用户名: 密码: 验证码:
丛枝菌根菌与玉米联合修复芘污染土壤的效应及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)由于毒性强、降解周期长而成为环境中的一种重要的持久性有机污染物(Persistent Organic Pollutants,POPs)。土壤是环境中的多环芳烃库,土壤多环芳烃污染对土壤生态系统以及农产品的安全构成了极大的威胁。菌根真菌与植物联合修复是土壤多环芳烃污染生物修复的重要途径,也是目前土壤多环芳烃污染修复的热点研究领域。本研究以丛枝菌根菌(Abuscular Mcorrhizal Fnfus,AMF)与玉米联合修复土壤芘污染的效应为中心,采用外加芘的方法模拟芘污染条件,结合土培、砂培等生物培养试验和实验室分析研究了源于石油污染土壤中的AMF与玉米联合修复土壤芘污染的效应及其影响因素,分析了AMF与玉米联合效应中土壤微生物、玉米以及AMF的综合效应在土壤芘污染修复中的相对贡献率,并对AMF与玉米联合修复土壤芘污染的机理进行了探讨,论文取得的主要结果如下:
     1、从石油污染土壤中扩繁出的AMF与玉米联合对土壤芘污染的修复效果显著。5mg/kg、10mg/kg和50mg/kg土壤芘处理中AMF能够保持较高的侵染活性;各土壤芘浓度水平处理下,玉米接种AMF处理土壤的残留浓度比不灭菌的对照处理降低了23%~78%,土壤芘的去除率分别是不灭菌对照处理的1.4~2.3倍,表明AMF与玉米联合能够显著降低土壤中芘的残留浓度,促进土壤芘污染的修复;AMF与玉米联合在土壤芘污染的修复中的综合贡献率可达45%,其中玉米的综合贡献率34%,AMF的综合贡献率为11%。
     2、不同磷肥水平下AMF与玉米联合修复土壤芘污染均有显著效果,缺磷土壤中施磷对玉米与AMF联合修复土壤芘污染有一定的促进作用。50mg/kg芘处理低磷土壤中施用80mg/kg和20mg/kg磷对丛枝菌根的侵染率没有显著影响;培养60天后, 20mg/kg和80mg/kg施磷水平下芘处理土壤中玉米接种AMF处理土壤芘的残留浓度分别比无玉米的不灭菌对照处理(CK)降低了53%和58%,土壤芘去除率分别提高了30%和31%;玉米与AMF联合对土壤芘去除的贡献率为23%和23.8%;与20mg/kg磷处理相比,80mg/kg磷处理玉米接种AMF处理的土壤芘残留浓度降低了18.4%;施磷对AMF与玉米联合修复土壤芘污染的综合贡献率影响不大,但会降低AMF修复土壤芘污染的贡献率;土壤微生物碳量与土壤芘的去除率显著正相关,玉米接种AMF处理和80mg/kg磷处理均能够显著增加土壤微生物碳量,因此土壤微生物数量的增加可能是其促进土壤芘的去除的重要原因。
     3、表面活性剂TW80对AMF与玉米联合修复土壤芘污染有明显促进作用,但随着TW80处理浓度的增加,单位浓度的TW80引起的土壤芘残留浓度的降低幅度成幂函数下降。5000mg/kgTW80处理条件下每100mg/kgTW80引起的土壤芘残留浓度的下降幅度比相应的100mg/kgTW80处理降低了98%;500mg/kgTW80处理对玉米与AMF联合修复土壤芘污染效果最佳,其土壤芘残留浓度比相应的无TW80的对照处理降低了22.4%;TW80对AMF在土壤芘修复中的贡献有明显抑制作用,这可能是AMF与玉米联合修复土壤芘污染效率下降的重要原因。因此,在植物与AMF联合修复土壤芘污染中使用TW80应该注意控制TW80的浓度。
     4、从石油污染土壤中扩繁出的AMF混合菌群及其中的单一菌种与玉米联合均能促进土壤芘污染的修复,原始混合菌群具有明显的种群优势,其与玉米联合修复土壤芘污染的效果最佳。1mg/kg、10mg/kg和50mg/kg芘处理土壤中,玉米接种混合菌种M4(Glomus intraradices, Glomus mosseae, Glomus etunicatum和Arcaulospora tuberculata)处理土壤的芘残留浓度分别为0.12mg/kg,0.54mg/kg和3.92mg/kg,分别比接种单一菌种M1(G.mossea)处理降低了32.6%,58.6%和42.2%,比接种单一菌种M2(G.intradices)处理降低了28.1%,59.9%和36.6%,比接种复合菌种M3(G.intradices+G.mossea)处理降低了2.7%,55%和23.5%。
     5、从石油污染土壤中扩繁出的混合AMF菌群在无原始条件下的整体扩繁会改变菌群的组成及其结构,并会对菌群与玉米联合修复土壤芘污染的功能产生不利影响。供试混合AMF菌群含有4个菌种,经过三次无原始条件的扩繁以后,菌群中菌种的孢子数量、组成和比例均发生了显著变化;50mg/kg芘处理土壤中,玉米接种三次扩繁的AMF菌群土壤芘的去除率分别为86.24%、85.73%和82.76%,分别比相应的无玉米的不灭菌对照处理提高了110%、97%和85%,表明三次扩繁的混合AMF菌群与玉米联合修复土壤芘污染均有明显促进效果,但也可以看出,该效果有逐渐下降趋势,菌种可能出现了功能退化现象。因此利用AMF与玉米联合修复芘污染土壤应该考虑菌种的来源以及菌种功能的稳定性。
     6、玉米与AMF联合能够改变玉米根系吸收的芘在玉米体内的分配比例,但是对芘的总累积提取量影响不大。玉米通过根系吸收的芘主要累积在根系,芘10mg/kg、50mg/kg、100mg/kg处理条件下,各处理玉米根系中的芘含量是地上部的5~16倍;AMF与玉米联合能够进一步促进玉米根系吸收的芘在根系内累积,降低芘在玉米地上部的分配系数,各芘处理条件下接种AMF处理玉米地上部芘含量分别降低了30%~37%,而根系芘含量则提高了19%~35%;各接种AMF处理根外菌丝中的芘含量略低于根系内芘含量,但显著高于地上部芘含量,表明从枝菌根根外菌丝对芘也有较强的累积能力;玉米吸收累积芘的总量仅为加入量的0.02%~0.05%,因此玉米的吸收累积在玉米与AMF联合修复芘污染的效应中贡献不大。
     7、芘处理条件下,AMF与玉米联合对根系分泌物的组成及芘对玉米的氧化损伤有明显影响。芘处理条件下,接种AMF处理对玉米根际的pH值没有显著影响,但接种AMF处理能够促进玉米根系分泌琥珀酸和水杨酸,为芘的共代谢降解提供底物;芘处理条件下AMF与玉米联合能够提高玉米的根系活力,降低叶片MDA浓度和CAT活性,缓解芘对叶片的氧化损伤,从而提高玉米对芘污染的抗性。
     8、AMF与玉米联合能够显著提高芘处理土壤中的微生物数量或微生物碳总量,增强土壤中过氧化氢酶和多酚氧化酶的活性,为土壤芘污染的修复提供有利条件。
Polycyclic Aromatic Hydrocarbons(PAHs) become an important Persistent Organic Pollutants(POPs) due to it’s strong toxicity, long cycle of degradation in the environment. Soil is the storeroom of PAHs in the environment , and Polycyclic aromatic hydrocarbons pollution in soil is a grave threat on the soil ecosystem and the safety of agricultural products.The remediation with Mycorrhizal fungus and plant integrated system is an important way and the current hot research field in the field of PAHs contaminated soil remediation. Simulating pyrene polluted conditions by adding pyrene, with the method of biological experiments (soil culture and sand culture) and room analysis, this study investigated the remediating effects and its impact factors of pyrene contaminated soil with AMF (Abuscular Mcorrhizal Fungus, AMF) coming from oil-contaminated soil and corn integrated system. Furthermore, the mechinesms and the relative contribution rate of soil microorganisms,corn and AMF in the remedition effects of pyrene contaminated soil by AMF and corn integrated system was also discussed. The main results were as follows: 1. AMF and corn integrated system had significant effect on remediation of pyrene contaminated soil . AMF maintained relatively high infection activity in the soils with 5mg/kg, 10mg/kg and 50 mg / kg soil pyrene treatment .Compared with the control which had no corn growth and no sterilization,the residual pyene concentration in the soils with different pyrene treatments decreased 23%~78% ,and that the removal rate of pyrene were 1.4 to 2.3 times of control.These results indicated that AMF and corn integrated system can significantly decreased the residual pyrene concentration in the soil,and accelerate the remediation of pyrene contamination in soil. The compositive contribution rates of AMF and corn integrated systerm reached 45% ,of which corn comprehensive contribution rate was 34%, and AMF comprehensive contribution rate was 11%.
     2.The AMF and corn integrated systerm had significant effects on pyrene contaminated soil remidation under different levels of phosphate fertilizer in soil, and the phosphorus input in the soil with phosphorus deficiency had positive effects on that. The application of 80 mg/kg and 20 mg/kg had no significant effects on AMF inoculation rate in the soil with 50mg/kg pyrene. Compared with the control which had no corn growth and no sterilization,the residual pyene concentration in the soils under 20mg/kg and 80mg/kg P treatments decreased 53% and 58% respectively,and that the removal rate of pyrene increased 30% and 31% respectively,and the compositive contribution rates of AMF and corn integrated systerm reached 23% and 23.8% respectively.Compared with 20mg/kg P treatments,the residual pyrene concentration of soil with 80mg/kg P treatments decreased 18.4%. P input had no significant effect on the compositive contribution rates of AMF and corn integrated systerm in soil pyrene removal,but could decrease the comprehensive contribution of AMF.The microbial biomass carbon of soil had significant positive correlation with the pyrene removal rate, AMF innoculation and P can significantly increase the microbial biomass carbon,therefore ,the increase of soil microbes may be the important reasons in the removal of pyrene in soil by AMF and corn integrated systerm.
     3.Surfactant TW80 had noteble positive effects on the remediation of pyrene contaminated soil by AMF and corn integrated systerm,but the decreaesing extent of the residual pyrene concentration which leaded by unit concentration of TW80 input in soil exponential dropped with the increase of TW80 concentration. The residual pyrene concentration of 500 mg/kg TW80 treatment decreased 22.4% than the control without TW80,representing the best effect.TW80 can inhibit the effects of AMF in soil pyrene removal.Therefore it’s necessary to contol the concentration of TW80 to use it in the remediation of pyrene contaminated soil by AMF and corn integrated systerm.
     4. The AMF community and the single species derived from rock oil-contaminated soil all can be combined with corn and promote the remidation of pyrene contaminated soil , the original AMF community has obvious advantages and behave best.The residual pyrene concentration of soil in the treatments with the mixed AMF community M4 (Glomus intraradices, Glomus mosseae, Glomus etunicatum and Acaulospora tuberculata) and corn integrated systerm got 0.12mg/kg,0.54mg/kg and 3.92mg/kg respectively in 1mg/kg, 10mg/kg and 50 mg/kg pyrene treatments,decreased 32.6%,58.6% and 42.2% respectively than that of the treatment of M1 (G.mossea),decreased 28.1%,59.9% and 36.6% than that of M2(G.intradices), decreased 2.7%,55% and 23.5% than that of M3 (G.intradices + G.mossea).
     5.Large scale reproduce overall of AMF community which coming from rud oil-contaminated soil in the absence of the original conditions will change the quantiy,composition and structure of the AMF population and may has negative impact on it’s function in the remedition of soil pyrene contamination. After three times of reproduce without original conditions ,the removal rate of pyrene in the treatments with corn and AMF got 86.24%、85.73% and 82.76% respectively after each time of reproduce, and that increased 110%,97% and 85% respectively than that of the control treatments without corn and sterilization.All the results above indicated that AMF community and corn integrated systerm can signifcantly promote the remedition of pyrene contaminated soil,but the effects decreased with the increase of reproduce times. So the function of AMF may be degradated in the process of reproduce.Therefore use of the AMF and corn in remediation of pyrene contaminated soil should consider the source of AMF and it’s functional stability.
     6.AMF inoculation can change the distribution of pyrene absorbed by root ,but had no significant effect on the total quantity of pyrene absorbed by corn. The pyrene concentrations of roots in corn were 5 to 16 times of that in shoots in the pyrene treatments of 10mg/kg,50mg/kg and 100mg/kg indicating that the pyrene absrobed by roots mainly cumulated in roots.AMF inoculation can promote the cumulation of pyrene in roots. The pyrene concentration of shoots in corn in the treatments with AMF inoculation decreased 30%~37% than that of the treatments without AMF inoculation, while that of the roots increased 19%~35% in the contrary. The pyrene concentration in the mycelium of AMF was little lower than that of roots in corn, but significantly higher than that of shoots indicating the stronger cumulative capacity of AMF mycelium. The total quantity of pyrene cumulated in corn was only 0.02% to 0.05% in the pyrene inputed in the soil,so the absorption and accumulated in corn contribute little in the remediation of pyrene polluted soil.
     7.AMF inocilation had significant effects on the composition of corn’s root exudates and the oxidative damage to corn caused by pyrene in the pyrene treatments. The AMF inoculation of corn had no significant impact on pH value of rhizosphere ,but can promote the secretion of succinic acid and salicylic acid and which provied the substrate for the cometabolism of pyrene.AMF inoculation can improve the activity of corn’s roots ,decrease MDA concentration and CAT activity of corn’s leaves, alleviate the oxidative damage caused by pyrene ,thereby enhancing the resistant ability of corn to pyrene contamination.
     8. AMF and corn integrated systerm can significantly increase the number of microoganism or microbial biomass carbon,enhance soil catalase and polyphenol oxidase activity, and that provide favorable conditions for the remediation of pyrene contaminated soil.
引文
鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000, 79-168
    陈静,王学军,刘瑞民,等.天津地区土壤多环芳烃在剖面中的纵向分布特征[J].环境科学学报,2004,24(2):286-290
    陈瑞蕊,林先贵,尹睿等.有机污染土壤中菌根的作用[J].生态学杂志2005,24(2):176-180
    陈晓东,常文越,邵春岩.土壤污染生物修复技术研究进展[J].环境保护科学,2001,27: 105-108
    程国玲,李培军,王凤友,等.多环芳烃污染土壤的植物与微生物修复研究进展[J].环境污染治理技术与设备,2003,4(6):30-36
    程国玲,李培军,王凤友,等.多环芳烃污染土壤生物修复的强化方法[J].环境污染治理技术与设备,2005,6(6):1-6
    丁克强,骆永明.多环芳烃污染土壤的生物修复[J].土壤,2001(4):169-178
    董瑞斌,许东风,刘雷,等.多环芳烃在环境中的行为[J].环境与开发,1999,14(4):10-11
    段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源[J].土壤学报.2005.42(6):942-947
    冯固,李晓林,张福锁,等.VA菌根提高植物耐盐性研究进展[J].西北农业大学学报, 1999, 27(3): 94-100
    高学,姜霞,曲自清.多环芳烃在土壤中的行为[J].应用生态学报,2002,13(4):501-504
    高彦征.土壤多环芳烃污染植物修复及强化的新技术原理研究[D].浙江:浙江大学. 2004.45-58
    耿春女,李培军,韩桂云,等.生物修复的新方法-菌根根际生物修复[J].环境污染治理技术与设备,2001,2(5):20-24
    龚月桦,王俊儒,高俊凤.植物修复技术及其在环境保护中的应用[J].农业环境保护, 1998,17(6):268-270
    巩宗强,李培军,王新,等.芘在土壤中的共代谢降解研究[J].应用生态学报, 2001,12(3):447-450.
    巩宗强,李培军,王新,等.污染土壤中多环芳烃的共代谢降解过程[J].生态学杂志,2000,19(6):40-45.
    巩宗强a,李培军,王新,等.真菌对土壤中苯并[a]芘的共代谢降解[J].环境科学研究, 2001,14(6) : 36-39
    巩宗强b,李培军,王新,等.芘在土壤中的共代谢降解[J].应用生态学报, 2001,12(3):447-45
    顾向阳,胡正嘉.VA菌根真菌Glomus mosseae对棉花根区微生物量和生物量的影响[J].生态学杂志,1994,13(2): 7-11
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986
    郭秀珍,毕国昌.林木菌根及其应用[M].北京:中国林业出版社,1989
    郝蓉,万洪富,杜卫兵,等.亚热带地区农业土壤和植物中多环芳烃的分布[J].浙江大学学报,2005,31(4):374~380
    黄艺,姜学艳,陶澍.菌根真菌对土壤有机污染物的生物降解[J].土壤与环境,2002,11(3):221-226
    黄艺,陶澍,陈有鑑.外生菌根对欧洲赤松苗(Pinussylvestris)Cu、Zn积累和分配的影响[J].环境科学, 2000 ,21(2) : 1-6
    姜昌亮.石油污染土壤的物理化学处理-生物修复工艺与技术研究[D].沈阳:中国科学院应用生态研究所,2001,1-20
    姜霞,区自清,应佩峰.14C-菲在“植物-火山石-营养液-空气”系统中的迁移和转化[J].应用生态学报,2001,12:451-454
    姜霞,高学晟,应佩峰,等.表面活性剂的增溶作用及在土壤中的行为[J].应用生态学报,2003,14(11):2072-2076
    姜霞,井欣,高学晟,等.表面活性剂对土壤中多环芳烃生物有效性影响的研究进展[J].应用生态学报,2002,13(9):1179-118
    金赞芳,陈英旭.环境的污染及其生物修复技术研究进展[J].农业环境保护,2001,20(2):123-125
    李秋玲,凌婉婷,高彦征,等.丛枝茵根对有机污染土壤的修复作用及机理[J].应用生态学报,2006,17(11):2217-2221
    李滢,区自清,孙铁珩.表面活性剂对小麦吸收多环芳烃(PAHs)的影响[J].生态学报,2000, 20 (1): 99-102
    林道辉,朱利中,高彦征.土壤有机污染植物修复的机理及影响因素[J].应用生态学报,2003,14(10):1799-1803
    林刚,文湘华,钱易.应用白腐真菌技术处理难降解有机物的研究进展[J].环境污染治理技术与设备,2001,2(4):1-8.
    凌婉婷,高彦征,李秋玲,等.植物对水中菲和芘的吸收[J].生态学报, 2006. 26(10):3332-3338.
    刘期松,杨桂芬,张春桂,等.污灌土壤中多环芳烃自净的微生物效应[J].环境科学学报, 1984, 4(2): 185-192
    刘润进,沈崇尧,李怀方,等. VA菌根真菌和大丽轮枝菌(Verticillium dahliae)对棉花体内PR蛋白的诱导作用[J].植物病理学报,1993,23(2): 162-165
    刘润进,李晓林.丛枝菌根及其应用[M].北京:科学出版社,2000
    刘世亮,骆永明,曹志洪,等.多环芳烃污染土壤的微生物与植物联合修复研究进展[J].土壤,2002,34(5):257-265
    刘世亮,骆永明,丁克强,等.苯并[a]芘污染土壤的丛枝菌根真菌强化植物修复作用研究[J].土壤,2004,41(3):336-342
    孟范平,吴方正,土壤的污染及其生物治理技术进展[J].土壤学进展,1995,23(1):32-44
    莫测辉,蔡全英,吴启堂,等.我国一些城市污泥中多环芳烃(PAHs)的研究环[J].境科学学报,2001,21(5):613-618
    聂麦茜,张志杰.环境中多环芳烃污染规律及其生物净化技术[J].环境导报, 2001, 1: 18-21
    潘勇军,田大伦,唐大武,等.樟树林生态系统中多环芳烃含量和分布特征[J].林业科学,2004,40(6):2-7
    祁士华,王新民,傅家谟,等.珠江三角洲经济区主要城市不同功能区大气气溶胶中优控多环芳烃污染评价[J].地球化学, 2000, 29(4): 337-341
    任磊,黄延林.土壤的石油污染[J].农业环境保护,2000,19(6):360-363
    日本土壤微生物研究会.土壤微生物试验法[M].北京:科学出版社,1983
    沈德中.污染环境的生物修复[M].北京:化学工业出版社,2002,118-124
    施卫明.根系分泌物和养分有效性[J].土壤,1993,25:252-256
    宋玉芳a,许华夏,任丽萍,等.土壤中石油及难降解组分菲、芘的植物修复调控研究[J].应用生态学报,2000,11(supp):91-94
    宋玉芳,常士俊,李利,等.污灌土壤中多环芳烃(PAHs)的积累与动态变化研究[J].应用生态学报,1997,8(1):93~98
    宋玉芳,区自清,孙铁珩.土壤、植物样品中多环芳烃(PAHs)分析方法[J].应用生态学报,1995,6(1):92-96
    宋玉芳,孙铁珩,许华夏.表面活性剂TW80对土壤中多环芳烃生物降解的影响[J].应用生态学报,1999,10(2):230-232
    宋玉芳b,许华夏,孙铁珩.湿地土壤中矿物油和多环芳烃(PAHs)植物修复调控研究[J].应用生态学报,2000,11(supp):99-102
    孙红文,李书霞.多环芳烃的光致毒效应[J].环境科学进展, 1998,6(6):1-10
    孙铁珩,宋玉芳等.植物法修复PAHs和矿物油污染土壤的调控研究[J].应用生态学报,1999,10(2):225-229
    孙铁珩,宋玉芳,许华夏,等.污染土壤中多环芳烃生物降解的调控研究[J].应用生态学报,1998,9(6):640-644
    孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001:309-368
    唐明.VA菌根提高植物抗盐碱和抗重金属能力的研究进展[J].土壤,1998,30(5): 251-254
    陶雪琴,党志,卢桂宁,等.污染土壤中多环芳烃的微生物降解及其机理研究进展[J].矿物岩石地球化学通报,2003,22(4)
    王静,朱利中.交通干线空气中多环芳烃的干、湿沉降[J].中国环境科学,2005,25(4):471-474
    王庆仁,刘秀梅,崔岩山,等.土壤与水体有机污染的生物修复及其应用研究进展[J].生态学报, 2001, 20(1): 159-163
    王曙光,林先贵.菌根在污染土壤生物修复中的作用[J].农村生态环境, 2001, 17(1): 56-59
    王曙光,林先贵,尹睿.接种丛枝菌根(AM)真菌对植物DBP污染的影响[J].应用生态学报, 2003.14(4):589-592
    王文兴,束勇辉,李金花.煤烟粒子中PAHs光化学降解的动力学[J].中国环境科学1997,17(3):97~102
    徐圣友,陈英旭,林琦,等.玉米对土壤中菲芘修复作用的初步研究[J].土壤,2006,43(2):226-232
    许姗姗,刘文新,陶澍.全国多环芳烃年排放量估算[J].农业环境科学学报,2005,24(3):476-479
    杨建刚,刘翔,余刚,等.非离子表面活性剂溶液多环烃的溶解特性[J].环境科学,2003,24(6):79-82
    叶华.钯催化剂性能及其对燃煤烟气中多环芳烃的催化净化[J].环境科学,1999,20:57-58
    张从,夏立江.污染土壤生物修复技术[M].北京:中国环境科学出版社,2000:246-273
    张美庆.国际菌根研究进展[J].土壤学报, 1994 .31(增刊): 21-25
    张天彬,杨国义,万洪富,等.东莞市土壤中多环芳烃的含量、代表物及其来源[J].土壤, 2005, 37 (3): 265~271
    张锡辉,Baipai R.以关键酶为基础共代谢模型的建立—以甲烷细菌共代谢三氯乙烯为例[J].环境科学学报,2000,20(5):558-562
    张玉凤,冯固,李晓林.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响[J].生态学报.2003,23(1):30-37
    赵世杰,刘华山,董新纯,等.植物生理学试验指导[M].北京:中国农业科技出版社,1998
    周明耀.环境有机污染与致癌物质[M].成都:四川大学出版社, 1990: 62-103.
    周启星,宋玉芳.植物修复的技术内涵及展望[J].安全与环境学报,2001,1(3):48-53
    Alexander M. Agriculture and the Quality of Our Environment [M] . Washin gton DC: American Association for the Advancement of Science , 1969, 331-342
    Alkio M, Tabuchi TM, Wang XC, et a1. Stress responses to polycyclic aromatic hydrocarbons in arabidopsis include growth in hibition and hypersenative response-like symptoms[J].Journal of Experimental Botany, 2005, 56:2983-2994
    Alkorta I, Garbisu C. Pytoremediation of organic contaminants in soils [J] . Bioresource Technology , 2001, 79: 273-276
    Anderson TA,Guthrie EA and Walton B T. Bioremediation in the rhizosphere plants roots and associated microbes clean contaminated soil[J].Environmental Science Technology,1993,27(13) : 2630-2636
    Anderson TA,Guthrie EA, Walton BT. Bioremediation in the rhizosphere. [J] Environ. Sci. Technol, 1993, 27(13): 2630-2635
    Annokkee GJ. MT-TNO research into the biodegradaton of soils and sediments contaminated with oils and policyclic aromatic hydrocarbons (PAHas)[J]. Contaminated Soil,1990, 941-945
    Aprill W, Sims RC. Evaluation of the use of prairie grasses forStimulating polycyclic aromatic hydrocarbon treatment in soil[J].Chemosphere, 1990, 20: 253-265
    Bagyaraj D, Meng JA. Interaction between a VA mycorrhiza and azotobacter and their effects on rhizosphere microflora and plant growth[J].New Phytologist,1978,80: 567-573
    Benner BA, Jr. Bryner NP and Wise SA, et al. Polycyclic aromatic hydrocarbon emissions from the combustion of crude oil on water [J].Environmental Science and Technology, 1990, 24: 1418-1327
    Bezatel L, Hadar Y, Fu PP, et al. Metabolism of phenanthrene by white rot fungus Pleurrotusostreatus[J].Applied and Environmental Microbiology, 1996,61:2631-2635
    Binet P, Portal JM, Leyval C. Dissipation of 3 to 6-ring polycylic aromatic hydrocarbons in the rhizosphere of ryegrass[J]. Soil Biol. Biochem, 2000, 32: 2011- 2017
    Binet P,Tean MP,Corinne L. Biodegradation of a polyaromatic hydrocarbon in the rhizospere of mycorrhizal plants[A]. In:Ahonen JU,eds, Programme and Abstracts of Second International Conference on Mycorrhiza, July 5-10, 1998, Uppsala, Sweden
    Blum J, Fridovich I. Inactivation of glutathione peroxidas by superoxide radical[J]. Arch.Biochem. Biophys., 1985, 240:500-508
    Bonello P, Bruns TD, and Gardes M. Genetic structure of a natural population of the eetomycorrhizal fungus Suillus pungens[J]. New Phytol, 1998, 138: 533-542
    Bos RP, Theuws JL and Leijdekkers Ch-M et al. The presence of the mutagenic polycyclic aromatichydrocarbons benzo[a].Mutation Research, 1984, 130: 153 -158.
    Bouchez M,Blanchet D,Vandecasteele JP. Degradation of polycylic aromatic hydrocarbon by pure strains and defined strain associations: inhibition phenomena and cometabolism[J]. Appl. Microbiol., Bictechnol. 1995, 43: 156-164
    Bradley R, Burt AJ,Read DJ. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris[J]. Nature ,1981,292: 335-337
    Bradley R., Burt A. J. and Read D. J. The biology of mycorrhiza in the Ericaceae. VIII. The role of mycorrhiza infection in heavy metal resistance[J]. New Phytol., 1982, 91: 197-209.
    Brauner JS,Widdowsom MA, Novak JT, et al. Biodegradation of a PAH mixture by native subsurface microbiota. Bioremediation,2002,6(1):9-24
    Breedveld GD, Sparrevik M. Nutrient-limited biodegradation of PAH in various soil strata at a creosote contam inated site.Biodegradation, 2000, 11(6):391-399
    Brundrett MC. Mycorrhizas in natural ecosystems[J].Advances in ecological Research. 1991,21:171~313
    Bumpus JA. Biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium [J].Applied and Environmental Microbiology, 1989, 55: 154-158
    Calder JA, Lader JH. Microbial metabolism of polycyclic aromatic hydrocarbons[J]. Appl. Environ. Microbiol, 1976, 32(1): 95-101
    Carmichael LM, Pfaender FK. The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils[J]. Biodegradation, 1997,8(1):1-13
    Carriere PPE., Mesania FA. Enhanced biodegradation of creosote contaminated soil[J]. Waste Managenent,1995,15(8):579-583
    Cemiglia CE,Heitkamp MA. Microbial degradation of PAHs in the aquatic environment. In: Varanasi U, Metabolism of PAHs in the Aquatic Environment, Boca Raton, FL, USA: CRC Press, 1989, 41-68
    Chaineau CH,Morel JL,Oudot J. Biodegradation of fuel oil hydrocarbons in the rhizosphere ofmaize[J] J.Environ. Qual. 2000, 29: 569-578
    Chen BL,Xuan XD,Zhu LZ,et al.Distributions of polycyclic aromatic hydrocarbons in surface waters,sediments and soils of Hangzhou City,China[J].Water Rrsearch, 2004, 38(16):3558-3568
    Colpaert J. V. and Van Assche J. A. Zinc tolerance in ectomycorrhizal Pinus sylvestris[J]. Plant Soil, 1992, 143: 201-211.
    Colpaert J.V. and Van Assche J.A. The effect of cadmium on ectomycorrhizal Pinus sylvestris[J]. New Phytol., 1993, 123: 325-333.
    Colpaert J.V., van Assche J.A. Heavy metal tolerance in some ectomycorrhizal fungi [J] . Functional Ecology ,1987,1: 415-421
    Crowley DE, Alcey S and Gilbert ES. Rhizosphere ecology of xenobictic degradating microorganisms.In:Kruger E.L., Anderson T.A. &Joel R.C. eds. Phytoremediation of soil and water contanminants[J]. Washington,D.C.:American Chemical Society, 1997,20-36
    Cunningham SD,Berti WR,Huang JW. Phytoremediation of contaminated soils[J]. Trendsin Biotech., 1995,13(9):393-397
    Daniels BA, Skipper HD. Methods for the recovery and quantitative of mycorrhizal research[N] .The American Photopathology Society. st. pal 1982
    Deschenes L,Lafrance P,Villeneuve JP, et al.Adding sodium dodecyl sulfate and Pseudomon asaeruginosa UG2 biosurfactants inhabits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil[J]. Appl Microbiol Biotechnol., 1996,46(5-6):638-646
    Donnelly PK , Fletcher JS. In abstracts of the 13th Annual Meeting of the Society of Envitonmental Toxicology and Chemistry[J]. OH, 1992, 103
    Donnelly PK., Fletcher JS. PCB metabolism by ectomycorrhizal fungi [J]. Bulletin of Environmental Contamination and Tox icology , 1995 , 54: 507-513
    Dries J,Ratte D,Yang Y,et al.The effect of surfactant biodegradability on bioremediation of polycyclic aromatic hydrocarbona(PAHs) in aged soils[J]. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen Univeriteit Gent,2000,65(3A):129-132
    Ellis B, Harold P, Kronberg H. Bioremediation of a creosote contaminated site [J]. Environmental Technology, 1991, 12: 447-459
    Elroy AC,Truelove B.The rhizosphere[M].New York:Spring er-Verlag Beidelberg, 1986.
    Erickson DC., LoehrRC., NeuhauesrE.F. PAH lose during biodegradation of manufacurted gas plant site soil[J]. Wat.Res., 1991,27(5):911-919
    Fang YC, McGraw AC., Modjo H., et al. A procedure for isolation of dinglespore culture of certain endomycorrhizal fungi[J]. The New Phyttol. 1983, 93:107-144
    Freeman DJ.,Cattle FCR. Wood burning as a source of atmospheric polycyclic aromatic hydrocarbons[J].Environmental Science and Technology, 1990, 24: 1581-1585
    Gao Y Z., Zhu LZ. Plant uptake , accumulation and translocation of phenanthrene and pyrene in soils[J]. Chemosphere, 2004, 55 : 1169-1178.
    Gauthier TD,Shane EC,Guerin WF. et al.Fluorescence Quenching Method for Determining Equilibrium Constanta for Polycyclic Aromatic Hydrocarbons Binding to Dissolved Humic Materialas [J].Environ Sci Technol,1986,20:1162-1166
    Gramass G, Klaus dieter Voigt , Brigitta Kirsche. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by fungi in sterile and unsterile soils [J] . Biodegradation.1999 , 10: 51-62
    Grimmer, GA. Hildebrandt.Content of polycyclic hydrocarbon in crude vegetable oils [J].Chem.lnd.(London)1967.45:2000~2002
    Guddal E. Isolation of polynuclear raromatic hydrocarbons from roots of Chrysanthemun Vulgare Barnh[J].Acta. Chem.Scand. 1959, 13(4):834~835
    Gunster DG., Bonnevie NL and Gielis CA. Assessment of chemical loadings to Newark Bay, New Jersey from petroleum and hazardous chemical accidents occurring from 1986 to 1991 [J].Ecotoxicology and Environmental Safety, 1993, 25: 202-213
    Gunther F,Dornberger U,Fritsche W. Effect of ryegrass on biodegradation of hydrocarbons in soil[J]. Chemosphere,1996, 33: 203-215
    Gunther FA, Buzzetti F, Westlake WE. Residue behavior of polynuclear hydrocarbons on and in oranges [J].Residue Rev, 1967,17:81-104
    Haderle A,Legros R, Ramsay B. Enhancing pyrene mineralization in contaminated soil [J].Appl Microbiol Biotechonl,2001,56(3-4):555-559
    Hedge RS, Fletcher JS. Influence of plant growth stage and season on the release of root phenolics by mulberry as related to development of photoremediation technology[J] . Chemosphere,1996 , 32: 2 47122 479
    Heikamp MA, Cemiglia CE. Polycyclic aromatic hydrocarbons degradation by a mycobacterium sp in microcosms containing sediment and water from pristine ecosystem[J]. Appl Environ Microbiol,1989,55:1968-1973
    Herbes SE and Schwall LR. Microbial Transformation of Polycyclic Aromatic Hydrocarbons in Pristine and Petroleum-Contaminated Sediments[J]. Applied and Environment Microbilogy, 1978, 35: 401-405
    Holman HYN, Nieman K, Sorensen DL, et al. Catalysis of PAH biodegradation by humic acid shown in synchrotron infrared studies[J]. Environ Sci and Technol, 2002, 36(6):1276-1280
    Huntley SL, Bonnevie NL,Wenning RJ, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in three Northern New Jersey Waterways[J].Bulletin of Environmental Contamination and Toxicology, 1993, 51: 865-872
    Hurst CJ, Sims RC, Sims JL. Polycyclic aromatic hydrocarbon biodegradation as a function of oxygen tension in contaminated soil[J].Journal of Hazardous Matetials,1996,51(1-2):193-208
    Ignacio HC, Laurie JO, Thomas PH, et al. Ectomycorrhizal fungi introduced with exotic pine platations induced soil carbon depletion [J] . Soil Biology & Biochemistry , 2001 , 33: 1 733-1740
    Jensen HL. Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids [J].Acta Agriculturae Scandinavica, 1963,13:404-412
    Jerome FJ, Chikoshi S, Raul CYS. Composting of polycyclic aromatic hydrocarbons in simulated municipal solid waste[J]. Wat Environ Res,1998,70(1):356-361
    Jian Y,Wang L,Peter P, et al . Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list Mutation Research [J].Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2004, 557: 99-108
    John DC, Robert TA, Derek RL. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions[J]. Appl Environ Microbiol,1996,62(3):1099-1101 Johnson DL, Anderson DR., Mcgrath SP. Soil microbial response during the phytoremediation of a PHA contaminated soil[J]. Soil Biology & Biochemistry, 2005, 37: 2334-2336
    Joner E.J.,Corgie S.C.,Amellal N.,et al. Nutritional constants to degradation of polycyclic hydrocarbons in a simulated rhizosphere[J]. Soil Biology and Biochemistry, 2002, 34: 859-864
    Joner EJ, Corgie SC, Amellal N. Nutritional constraints to degradation of polycyclic aromatic hydrocarbons in a simulated rhizonsphere[J]. Soil Biology & Biochemistry, 2002, 34:859-864
    Joner EJ, Imyval C. Rhizosphere gradients of polycyclic aromatic hydrocarbon(PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza[J]. Environ Sci Techtw1, 2003, 37: 2371-2375
    Joner EJ, Imyval C. Rhizosphere gradients of polycyclic aromatic hydrocarbon(PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza[J]. Environ Sci Techtw1, 2003, 37: 2371-2375
    Jones KC, Straford. JA ,Waterhouse, KS. Organic Contaminants in Welsh Soils: Polynuclear Aromatic Hydrocarbons. Environmental Science and Technology, 1989, 23: 540-550(b)
    Jones KC, Straford. JA,Waterhouse KS. Increases in the Polynuclear Aromatic Hydrocarbon Content of an Agricultural Soil over the Last Century. Environmental Science and Technology, 1989, 23: 95-101(a)
    Jussi H, Kirsten S,Jorgensen , Kielo H, et al. Effect of pinus sylvestris root growth and mycorrhizosphere development on bacterial carbon source utilization and hydrocarbon oxidation in forest andpetroleum contaminated soil[J]. CanadaJournal Microbiology , 2000 , 46: 451-464
    Kanaly RA, Bartha R.Cometabolic mineralization of benzo a pyrene caused by hydrocarbon additions to soil[J]. Environmental Toxicology and Chemistry,1999,18 (10) : 186-190
    Kantachote D, R Naidu, I Singleton et al. Resistance of microbial populations in DDT contaminated and uncontaminated soils[J] . Applied Soil Ecology ,2001 , 16: 85-90
    Kim Y.B., Park K.Y., Chung Y. Phytoremediation of anthracene contaminated soils by different plant species [J].Journal of Plant Biology, 2004,33:1769-17
    Kipopoulou AM, Manoli E, Samara C. Bioconcentration of PAHs in vegetables grown in an industrial area[J]. Environ. Pollut., 1999,106:369-380
    Komoba D. and Sandermann H J. Plant metabolism of herbicides with C-P bonds: phosphinothricin. Pestic.Biochem[J]. Physiol, 1992, 43: 95-102
    Lal R, Saxena DM. Accumulation,metabolism and effects of organochlorine insecticideson microorganisms[J]. Microbiology Review , 1982 , 46: 952127
    Lambers H. Growth,respiration,exudation and symbiotic associations: Thefateof carbon translocated to the roots [A]. In: Gregory P J , Lake J V , Rose D A, eds. Root Development and Function. Seminar Series of the Society of Experimental Biologists C. Cambri ge: Cambrige University Press, 1987. 125- 145
    Laor Y, PF Strom, WJ Farmer. The effect of sorption on phenanthrene bioavailability[J]. Biotechnol, 1996,51:227-234
    Lau PCK, Lorenzo V. Genetic engineering: The frontie of bioremediation[J]. Environ. Sci. Technol., 1999,33:124A-128A
    Leadbetter ER, Foster JW. Oxidation products formed from gaseousalkane by the bacterium pseudomonsmetharica [J].Archives Biochemistry Biophysics,1959,82:492-492
    Leyval C, Berthelin J. Rhizodeposition and net release of soluble organic compounds in pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi[J]. Biology and Fertility of Soil,1993,15:259-267
    Leyval C, Binet P. Effeet of polyammatic hyrdrocarbons in soil on arbuscular mycorrhizal plants[J]. J Environ Qual, 1998, 27(2): 402-407
    Li H, Sheng GY, Chiou CT., et al. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants[J]. Environ.Sci.Technol, 2005,39:4864-4870
    Li X.L, Christie P. Changes in soil solution Zn and pH and uptake of Zn by arbuscular mycorrhizal red clover in Zn contaminated soil[J]. Chemosphere, 2001, 42: 201-207
    Li XL , Christie P. Changes in soil solution Zn and pH and uptakeof Zn by arbuscular mycorrhizal redclover in Zn contaminated soil [J] . Chemosphere,2001,42(2) : 201-207
    Ling W T, GAO Y Z. Promoted dissipation of phenanthrene and pyrene in soils by amaranth (Amaranthus tricolor L) [J]. Environmental Geology, 2004,46(5):553-560
    Lynch JM,&JM Whipps.Substrate floe in the rhizosphere[J].Plant and Soil,1990,129:1-10
    Ma LL,Chu SG,Wang XT,et al.Polycyclic aromatic hydrocarbons in surface soils from outskirts of Beijing China[J]. Chemosphere,2005,58(10):1355-1363
    Mahaffey WR., Gibson DT., Cerniglia CE. Bacterial oxidation of chemical carcinogens, fomation of polycyclic aromatic acids from benz(a) anthracene[J].Appl Environ Microbiol,1988, 54(10): 2415-2423
    Mattina M J I.,Lannucci Berger W., Musante C., et al. Concurrent plant uptake of heavy metals and persistant organic pollutants from soils[J] .Environ. Pollut, 2003,124:375-378
    May R, P Schroeder, H Sandermann. Ex-Situ process for treatint PAH-contaminated soil with Phanerochaete Chrysosporium[J]. Environmental Science and Technology,1997,31: 2626-2633
    McGinnis GD., Borazjani H., McFarland LK., et al. Charaterisation and laboratory testing soiltreatability studies for creosote and pentachlorophenol sludges and contaminated soil. In: Robert. S.K., USEPA Report No. 600/2-88/055. Ada. OK. USA: Environmental Research Labratory, 1988, 20-21
    Meens N.,Steinberg C.E.W.,Wiegand C. Direct and Indirecting Toxicological Effects on the Waterflea(Daphnia Magna) by natural Organic Matter,Synthetic Humic Substances and Cypermthrin[J].Sci Total Environ,2004,319:123-136
    Meharg A A, Cairney J W G. Ecotomycorrhizas extending the capabilities of rhizosphere remediation[J] . Soil Biology & Bio chemistry , 2000 , 32: 1 47521 484
    Menzie CA, Potocki BB, Santodonato J. Exposure to carcinogenic PAHs in the environment[J]. Environ. Sci. Technol., 1992, 26(7): 1278-1284
    Meyer J R, Linderman R G. Selective influence on populations of rhizosphere or rhizosplane bacteria and actinomyces by mycorrhizas formed by Glomus fasciculatum[J] . Soil Biology & Biochemistry , 1986 , 18: 191-196
    Mosse B. Fructifications of an endogone species causing endotrophic mycorrhiza in fruit plants[J] . Annals of Botany,1956 , 20: 349-362
    Mrozik A,Piotrowska-Seget Z.,Labuzek S.Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons[J].Polish Journal of Environmental Studies,2003,12(1):15-25
    Mueller JG., Chapman PJ. and Pritchard PH. Creosote-contaminated sites. Their potential for bioremediation[J].Environmental Science and Technology, 1989, 23: 1197-1201
    Mueller JG., Lantz SE. and Blattmann BO. Bench-Scale Evaluation of Alternative Biological Treatment Processes for the Remediation of Pentachlorophenol- and Creosote-Contaminated Materials:Solid-PAHse Bioremediatiod[J].Environmental Science and Technology, 1991, 25:1055-1061
    Nichols TD, Wolf DC, Rogers HB, et al. Rhizosphere microbial populations in contaminated soils. Water, Air and Soil Pollution.1997, 95(1/4): 165-176
    Olssen P.A., Francis R., Read D.J.,et al.Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids[J]. Plant Soil, 1998, 201: 9-16
    Park KS, Sims RC, Dupont RR, et al. Fate of PAH compounds in two soil types:influence of volatilization,abiotic loss and biological activity[J] Environment Toxicology and Chemistry,1990, 9: 187-195
    Pradhan SP, Conrad JR, Paterek JR, et al. Potential of phytoremediation for treatment of PAHs in soil and MGP sites[J]. Soil Contam., 1998, 7(4): 467-480
    Pulford I D, Watson C. Phytoremediation of heavy metal contaminated land by trees—A review [J] . Environment International , 2002 , 1032: 1-12.
    Raber B,Kogel-Knabner I,Stein C, et al. Partitioning of Polycyclic Aromatic Hydrocarbons to Dissolved Organic Matter from Different Soils[J]. Chemosphere, 1998,36(1):79-97
    Rambelli A. The rhizosphere of mycorrhizae[M]. In: Marks G C and Kozlowski T T eds: Ectomycorrhizae (Their Ecology and Physiology). NewYork: Academic Press,1973
    Ravelet C, Krivobok S, Sage L. et al.Biodegradation of pyrene by sediment fungi[J]. Chemosphere, 2000,40:557-573
    Rebeccaa A, Efroymson M A. Biodegradation by an arthrobacter Species of hydrocarbons partitioned into an organic solvent [J] .Applied and Environmental Microbilogy , 1991 , 57: 1 441-1447
    Reiley K A,Banks M K,Schwab A P,et al. Degradation of polycyclic aromatic hydrocarbons in rhe rhizosphere [J].Journal of environmental Quality, 1996,25:212-219
    Robles C,Barea JM. Microbial-plant symbiosis and soil quality in a degraded Mediterranean ecosystem .Agrochimica, 2004, 48 : 99-103
    Romem M C,Salvioli M L,Cazau M C,et al. Pyrene degradation by yeasts and filamentous fungi[J]. Environ Pollut, 2002,117(1):159-163
    Ruiz-Lozano J.M., Azcon R., Gomez M. Alleviation of salt stress by arbuscular mycorrhizal Glomus species in Lactuca sativa plants[J]. Physiol. Plant., 1996, 98: 767
    Sack U,Heinae T M,Deck J,et al. Comparison of phenanthrene and pyrene degradation by different wooddecaying fungi[J].Applied Environmental Microbiology, 1997,63:3919-3925
    Salzer P,Corbiere H,Boiler T. Hydrogen peroxide accumulation in Medicago trutwatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices[J]. Planta, 1999,208(3):3 1 9- 325
    Sanders FE, PB Tinker, RLB Black, et al. The development of endomycorrhizal roots systems I: Spread of infection and growth promoting effects with four species of vesicular arbuscular mycorrhizae [J]. New Phytologist ,1977,78: 257-268
    Saponaro S, Bonomo L, Petruzzelli G, et al. Polycyclic aromatic hydrocarbons (PAHs) slurry PAHse bioremediation of a manufacturing gas plant (MGP) site aged soil[J]. Wat Air and Soil Pollut, 2002, 135(1-4):219-236
    Sarand I, S Timonen, EL Nurmiaho-Lassila,et al. Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine mycorrhizospheres developed on petroleum contaminated soil [J] . FEMS Microbiology Ecology , 1998 , 27(2) : 1152126
    Scheck N. C. and Y. Péréz. Manual for the identification of VA mycorrhizal fungi, Second edition[M]. INVAM. University of Florida, Gainesville, USA. 1988
    Schnoor JL, Licht LA, Mccutcheon SC, et al. Phytoremediation of organic and nutrient contaminants [J].Environ Sci Technol., 1995,29(7): 318-323
    Shimp J F, Tracy I C, Davis L C, et al. Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials[J]. Critical Review Environmental Science Technology , 1993 , 23: 41-77
    Shoji S, J Delgado, A Mosier, et al. Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality[J ] . Commun Soil Sci Plant Anal , 2001 ,32(7 &8) :1 051-1 070
    Simonich S L, Hites R A. Organic pollution accumulation in vegetation [J]. Environ. Sci. Technol,1995, 29:2905-2913
    Simonich, S L, Hites R A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J]. Environ. Sci.Technol, 1994, 28:939-943
    Sims JL, RC Sims, JE Matthews. Approach to bioremediation of contam inated soil [J].Hazardous Waste & Hazardous Materials, 1990, 7(2):117-149
    Sims RC, Doucette WJ, Mclean JE. et al.Treatment potential for 56 EPA-listed hazardous chemicals in soil[C]. In: Robert S. K., USEPA Report No. 600/6-88/001. Ada, OK, USA: Environmental Research Laboratory, 1988, 13
    Sims RC. ,Overcash M. R. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems[J] .Residue Reviews, 1983, 88: 1-68
    Smith S E, Read D J. Mycorrhizal Symbiosis [M]. London: Academic Press,1997.
    Smith S E, Read DJ. Mycorrhizal Symbiosis (2nd) [M]. New York ,San Diego: Academic Press, 1997
    Song HG. and Bartha R. Effects of Jet Fuel Spills on the Microbial Community of Soil. Applied and Environment Microbilogy, 1990, 56: 646-651
    Stevcevska V, J Jovanovic-Kolar. The effect of air pollution on the content of 3,4-benzpyrene in crude sunflower seed oil [J]Arh.Hig.Rada,1974,23:191-196
    Suzuki H., Sakamoto K., Inubushi K. Effects of arbuscular mycorrhizal colonization on ammonium-N uptake activity of the host plant[J]. Japan. J. Soil Sci. Plant Nutri., 1999, 70: 59-63.
    Tabak HH, SA Quave, CI Mashni, et al. Biodegradability Studies with Organic Priority Pollutant Compounds [J].Journal of the Water Pollution Control Federation, 1981, 53: 1503-1518
    Timonen S, KS J?rgensen, K Haahtela, et al. Bacterial community structure of Scots pine-Suillus bovinus and-Paxillus involutus mycorrhizospheres in dryforest humus and nurserypeat[J] . CanadaJournal Microbiology,1998 ,44: 4992513
    Trappe J.M. Phytogenetic and ecological aspects of mycotrophy in the Angiosperms from an evolutionary standpoint. In: Safir GR (ed). Ecophysiology of VA mycorrhizal plants[M]. CRC Press Boca Raton FL, 1987
    Vance E D, Brooks P C, Jenkinson D S. An extraction method for measuring soil microbial biomass carbon [J]. Soil Bio1.Biochem, 1987, 19: 703- 707
    Volkering F.,Breure A.M.Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydroocabons[J].Appl Environ.Microbiol,1995, 61(5):1699-1705
    Walter U, Beyer, M, Klein J et al. Degradation of pyrene by Rhodococcus sp[J]. Applied Microbiology and Biotechnology, 1990, 17: 489-492
    Wang, DT , Meresz O. Occurence and potential uptake of polynuclear aromatic hydrocarbons of highway traffic origin by proximally grown food crops [R] .1982
    Weissenfels WD, Beyer M. and Klein J. Degradation of phenanthrene, fluorene and fluoranthene by pure bacterial cultures. Applied Microbiology and Biotechnology, 1990,32(4):479-484
    Weissenfels WD, lewer HJ, anghoff J. Adsorption of polycyclic aomatic hydrocarbons(PAHs) by soil particles:Influence on biodegradability and biotoxicity[J]. Appl Microbiol Biotechnol, 1992,36:689-696
    Wild E, Dent J, Thomas G O,et al.bservation of organic contaminant uptake, storage, and metabolism within plant roots[J]. Environ.Sci Technol,2005, 39:3695-3702
    Wilson SC, KC Jones. Bioremediation of soil ontaminated with polycyclic aromatic hydrocarbons(PAHs): a review. Environ. Pollut., 1993, 81: 229-249
    Wu Y, J Zhang, Z Zhu. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary,North China[J].Marine Pollution Bulletin,2003,46(5):619-625
    Xiao-Dong Huang,Loreleif, Zeiler, D.et al. Photoinduced toxicity of PAHs to the folar regions of Brassica napus and cucumbis sativus in simulated solar radiation[J]. Ecotoxicology and Environ safy, 1996, 35(2): 108-112
    Yoshitomi K J , Shann J R. Corn ( Zea may L.) root exudates and their impact on C14-pyrene minerdization[J]. Soil Biol . Biochem, 2001,.33 :1 769-1776
    Zhang X X ,Cheng S P, Zhu C J. Microbial PHA-Dgradation in Soil: Degradation Pathways and Contrabuting Factors[J]. Pedosphere, 2006, 16(5): 555-565
    Zheng ZM.,Obbars JP. Effect of non-ionic surfactants on elimination of polycyclic aromatic hydrocarbons (PAHs) in soil-slurry by Pbanerochaete chrysosporium[J]. Journal of Chemical TATechnology and Biotechnology, 2001,76(4):423-429

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700