optical Engineering, V 41, n 11, November, 2002 : p2935~2944
    [76] Krishna Moorty, J.A.R. Marathe, Rajeev; Babu, Hari. FUZZY CONTROLLER FOR LINE-OF-SIGHT STABILIZATION SYSTEMS[J]. Optical Engineering, v 43, n 6, June, 2004, p1394~1400
    [77] William J,Bigley, Steven P,Tsao, Optimal Motion Stabilization Control of an Electro-Optical Sight System[A]. SPIE VOL,1482 Acquisition, Tracking, and Pointing III Proceedings : p116~120
    [78] Bo Li. Nonlinear induced disturbance rejection in inertial stabilization systems[A]. SPIE Vol.2739,Acquisition, Tracking, and Pointing X,1996 : p242~250
    [79] Bo Li, David A. Hullender, Self-tuning controller for nonlinear inertial stabilization system[A]. SPIE Vol.2739,Acquisition, Tracking, and Pointing X,1996 : p229~241
    [80] Chun-Liang Lin; Yi-Hsing Hsiao. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop[J]. IEEE Transactions on Control Systems Technology,Jan. 2001 : p108~121
    [81] Chan, Joseph K. Effect of Friction and Control Parameters on the Tracking Accuracy of a Target Seeker[R]. ADA190010.1987 DEC.
    [82] Bigley, William J. Rizzo, Vincent J. WIDEBAND LINEAR QUADRATIC CONTROL OF A GYRO-STABILIZED ELECTRO-OPTICAL SIGHT SYSTEM[J]. IEEE Control Systems Magazine, v 7, n 4, Aug, 1987 : p20~24
    [83] 马佳光. 捕获跟踪与瞄准系统的基本技术问题[J]. 光学工程, 1989,3 : p1~42
    [84] 石红生, 卢广山. 一种新型状态观测器的陀螺稳定平台中的应用[J]. 电光与控制, 1999,1 : p24~28
    [85] 黄显林, 尹航. 高精度陀螺稳定跟踪系统神经网络预测控制[J]. 系统工程与电子技术, 2000, 22(12) : p63~65
    [86] 王连明, 葛文奇. 陀螺稳定平台速度环的一种神经网络自适应控制方法[J]. 光电工程, 2001,28(4) : p9~12
    [87] 伍小芹, 黄德鸣. 平台稳定回路的变结构控制[J]. 海南大学学报:自然科学版, 2001, 19(2) : p132~135
    [88] 王合龙, 朱培申. 陀螺稳定平台框架伺服系统变结构控制器的设计和仿真[J]. 电光与控制, 1998,2 : p24~29
    [89] 魏宗康, 徐强. 平台稳定回路 H∞鲁棒控制设计[J]. 中国惯性技术学报. 2001, 9(3) : p1~8
    [90] 王文清, 岳秋桃, 李春海. 压电速率陀螺瞄稳系统工程实践中若干问题分析与探讨[J]. 火力与指挥控制. 1996,21(2) : p59~64
    [91] Lee, Ho-Pyeong; Hwang, Hong-Yeon. Two-degree-of-freedom robust control of a seeker scan loop system[R]. AIAA. A96~35789
    [92] Schmitendorf, W. E.; Kao, Y. K.; Hwang, H. Y. Robust H-infinity tracking controllers for a seeker scan loop system[R]. AIAA.A96~35582
    [93] Poncela, Alfonso; Schmitendorf, William E. H-infinity output feedback controller for a seeker scan loop system[R]. AIAA. A9837142
    [94] St. Pierre, Jay A.:Lawrence, Dale A.;Mohl, James B. Lorentz force isolation for spacecraft line-of-sight stabilization[R]. AIAA. A9737161
    [95] Brian J. Perona; Christopher Yarbrough; Steven Prill. Optomechanical design of primary mirror assembly for free gyro stabilized seeker[J]. SPIE. Vol.4093 : p115~126
    [96] Elmer F. Williams; Robert H. Evans; Karl Brant; Larry A. Stockum. Optimization of a gimbal-scanned infrared seeker[J]. SPIE. Vol.1482 : p104~111
    [97] Ahmed, M.; Kuisma, M.; Pyrhonen, O.; Silventoinen, P. Sliding Mode Control for Buck-Boost Converter Using Control Desk dSPACE[A]. The Fifth International Conference on Power Electronics and Drive Systems, 2003. PEDS 2003.Vol.2 : p1491~1494
    [98] Rodic, M.; Jezernik, K.; Trlep, M. A feedforward approach to the dynamic emulation of mechanical loads[A]. 2004 IEEE 35th Annual Power Electronics Specialists Conference, 2004,Vol.6 : p4595~4601
    [99] Yacoubi, L.; Al-Haddad, K.; Dessaint, L.-A.; Fnaiech, F. A DSP-Based Implementation of a Nonlinear Model Reference Adaptive Control for aThree-Phase Three-Level NPC Boost Rectifier Prototype[J]. IEEE Transactions on Power Electronics. Sept. 2005 : p1084~1092
    [100] 杨旭, 孙兆伟, 朱承元, 翟坤. 基于dSPACE的卫星控制实时仿真系统设计[J]. 系统工程与电子技术.2005,27(2) : p335~339
    [101] 潘峰, 薛定宇, 徐心和. 基于 dSPACE 半实物仿真技术的伺服控制研究与应用[J]. 系统仿真学报. 2004,16(5) : p936~939
    [102] 马培蓓, 吴进华, 纪军, 徐新林. dSPACE 实时仿真平台软件环境及应用[J]. 系统仿真学报.2004,16(4) : p667~670
    [103] 翟坤, 杨涤, 朱承元, 王新. 基于 dSPACE 的挠性卫星姿轨控实时仿真系统,航天控制[J]. 2004,22(1) : p17~25
    [104] 陈启军, 王月娟. 基于 dSPACE 并行处理平台的机器人实时仿真系统结构及实现[J]. 机器人. 2003,25(1) : p62~65,72
    [105] 范世珣, 范大鹏, 张智永, 孙海洋. 机电装置频率特性的数字化测试方法研究. 动力学与控制学报. 2007, 5(1) : 20~24
    [106] B. Armstrong, P. Dupont and C. C.anudas de Wit. A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction[J]. Automatica. 1994,30(7) : p1083~1138
    [107] 刘强, 尔联洁, 刘金琨. 摩擦非线性环节的特性、建模与控制补偿综述[J]. 系统工程与电子技术. 2002, 24(11) : p45~52
    [108] 姜玉宪. 伺服系统低速跳动问题. 自动化学报, 1982,8(2) : p136~144
    [109] 吴南星, 孙庆鸿, 冯景华. 机床进给伺服系统非线性摩擦特性及控制补偿研究[J]. 东南大学学报(自然科学版). 2004,06 : p
    [110] 王旭永, 付永领. 三轴仿真转台用电液马达伺服系统的低速运动分析[J]. 宇航学报. 1996,17(2) : p85~90
    [111] K. C. Cheock, H. Hu and N. K. Loh. Modeling and Identification of a Class of Servomechanism Systems with Stick-Slip Friction[J]. Journal of Robotics Research. 1991,10(3) : p189~199
    [112] C. T. Johnson and R. D. Lorenz. Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms[J]. IEEE Trans. on Industry Application. 1992,37(10) : p466~473
    [113] J. Amin, B. Friedland and A. Harnoy, Implementation of a Friction Estimation and Compensation Technique[J]. IEEE Control Systems, 1997,8 : p71~76
    [114] Ying Wang; Zhenhua Xiong; Han Ding; Xiangyang Zhu. Nonlinear friction compensation and disturbance observer for a high-speed motion platform[J].Proceedings. ICRA '04. 2004 IEEE International Conference on Robotics and Automation, 2004,Vol. 5 : p4515~4520
    [115] Hensen, R.H.A.; van de Molengraft, M.J.G.; Steinbuch, M. Frequency domain identification of dynamic friction model parameters[J]. IEEE Transactions on Control Systems Technology. March 2002 : p191~196
    [116] Hassane, M.; Djouza, S.; Boudjemaa, T. Identification parameters method for DC machine including friction[J]. Seventh International Conference on Power Electronics and Variable Speed Drives, 1998 : p21~23
    [117] Seung-Jean Kim; In-Joong Ha. A frequency-domain approach to identification of mechanical systems with friction[J]. IEEE Transactions on Automatic Control. June 2001 : p888~893
    [118] Hongliu Du; Nair, S.S. Identification of friction at low velocities using wavelet basis function network[A]. Proceedings of the 1998 American Control Conference, 1998 : p24~26
    [119] 刘强, 扈宏杰, 刘金琨. 尔联洁. 基于遗传算法的伺服系统摩擦参数辨识研究[J]. 系统工程与电子技术, 2003, 01 : p77~79,121
    [120] B. Armstrong and B. Amin. PID Control in the Presence of Static Friction: A Compensation of Algebraic and Describing Function Analysis[J]. Automatica. 1996,32(5) : p679~692
    [121] C. J. Huang, J. Y. Yen and S. S. Lu. Stability of PDF Controller with Stick-Slip Friction Device[A]. Prec. of the American Control Conference, Seattle, Washington, 1995 : p3289~3293
    [122] Bozic, A.; Deur, J.; Peric, N. Gain scheduling-based friction compensation[A]. Conference Record of the 2000 IEEE Industry Applications Conference, 2000, Vol.2 : p1089~1095
    [123] Dupont P. E. Avoiding Stick-Slip through PD Control[J]. IEEE Trans. On Automatic Control, 1994,39(5) : p1094~1097
    [124] Yang S. and Tomizuka M. Adaptive Pulse Width Control for Precise Position in gunder Influence of Sticktion and Coulomb Friciton[J]. ASME Journal of Dynamic Systems, Measurement,and Control,1988,110(3) : p221~227
    [125] C.H. Wu and R.P. Paul. Manipulator Compliance Based on Joint Torque Control. 19th Conference on Decision and Control[J]. IEEE. Albuquerque, NM. 1980 : p89~94
    [126] 丛爽, De Carl , Alessandro. 两种补偿动态摩擦力的先进控制策略. 自动化学报.1998,24(2) : p236~240
    [127] C. Canudas de Wit and E Lischinsky. Adaptive Friction Compensation with Partially Known Dynamic Friction Model[A]. Int. Journal Of Adaptive Control and Signal Processing. 1997,11 :p65~80
    [128] B. Friedland and Y. J. Park. On Adaptive Friction Compensation[J]. IEEE Trans. on Automatic Control 1992,37(10) : p1609~1612
    [129] 李书训, 姚郁.一种自适应摩擦补偿方法研究[J]. 电机与控制学报. 1999, 3(3) : p129~133,142
    [130] 李书训, 姚郁. 基于观测器的伺服系统低速摩擦补偿分析[J]. 电机与控制学报. 2000,4(1) : p27~30
    [131] 张锦江, 陈兴林. 基于摩擦自适应补偿的转台变结构控制器设计[J]. 哈尔滨工业大学学报, 2000,32(4) : p92~95
    [132] 李书训, 姚郁. 无刷直流电动机系统的一种摩擦补偿方法研究[J]. 哈尔滨工业大学学报. 2001,33(1) : p55~59
    [133] Huang, S.N.; Tan, K.K.; Lee, T.H. Adaptive friction compensation using neural network approximations[J]. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews. Nov. 2000 : p551~557
    [134] Iwasaki, M.; Shibata, T.; Matsui, N. Disturbance-observer-based nonlinear friction compensation in table drive system[J]. IEEE/ASME Transactions on Mechatronics. March 1999 : p3~8
    [135] Ishikawa, J.; Tomizuka, M. Pivot friction compensation using an accelerometer and a disturbance observer for hard disk drives[J]. IEEE/ASME Transactions on Mechatronics. Sept. 1998 : p194~201
    [136] 刘强, 冯姝婷, 尔联洁. 高精度机械伺服系统的一种新型自适应滑模控制方法[J]. 控制理论与应用, 2004,02 : p239~241
    [137] 克晶, 苏宝库, 曾鸣. 一种直流力矩电机系统的滞滑摩擦补偿方法[J]. 哈尔滨工业大学学报, 2005,6 : p736~739,747
    [138] 克晶, 苏宝库, 曾鸣. 一种具有参数不确定性的直流电机系统鲁棒自适应摩擦补偿方法(英文)[J]. 中国电机工程学报, 2003,07 : p117~122
    [139] 刘强, 尔联洁, 刘金琨. 参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制[J]. 自动化学报. 2003,04 : p628~632
    [140] Peng, K.; Chen, B.M.; Cheng, G.; Lee, T.H. Modeling and Compensation of Nonlinearities and Friction in a Micro Hard Disk Drive Servo System WithNonlinear Feedback Control[J]. IEEE Transactions on Control Systems Technology. Sept. 2005 : p708~721
    [141] Phillips S.M. ,Ballou K. R. ,Friction Modeling and Compensation for an Industrial Robot[J]. Journal of Robotic Systems, 1993,10(7) : p947~971.
    [142] 扬元凯, 郎需英. 精密转台中摩擦力矩的动态补偿[J]. 自动化学报 , 1983,9(4) : p248~252
    [143] Yang Y. P. and Chu J. S. Adaptive Velocity Control of DC Motors with Coulomb Friction Identification[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1993,115 : p95~102
    [144] Juan Chen; Jin Guo; Tao Chen; Wen-feng Bai. Friction compensation with repeat control at low spped for an optoelectronic system[A]. SPIE. Vol. 4902 : p528~533
    [145] Rajasekhar Gundala; Anirudha Narain. Friction compensation using neural networks applicable to high precision motion control systems in manufacturing[A]. INDIN '05. 2005 3rd IEEE International Conference on Industrial Informatics, 2005 : p808~812
    [146] Tzes, A.; Pei-Yuan Peng; Guthy, J. Genetic-based fuzzy clustering for DC-motor friction identification and compensation[J]. IEEE Transactions on Control Systems Technology.July 1998 : p463~472
    [147] 王永富, 柴天佑. 一种补偿动态摩擦的自适应模糊控制方法[J]. 中国电机工程学报,2005,02 : p139~143
    [148] 刘金琨. 先进 PID 控制 MATLAB 仿真[M]. 北京:电子工业出版社,2004.9
    [149] 刘金琨. 滑模变结构控制 MATLAB 仿真[M]. 北京:清华大学出版社,2005.10
    [150] Heui-Wook Kim; Jong-Woo Choi; Seung-Ki Sul. Accurate position control for AC servo motor using novel speed estimator[A]. Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, 1995 : p6~10
    [151] P. R. Belanger, P. Dobrovolny, A. Helmy, and X. Zhang. Estimation of angular velocity and acceleration from shaft-encoder measurements[J]. Int. J. Robot. Res., Nov. 1998. Vol. 17, NO. 11 : p1225~1233
    [152] S. Nicosia and P. Tomei. Robot control by using only joint position measurements[J]. IEEE Trans. Automat. Contr., Sept. 1990. Vol. 9 : p1058~1061
    [153] Belanger, P.R. Estimation of angular velocity and acceleration from shaft encoder measurements[A]. Proceedings., 1992 IEEE International Conference on Robotics and Automation, 1992 : p585~592
    [154] Brown, R.H.; Schneider, S.C.; Mulligan, M.G. Analysis of algorithms for velocity estimation from discrete position versus time data[J]. IEEE Transactions on Industrial Electronics,1992 : p11~19
    [155] Carpenter, P.S.; Brown, R.H.; Heinen, J.A.; Schneider, S.C. On algorithms for velocity estimation using discrete position encoders[A]. Proceedings of the 1995 IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation, 1995,Vol.2 : p844~849
    [156] Lemkin, M.; Yang, P.H.; Huang, A.C.; Jones, J.; Auslander, D.M. Velocity estimation from widely spaced encoder pulses[A]. Proceedings of the 1995 American Control Conference.Vol.1 : p995~1002
    [157] Alonge, F.; Raimondi, T.; D' Ippolito, F. Velocity estimation by digital filtering of position data to process adaptive control laws for robotics manipulators[A]. Proceedings of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation, 1996 : p5~10
    [158] Naumovic, M.; Stojic, M. Velocity estimation in digital controlled DC servo drives[A]. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, 1998. IECON '98 : p1505~1508
    [159] Se-Han Lee; Jae-Bok Song. Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data[J]. IEEE/ASME Transactions on Mechatronics. March 2001 : p58~64
    [160] Se-Han Lee; Lasky, T.A.; Velinsky, S.A. Improved velocity estimation for low-speed and transient regimes using low-resolution encoders[J]. IEEE/ASME Transactions on Mechatronics.2004 : p553~560
    [161] Liu, G. On velocity estimation using position measurements[A]. Proceedings of the 2002 American Control Conference, 2002 : p1115~1120
    [162] 张羽飞. 成像器稳定装置控制系统设计与实现[D]. 哈尔滨工业大学博士学位论文,2003
    [163] 杨培根, 龚智炳. 光电惯性技术[M]. 北京:兵器工业出版社,1999
    [164] Andrei M. Shkel. Micromachined gyroscopes: challenges, design solutions, and opportunities[A]. SPIE. Vol.4334,2001 : p74~85
    [165] Asad M. Madni, Fellow, Lynn E. Costlow,and Stuart J. Knowles. Common Design Techniques for BEI GyroChip Quartz Rate Sensors for Both Automotive and Aerospace/Defense Markets[J]. IEEE SENSORS JOURNAL, VOL. 3, NO. 5, OCTOBER 2003 : p569~578
    [166] Paul B. Ruffin. Progress in the development of gyroscopes for use in tactical weapon systems[A]. SPIE. Vol.3990,2000 : p2~12
    [167] 董煜茜, 高钟毓, 张嵘. 微机电陀螺仪的性能分析[J]. 清华大学学报(自然科学版), 1998,11 : p1~3
    [168] 李新刚,袁建平,微机电陀螺的发展现状[J]. 力学进展,2003,8(3) : p289~301
    [169] Byeungleul Lee, Yongsoo Oh, Kyuyeon Park, Byeoungju Ha, Younil Ko, Jeonggon Kim, Seokjin Kang, Sangon Choi, and Cimoo Song. A dynamically tuned vibratory micromechanical gyroscope – accelerometer[A]. SPIE Vol. 3242,1997 : p86~95
    [170] Sudhakar M.Pandit, Wei Bang Zhang. Modeling Random Gyro Drift Rate Data Dependent Systems[J]. IEEE Transactions on Aerospace and Electronic Systems. 1986 Vol.Aes-22(4) : p455~459
    [171] Jiang Hong, Yang Weiqin, Yang Yantang. State Space Modeling of Random Drift Rate in High-Precision Gyro[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996,32(3) : p1138~1143
    [172] Algrain, Marcelo C. KALMAN FILTERING APPROACH FOR REDUCING GYROSCOPE NOISE EFFECTS IN STABILIZED PLATFORMS[A]. Proceedings of SPIE - The International Society for Optical Engineering, V1697, 1992 : p399~413
    [173] Algrain, Marcelo C. Ehlers, Douglas E. SUPPRESSION OF GYROSCOPE NOISE EFFECTS IN POINTING AND TRACKING SYSTEMS[A]. Proceedings of SPIE - The International Society for Optical Engineering, V2221, 1994 : p402~413
    [174] Algrain, Marcelo C. Ehlers, Douglas E. NOVEL KALMAN FILTERING METHOD FOR THE SUPPRESSION OF GYROSCOPE NOISE EFFECTS IN POINTING AND TRACKING SYSTEMS[J]. Optical Engineering,V34, n10, 10, 1995 : p3016~3030
    [175] Philip Wayne Loveday. Analysis and Compensation of Imperfection Effects in Piezoelectric Vibratory Gyroscopes[D]. Virginia Polytechnic Institute and State University. PhD Thesis. 1999 : p1-9,69~71
    [176] Leroy O.Thielman, Sid Bennett, Cleon H.Barker. Proposed IEEE Coriolis Vibratory Gyro Standard and Other Inertial Sensor Standards[A]. Position Location and Navigation Symposium. Minneapolis, MN. 2002 : p351~358
    [177] IEEE STD 528-2001,IEEE Standard for Inertial Sensor Terminology[S]. IEEE Aerospace and Electronic Systems Society,2001 : p1~20
    [178] Qi Lin; Stern, P.E. Analysis of a correlation filter for thermal noise reduction in a MEMS gyroscope[A]. Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, 2002 : p197~203
    [179] Ashokaraj, I.; Silson, P.; Tsourdos, A. Application of an extended Kalman filter to multiple low cost navigation sensors in wheeled mobile robots[A]. Proceedings of IEEE on Sensors, 2002,Vol.2 : p1660~1664
    [180] Guo JiChang; Teng Jianfu; Li Qiang; Zhang Yaqi. The de-noising of gyro signals by bi-orthogonal wavelet transform[A]. IEEE CCECE 2003. Canadian Conference on Electrical and Computer Engineering, 2003,Vol.3 : p1985~1988
    [181] 邹达明. 动力调谐陀螺仪漂移测试与建模研究[D]. 哈尔滨工程大学硕士学位论文,2004,2
    [182] 刘鲁源, 陈玉柱. 基于小波变换的陀螺漂移建模与实验研究[J]. 中国惯性技术学报,2004,12(1) : p61~65
    [183] 陈熙源, 万德钧. 陀螺随机漂移的神经网络预报方法研究[J]. 东南大学学报:自然科学版,1998,28(5) : p79~83
    [184] 陈熙源, 程启明. 神经网络时间序列预测及其工程应用[J]. 导航,1998,1 : p108~112
    [185] 杨友堂, 姜宏, 杨位钦. 陀螺漂移的状态空间建模方法[J]. 清华大学学报(自然科学版),1997,8 : p15~18
    [186] 高钟毓, 王永梁. 近似非线性滤波在陀螺漂移误差模型辨识中的应用[J]. 清华大学学报:自然科学版,1992,32(2) : p35~41
    [187] 张广莹, 邓正隆, 傅振宪. 陀螺仪温度建模研究[J]. 系统仿真学报, 2003, 15(3) : p369~371,378
    [188] 程煜明, 张炎华. 光纤陀螺非线性温度漂移模型的辨识[J]. 上海交通大学学报,1997,31(12) : p123~125,129
    [189] 卫炎, 陆恺. 光纤陀螺温度漂移自适应建模研究[J]. 上海交通大学学报, 1996, 30(1) : p84~88
    [190] 樊春玲, 田蔚风, 金志华. 一种新型的基于灰色模型的动调陀螺随机漂移建模方法[J]. 上海交通大学学报.2004,38(10) : p1741~1743,1747
    [191] 赵忠华, 江红. 小波理论及其在光纤陀螺信号分析中的应用[J]. 上海交通大学学报,2000,34(11) : p1598~1600
    [192] 朱荣, 张炎华. RBF 神经网络用于辨识光纤陀螺温度漂移[J]. 上海交通大学学报.2000,34(2) : p222~225
    [193] 高玉凯, 邓正隆. 基于小波方差的光学陀螺随机误差特性研究[J]. 中国惯性技术学报.2004,12(5) : p66~70
    [194] 吴少敏, 万德钧. 陀螺随机漂移时间序列的辨识[J]. 应用科学学报. 1995, 13(4) : p452~456
    [195] 苏岩, 王寿荣, 周百令. AR 模型在动力调谐陀螺仪漂移补偿中的应用[J]. 中国惯性技术学报, 1997,3 : p24~28
    [196] 傅建国, 王孝通, 李博, 金良安, 马野. MEMS 陀螺随机误差模型研究[J]. 传感器技术, 2005,24(3) : p75~77
    [197] 万彦辉, 秦永元. 小波分析在陀螺信号滤波中的研究[J]. 压电与声光. 2005, 27(4) : p455~457
    [198] 高玉凯,邓正隆. 小波变换与卡尔曼滤波结合的 RLG 降噪方法[J]. 光电工程.2005, 32(5) : p31~34
    [199] IEEE STD 647-1995 (Revision of IEEE STD 647-1981). IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Laser Gvros[S]. 1995 : p46~76
    [200] IEEE STD 952-1997. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferametric Fiber Optic Gyros[S]. 1997 : p43~77
    [201] Zhang,Zhiyong; Zhang,Wenbo; Fan,Dapeng; Li,Yan; Kai Li. Research on the Denoising Methods of MEMS Gyro Used in Electro-Optical Stabilization Servo System[A]. Proceedings of the International Conference on Sensing, Computing and Automation. ICSCA'2006 : p3730~3734
    [202] 毕永利, 王连明, 葛文奇. 光电稳定平台控制系统中数字滤波技术研究[J]. 仪表技术与传感器.2005,4 : p54~57
    [203] 张智永, 范大鹏, 李凯, 张文博. 微机电陀螺零点漂移数据滤波方法的研究. 中国惯性技术学报, 2006,14(4) : p67~69
    [204] 孟中, 张涛.降低动力调谐陀螺输出噪声的方法[J].光学 精密工程. 2002, 10(4) : p420~424
    [205] 李洁, 孟中, 葛文奇. 数字滤波技术在陀螺噪声滤除中的应用[J]. 电光系统. 2003, 4 : p20~22
    [206] 孟中, 张涛, 戴明. 陀螺滤波在改善伺服系统低速特性中的应用[J]. 压电与声光. 2006,2(1):p109~112
    [207] 万彦辉, 戴世荣. 数字滤波器在微机电陀螺系统中的应用. 传感器技术[J]. 2003, 22(9) : p56~57
    [208] 张奕群, 陈鼎榕. 用于火箭炮弹姿态测量的微机电陀螺初始热漂移建模[J]. 中国惯性技术学报, 2000,8(1) : p59~62
    [209] 张奕群. 两步非线性最小方差法在微机电陀螺测量火箭弹自旋角中的应用[J]. 兵工学报, 2001,22(1) : p141~143
    [210] 张文博, 范大鹏, 张智永, 李凯. 光电稳定跟踪装置中微机电陀螺应用研究[J]. 光学 精密工程. 2006.14(4) : p689~696
    [211] Zhang Zhiyong, Fan Dapeng, Sheng Dejun. The Design of Antenna Stabilization System on Motion Vechickes, Based on Micromachined Inertial Sensors[A]. Proceedings of the second international conference on PRECISION ENGINEERING AND NANO TECHONOLOGY, ICPN’ 2002 : p235~237
    [212] Zhang Zhiyong, Fan Dapeng, Ming Dexiang. MEMS Gyros and Its Application in Sattelite Antenna Stabilzation System on Motion Carriers[A]. ISTM/2005, 6th International Symposium on Test and Measurement, Vol. 3 : p2120~2123
    [213] 金毅民, 陶忠, 孙治家. 轴系运动的数学仿真与轴系误差[J]. 应用光学, 2003,24(B08) : p37~46
    [214] 张聘义, 祁载康, 崔莹莹, 王志伟, 康日新. 一种匹配滤波方法在导引头捷联稳定平台中的应用研究. 红外技术, 2005, 27(1) : p6~11
    [215] 张云生, 祝晓红. 自适应控制器设计及应用. 北京:国防工业出版社, 2005
    [216] 尔桂花, 窦曰轩. 运动控制系统. 北京:清华大学出版社, 2002
    [217] 孙世贤, 黄圳圭. 理论力学教程. 长沙:国防科技大学出版社, 1996
    [218] 宋丰华. 现代空间光电系统及应用. 北京:国防工业出版社, 2004
    [219] 高晋占. 微弱信号检测. 北京:清华大学出版社, 2004
    [220] 薛定宇, 陈阳泉. 基于 MATLAB/Simulink 的系统仿真技术与应用. 北京:清华大学出版社, 2002
    [221] FRANKLIN. 动态系统的反馈控制(第 4 版)[M]. 北京:电子工业出版社, 2004
    [222] 杨叔子, 吴雅. 时间序列分析的工程应用[M]. 武汉:华中理工大学出版社, 1991
    [223] 薛定宇. 反馈控制系统设计与分析. 北京:清华大学出版社, 2000
    [224] 潘泉,戴冠中,张洪才等. 基于阈值决策的子波域去噪方法[J].电子学报,1998,26 (1):p115~117
    [225] 张吉先,钟秋海,戴亚平.小波门限消噪法应用中分解层数及阈值的确定[J].中国电机工程学报,2004, 24(2 ):p118~122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700