用户名: 密码: 验证码:
2-氨基苯并噻唑和1,3-噁唑烷-2-酮的合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文有两部分组成,第一部分是2-氨基苯并噻唑的合成研究,第二部分是以二氧化碳为原料合成1,3-噁唑烷-2-酮的研究。
     2-氨基苯并噻唑是一类具有多种生物活性的杂环类化合物,如临床用于治疗肌萎缩性脊髓侧索硬化症的利鲁唑就属于2-氨基苯并噻唑类化合物,2-氨基苯并噻唑还广泛用于抗菌、抗病毒、抗癌、抗帕金森等药物的研发中。因此,2-氨基苯并噻唑在药物化学中占有非常重要的地位。本论文以环己酮类化合物和硫脲类化合物作为原料,在酸性条件下,以碘作为催化剂,以氧气作为氧化剂,在没有过渡金属参与的情况下,合成了各种2-氨基苯并噻唑。该反应是在30mol%碘和5当量对甲苯磺酸的作用下,在DMSO介质中75℃下反应24小时进行的。2-位、3-位和4-位取代的环己酮都可以得到相应的2-氨基苯并噻唑,无取代、单取代和N, N-二取代的硫脲也都能得到相应的2-氨基苯并噻唑产物。2-氨基萘[2,1-d]噻唑和2-氨基萘[1,2-d]噻唑的合成方法尚未有文献报道,而本论文所研究的合成2-氨基苯并噻唑的方法可以高产率的合成这两类新骨架化合物。该反应所用氧化剂为氧气,绿色环保,而且无需金属参与,所得产品无被金属污染的危险。
     二氧化碳既是地球上最为丰富的碳1资源又是主要的温室气体,以二氧化碳为原料合成有机小分子的研究对环境保护和碳1资源的充分利用都有十分重要的意义。本论文对以二氧化碳为原料合成1,3-噁唑烷-2-酮进行了研究。首先,二氧化碳与末端炔、酮类化合物及伯胺在碘化亚铜和氯化亚锡的催化下进行四组分的环综合反应得到1,3-噁唑烷-2-酮。该反应30mol%CuI和20mol%SnCl2的催化下,二氧化碳压力1.5MPa,在DMSO介质中70℃反应12小时以良好的产率得到相应的1,3-噁唑烷-2-酮。该反应是酮类化合物与末端炔、胺进行类似A3-Coupling反应的一个实例,直链的和环状的脂肪酮均能顺利进行反应,但空间位阻大的芳酮无法得到相应的1,3-噁唑烷-2-酮。在研究上述反应过程中,我们发现,当无酮类化合物存在时,二氧化碳也能与末端炔和伯胺进行三分子环缩合反应得到-1,3-噁唑烷-2-酮。反应是在10mol%CuI催化下,二氧化碳压力为2MPa,无溶剂条件下加热至90℃反应24小时进行的。亲核性强的脂肪伯胺和芳基末端炔均能以良好产率生成相应的-1,3-噁唑烷-2-酮。5-位亚烷基取代的-1,3-噁唑烷-2-酮通常由炔丙胺与二氧化碳反应得到,而本论文两种固定二氧化碳为5-位亚烷基取代的-1,3-噁唑烷-2-酮的原料则为较为廉价易得到的末端炔、伯胺和酮类化合物。
This dissertation consists of part I and part II. Part I involves the reseach on thesynthesis of2-aminobenzothiazoles and part II involves the investigation on the synthesis of1,3-oxazolidin-2-ones using carbon dioxide as feedstock.
     2-Aminobenzothiazoles are an important class of heterocycle whose diverse biologicalactivities make them privileged scaffolds in drug discovery. For example, marketed Riluzoleis a2-aminobenzothiazole compound employed in the treatment of amyotrophic lateralsclerosis; They have also been widely used to develop anti-diabetic, anti-microbial, anti-viral,anti-cancer, anti-parkinsonian agents and so on. Therefore,2-aminobenzothiazole derivativesplay an important role in medicinal chemistry. In part I, it is presented that various2-aminobenzothiazole were metal-freely prepared from cyclohexanones and thioureas in theacidic conditions catalyzed by iodine with oxygen as an oxidant. This transformation wasconducted in DMSO at75oC for24hours by adding30mol%iodine and5equivp-toluenesulfonic acid.2-substituted,4-substituted,3-substituted cyclohexanones andnon-substituted, mono-substituted, N, N-disubstituted thioureas all went through the process.It is worth noting that2-aminonaphtho[2,1-d]thiazoles and2-aminonaphtho[1,2-d]thiazolescan be prepared via this method in satisfactory yield, whose practical synthetic processes havenot been reported. This strategy also employs oxygen as a green oxidant and avoids transitionmetals.
     Carbon dioxide is the major greenhouse gas as well as the most abundant carbonresourse in the earth. Chemical fixation of carbon dioxide is of great importance from theviewpoint of the protection environment and carbon resourse utilization. In part II, it wasinvestigated that carbon dioxide was chemically fixated into1,3-oxazolidin-2-ones. Firstly,CuI/SnCl2Co-Catalyzed four-component assembly of carbon dioxide, alkynes, amines andketones to afford1,3-oxazolidin-2-ones. This conversion was carried out in DMSO at70oCfor12hours under CO2pressure of1.5MPa by adding30mol%CuI and20mol%SnCl2togive1,3-oxazolidin-2-ones in good yield. This reaction is an example that ketones, terminalalkynes and primary amines can go across a A3-type coupling, and linear or cyclic aliphaticketones are good substrates while aromatic ketones are not due to its steric hindrance. In the course of the above research, it was found that carbon dioxide, terminal alkynes and primaryaimines could also reaction in the absence of ketones to produce another1,3-oxazolidin-2-ones. The three-component cycloaddition reaction was performed under CO2pressure of2MPa at90oC for24hours under solvent-free conditions using10mol%CuI ascatalyst. Primary aliphatic amine with strong nucleophilicity and aryl-substituted terminalalkynes were good substrates.5-Alkylidene-1,3-oxazolidin-2-ones are commonly synthesisfrom carbon dioxide and costly propargyl amines while they can be prepared for moreavailable alkynes, ketones, amines and carbon dioxde via the protocols in part II of thisdissertation.
引文
[1] Cheah B.C., Vucic S., Krishnan A.V., et al., Riluzole, Neuroprotection and AmyotrophicLateral Sclerosis [J]. Curr. Med. Chem.2010,17(18):1942-1959.
    [2] Scheetz M.E., II, Carlson D.G., Schinitsky M.R., Frentizole, a novel immunosuppressive,and azathioprine: their comparative effects on host resistance to Pseudomonasaeruginosa, Candida albicans, herpes simplex virus, and influenza (Ann Arbor) virus [J].Infect. Immun.1977,15(1):145-148.
    [3] Bhavsar D., Trivedi J., Parekh S., et al., Synthesis and in vitro anti-HIV activity ofN-1,3-benzo[d]thiazol-2-yl-2-(2-oxo-2H-chromen-4-yl)acetamide derivatives usingMTT method [J]. Bioorg. Med. Chem. Lett.2011,21(11):3443-3446.
    [4] Noolvi M.N., Patel H.M., Kaur M., Benzothiazoles: search for anticancer agents [J]. Eur.J. Med. Chem.2012,54:447-462.
    [5] Ahmed K., Venkata S.Y.V., Mohammed N.A.K., et al., Recent advances on structuralmodifications of benzothiazoles and their conjugate systems as potentialchemotherapeutics [J]. Expert Opinion on Investigational Drugs2012,21(5):619-635.
    [6] Hugerschoff A., Einwirkung von Halogenen auf Thioharnstoffe [J]. Chem. Ber.1901,34(2):3130-3135.
    [7] Jordan A.D., Luo C., Reitz A.B., Efficient conversion of substituted aryl thioureas to2-aminobenzothiazoles using benzyltrimethylammonium tribromide [J]. J. Org. Chem.2003,68(22):8693-8696.
    [8] Joyce L.L., Batey R.A., Heterocycle Formation via Palladium-Catalyzed IntramolecularOxidative C-H Bond Functionalization: An Efficient Strategy for the Synthesis of2-Aminobenzothiazoles [J]. Org. Lett.2009,11(13):2792-2795.
    [9] Inamoto K., Hasegawa C., Kawasaki J., et al., Use of Molecular Oxygen as a Reoxidant inthe Synthesis of2-Substituted Benzothiazoles via Palladium-Catalyzed C-HFunctionalization/Intramolecular C-S Bond Formation [J]. Adv. Synth. Catal.2010,352(14-15):2643-2655.
    [10] Benedi C., Bravo F., Uriz P., et al., Synthesis of2-substituted-benzothiazoles bypalladium-catalyzed intramolecular cyclization of o-bromophenylthioureas ando-bromophenylthioamides [J]. Tetrahedron Lett.2003,44(32):6073-6077.
    [11] Joyce L.L., Evindar G., Batey R.A., Copper-and palladium-catalyzed intramolecular C-Sbond formation: a convenient synthesis of2-aminobenzothiazoles [J]. Chem. Commun.2004,(4):446-447.
    [12] Saha P., Ramana T., Purkait N., et al., Ligand-Free Copper-Catalyzed Synthesis ofSubstituted Benzimidazoles,2-Aminobenzimidazoles,2-Aminobenzothiazoles, andBenzoxazoles [J]. J. Org. Chem.2009,74(22):8719-8725.
    [13] Feng E.G., Huang H., Zhou Y., et al., Metal-Free Synthesis of2-Substituted (N, O, C)Benzothiazoles via an Intramolecular C-S Bond Formation [J]. J. Comb. Chem.2010,12(4):422-429.
    [14] Schroeder D.C., thioureas [J]. Chem. Rev.1955,55(1):181-228.
    [15] Telvekar V.N., Bachhav H.M., Bairwa V.K., A Novel System for the Synthesis of2-Aminobenzthiazoles using Sodium Dichloroiodate [J]. Synlett2012,(15):2219-2222.
    [16] Sahoo S.K., Banerjee A., Chakraborty S., et al., Regioselective IntramolecularArylthiolations by Ligand Free Cu and Pd Catalyzed Reaction [J]. Acs Catalysis2012,2(4):544-551.
    [17] Shen G.D., Lv X., Bao W.L., Synthesis of N-Substituted-2-Aminobenzothiazoles byLigand-Free Copper(I)-Catalyzed Cross-Coupling Reaction of2-Haloanilines withIsothiocyanates [J]. Eur. J. Org. Chem.2009,(34):5897-5901.
    [18] Guo Y.J., Tang R.Y., Zhong P., et al., Copper-catalyzed tandem reactions of2-halobenzenamines with isothiocyanates under ligand-and base-free conditions [J].Tetrahedron Lett.2010,51(4):649-652.
    [19] Sun Y.L., Zhang Y., Cui X.H., et al., Synthesis of2-Aminobenzothiazoles viaCopper(I)-Catalyzed Cross-Coupling with Part-Per-Million Catalyst Loadings [J]. Adv.Synth. Catal.2011,353(7):1174-1178.
    [20] Yang J., Li P.H., Wang L., Merrifield resin supported phenanthroline-Cu(I): a highlyefficient and recyclable catalyst for the synthesis of2-aminobenzothiazoles via thereaction of2-haloanilines with isothiocyanates [J]. Tetrahedron2011,67(31):5543-5549.
    [21] Khatun N., Jamir L., Ganesh M., et al., A one-pot strategy for the synthesis of2-aminobenzothiazole in water by copper catalysis [J]. Rsc Advances2012,2(30):11557-11565.
    [22] Qiu J.W., Zhang X.G., Tang R.Y., et al., Iron-Catalyzed Tandem Reactions of2-Halobenzenamines with Isothiocyanates Leading to2-Aminobenzothiazoles [J]. Adv.Synth. Catal.2009,351(14-15):2319-2323.
    [23] Ding Q.P., Cao B.P., Liu X.J., et al., Synthesis of2-aminobenzothiazole viaFeCl3-catalyzed tandem reaction of2-iodoaniline with isothiocyanate in water [J].Green Chem.2010,12(9):1607-1610.
    [24] Cano R., Ramon D.J., Yus M., Transition-Metal-Free O-, S-, and N-Arylation ofAlcohols, Thiols, Amides, Amines, and Related Heterocycles [J]. J. Org. Chem.2011,76(2):654-660.
    [25] Wang R., Chen Z., Yue L., et al., Direct transition metal-free C-S bond formation:synthesis of2-aminobenzothiazole derivatives via base-mediated approach [J].Tetrahedron Lett.2012,53(34):4529-4531.
    [26] Ma D.W., Lu X., Shi L., et al., Domino Condensation/S-Arylation/HeterocyclizationReactions: Copper-Catalyzed Three-Component Synthesis of2-N-SubstitutedBenzothiazoles [J]. Angew. Chem. Int. Ed.2011,50(5):1118-1121.
    [27] Satish G., Reddy K.H.V., Ramesh K., et al., Synthesis of2-N-substituted benzothiazolesvia domino condensation-hetero cyclization process, mediated by copper oxidenanoparticles under ligand-free conditions [J]. Tetrahedron Lett.2012,53(20):2518-2521.
    [28] Majumdar K.C., De N., Ghosh D., et al., Copper(II) Triflate Promoted One-Pot Synthesisof Coumarin-, Quinolone-, and Naphthalene-Annulated2-Aminothiazoles underLigand-Free Conditions [J]. Synthesis-stuttgart.2012,44(1):87-92.
    [29] Monguchi D., Fujiwara T., Furukawa H., et al., Direct Amination of Azoles via CatalyticC-H, N-H Coupling [J]. Org. Lett.2009,11(7):1607-1610.
    [30] Cho S.H., Kim J.Y., Lee S.Y., et al., Silver-Mediated Direct Amination of Benzoxazoles:Tuning the Amino Group Source from Formamides to Parent Amines [J]. Angew. Chem.Int. Ed.2009,48(48):9127-9130.
    [31] Kim J.Y., Cho S.H., Joseph J., et al., Cobalt-and Manganese-Catalyzed DirectAmination of Azoles under Mild Reaction Conditions and the Mechanistic Details [J].Angew. Chem. Int. Ed.2010,49(51):9899-9903.
    [32] Stewart G.W., Baxter C.A., Cleator E., et al., A Mild and Efficient One-Pot Synthesis of2-Aminated Benzoxazoles and Benzothiazoles [J]. J. Org. Chem.2009,74(8):3229-3231.
    [33] Verma S.K., Acharya B.N., Kaushik M.P., Chemospecific and ligand free CuI catalysedheterogeneous N-arylation of amines with diheteroaryl halides at room temperature [J].Organic&Biomolecular Chemistry2011,9(5):1324-1327.
    [34] Li F., Shan H.X., Kang Q.K., et al., Regioselective N-alkylation of2-aminobenzothiazoles with benzylic alcohols [J]. Chem. Commun.2011,47(17):5058-5060.
    [35] Li F., Shan H.X., Chen L., et al., Direct N-alkylation of amino-azoles with alcoholscatalyzed by an iridium complex/base system [J]. Chem. Commun.2012,48(4):603-605.
    [36] Tekale S.U., Kauthale S.S., Dake S.A., et al., Molecular Iodine: An Efficient andVersatile Reagent for Organic Synthesis [J]. Curr. Org. Chem.2012,16(12):1485-1501.
    [37] Finkbeiner P., Nachtsheim B.J., Iodine in Modern Oxidation Catalysis [J].Synthesis-stuttgart.2013,45(8):979-999.
    [38] Parvatkar P.T., Parameswaran P.S., Tilve S.G., Recent Developments in the Synthesis ofFive-and Six-Membered Heterocycles Using Molecular Iodine [J]. Chem.-Eur. J.2012,18(18):5460-5489.
    [39] Huang H.W., Ji X.C., Wu W.Q., et al., Practical Synthesis of Polysubstituted Imidazolesvia Iodine-Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines[J]. Adv. Synth. Catal.2013,355(1):170-180.
    [40] Aresta M., Carbon dioxide as chemical feedstock [M],2010,WILEY-VCH VerlagGmbH&Co.KGaA, Weinheim.
    [41] Hunt A.J., Sin E.H.K., Marriott R., et al., Generation, Capture, and Utilization ofIndustrial Carbon Dioxide [J]. Chemsuschem2010,3(3):306-322.
    [42] Quadrelli E.A., Centi G., Duplan J.L., et al., Carbon Dioxide Recycling: EmergingLarge-Scale Technologies with Industrial Potential [J]. Chemsuschem2011,4(9):1194-1215.
    [43] Quadrelli E.A., Centi G., Green Carbon Dioxide [J]. Chemsuschem2011,4(9):1179-1181.
    [44] Omae I., Recent developments in carbon dioxide utilization for the production of organicchemicals [J]. Coordin. Chem. Rev.2012,256(13-14):1384-1405.
    [45] Mikkelsen M., Jorgensen M., Krebs F.C., The teraton challenge. A review of fixation andtransformation of carbon dioxide [J]. Energy&Environmental Science2010,3(1):43-81.
    [46] Sakakura T., Choi J.C., Yasuda H., Transformation of carbon dioxide [J]. Chem. Rev.2007,107(6):2365-2387.
    [47] Wright H.B., Moore M.B., Reactions of aralkyl amines with carbon dioxide [J], J. Am.Chem. Soc.1948,70(11):3865–3866.
    [48] Aresta M., Dibenedetto A., Fracchiolla E., et al., Mechanism of formation of organiccarbonates from aliphatic alcohols and carbon dioxide under mild conditions promotedby carbodiimides. DFT calculation and experimental study [J]. J. Org. Chem.2005,70(16):6177-6186.
    [49] Cooper C.F., Falcone S.J., A simple one-pot procedure for preparing symmetricaldiarylureas from carbon dioxide and aromatic amines [J], Synth. Commun.,1995,25(16):2467-2474.
    [50] Yamazaki N., Iguchi T., Higashi, F., Studies on reactions of the N-phosphonium salts ofpyridines—XV: Direct carbonylation of amines with carbon dioxide by ahydrolysis-dehydration reaction with phosphorus compounds [J], Tetrahedron1975,31(24):3031-3034.
    [51] Nomura R., Hasegawa Y., Ishimoto M., et al. Carbonylation of amines by carbon dioxidein the presence of an organoantimony catalyst [J], J. Org. Chem.1992,57(26):7339–7342.
    [52] Yamazaki N., Yamaguchi M., Higashi F., et al. Alkyl-triphenoxy-phosphonium halidesas condensating agents [J], Synthesis1979,(5):355-356.
    [53] Shi F., Deng Y.Q., SiMa T.L., et al., Alternatives to phosgene and carbon monoxide:Synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids [J]. Angew.Chem. Int. Ed.2003,42(28):3257-3260.
    [54] Peterson S.L., Stucka S.M., Dinsmore C.J., Parallel Synthesis of Ureas and Carbamatesfrom Amines and CO2under Mild Conditions [J]. Org. Lett.2010,12(6):1340-1343.
    [55] Kimura T., Kamata K., Mizuno N., A Bifunctional Tungstate Catalyst for ChemicalFixation of CO2at Atmospheric Pressure [J]. Angew. Chem. Int. Ed.2012,51(27):6700-6703.
    [56] Salvatore R.N., Shin S.I., Nagle A.S., et al., Efficient carbamate synthesis via athree-component coupling of an amine, CO2, and alkyl halides in the presence ofCs2CO3and tetrabutylammonium iodide [J]. J. Org. Chem.2001,66(3):1035-1037.
    [57] Chaturvedi D., Kumar A., Ray S., A high yielding one-pot, novel synthesis of carbamateesters from alcohols using Mitsunobu's reagent [J]. Tetrahedron Lett.2003,44(41):7637-7639.
    [58] Mukhtar T.A., Wright G.D., Streptogramins, oxazolidinones, and other inhibitors ofbacterial protein synthesis [J]. Chem. Rev.2005,105(2):529-542.
    [59] Ager D.J., Prakash I., Schaad D.R.,1,2-Amino alcohols and their heterocyclicderivatives as chiral auxiliaries in asymmetric synthesis [J]. Chem. Rev.1996,96(2):835-876.
    [60] Renslo A.R., Luehr G.W., Gordeev M.F., Recent developments in the identification ofnovel oxazolidinone antibacterial agents [J]. Bioorgan. Med. Chem.2006,14(12):4227-4240.
    [61] Kise N., Kumada K., Terao Y., et al., Asymmetric synthesis of optically active2,3-diarylsuccinic acids by oxidative homocoupling of chiral3-(arylacetyl)-2-oxazolidones [J]. Tetrahedron1998,54(12):2697-2708.
    [62] Juarez R., Concepcion P., Corma A., et al., Ceria nanoparticles as heterogeneous catalystfor CO2fixation by omega-aminoalcohols [J]. Chem. Commun.2010,46(23):4181-4183.
    [63] Tominaga K., Sasaki Y., Synthesis of2-oxazolidinones from CO2and1,2-aminoalcoholscatalyzed by n-Bu2SnO [J]. Synlett2002,(2):307-309.
    [64] Dinsmore C.J., Mercer S.P., Carboxylation and mitsunobu reaction of amines to givecarbamates: Retention vs inversion of configuration is substituent-dependent [J]. Org.Lett.2004,6(17):2885-2888.
    [65] Kayaki Y., Yamamoto M., Suzuki T., et al., Carboxylative cyclization ofpropargylamines with supercritical carbon dioxide [J]. Green Chem.2006,8(12):1019-1021.
    [66] Maggi R., Bertolotti C., Orlandini E., et al., Synthesis of oxazolidinones in supercriticalCO2under heterogeneous catalysis [J]. Tetrahedron Lett.2007,48(12):2131-2134.
    [67] Takeda Y., Okumura S., Tone S., et al., Cyclizative Atmospheric CO2Fixation byUnsaturated Amines with t-BuOI Leading to Cyclic Carbamates [J]. Org. Lett.2012,14(18):4874-4877.
    [68] Ishida T., Kikuchi S., Tsubo T., et al., Silver-Catalyzed Incorporation of Carbon Dioxideinto o-Alkynylaniline Derivatives [J]. Org. Lett.2013,15(4):848-851.
    [69] Jiang H.F., Ye J.W., Qi C.R., et al., Naturally occurring alpha-amino acid: a simple andinexpensive catalyst for the selective synthesis of5-aryl-2-oxazolidinones from CO2and aziridines under solvent-free conditions (vol51, pg928,2010)[J]. Tetrahedron Lett.2010,51(14):1924-1924.
    [70] Qi C.R., Ye J.W., Zeng W., et al., Polystyrene-Supported Amino Acids as EfficientCatalyst for Chemical Fixation of Carbon Dioxide [J]. Adv. Synth. Catal.2010,352(11-12):1925-1933.
    [71] Aresta M., Dibenedetto A., Fracchiolla E., et al., Mechanism of formation of organiccarbonates from aliphatic alcohols and carbon dioxide under mild conditions promotedby carbodiimides. DFT calculation and experimental study [J]. J. Org. Chem.2005,70(16):6177-6186.
    [72] Honda M., Suzuki A., Noorjahan B., et al., Low pressure CO2to dimethyl carbonate bythe reaction with methanol promoted by acetonitrile hydration [J]. Chem. Commun.2009,(30):4596-4598.
    [73] Fan G.Z., Fujita S., Zou B., et al., Synthesis of Diphenyl Carbonate from Phenol andCarbon Dioxide in the Presence of Carbon Tetrachloride and Zinc Chloride [J]. Catal.Lett.2009,133(3-4):280-287.
    [74] Aresta M., Dibenedetto A., Nocito F., et al., Synthesis and characterization of a novelpolystyrene-tethered niobium methoxo species. Its application in the CO2-basedcarboxylation of methanol to afford dimethyl carbonate [J]. Appl. Catal. A-Gen.2010,387(1-2):113-118.
    [75] Ballivet-Tkatchenko D., Bernard F., Demoisson F., et al., Tin-Based Mesoporous Silicafor the Conversion of CO2into Dimethyl Carbonate [J]. Chemsuschem2011,4(9):1316-1322.
    [76] Shaikh A.-A.G., Sivaram S., Organic carbonates [J]. Chem. Rev.1996,96(3):951-976.
    [77] Darensbourg D.J., Holtcamp M.W., Catalysts for the reactions of epoxides and carbondioxide [J]. Coord. Chem. Rev.1996,153:155-174.
    [78] Qi C.R., Jiang H.F., Wang Z.Y., et al., Naturally occurring alpha-amino acid catalyzedcoupling of carbon dioxide with epoxides to afford cyclic carbonates [J]. Synlett2007,(2):255-258.
    [79] Qi C.R., Jiang H.F., Liu H.L., et al., Synthesis of cyclic carbonates catalyzed by zincmaleate under supercritical carbon dioxide conditions [J]. Chem. J. Chin. Univ.2007,28(6):1084-1087.
    [80] Qi C.R., Jiang H.F., Wang Z.Y., et al., Polystyrene-supported phenol/DMAP: an efficientbinary catalyst system for CO2fixation to give cyclic carbonates [J]. Chin. J. Chem.2007,25(7):1051-1054.
    [81] Jiang H.F., Wang A.Z., Liu H.L., et al., Reusable polymer-supported amine-coppercatalyst for the formation of alpha-alkylidene cyclic carbonates in Supercritical carbondioxide [J]. Eur. J. Org. Chem.2008,(13):2309-2312.
    [82] Fournier J., Bruneau C., Dixneuf P. H., A simple synthesis of oxazolidinones in one stepfrom carbon dioxide [J]. Tetrahedron Lett.1990,31(12):1721-1722.
    [83] Shi M., Shen Y.M., Chen Y.J., Reactions of5,5-dimethyl-4-methylene-1,3-dioxolan-2-one with amines in the presence of palladiumcatalyst [J]. Heterocycles2002,57(2):245-257.
    [84] Gu Y.L., Zhang Q.H., Duan Z.Y., et al., Ionic liquid as an efficient promoting mediumfor fixation of carbon dioxide: a clean method for the synthesis of5-methylene-1,3-oxazolidin-2-ones from propargylic alcohols, amines, and carbondioxide catalyzed by CUM under mild conditions [J]. J. Org. Chem.2005,70(18):7376-7380.
    [85] Zhang Q.H., Shi F., Gu Y.L., et al., Efficient and eco-friendly process for the synthesis ofN-substituted4-methylene-2-oxazolidinones in ionic liquids [J]. Tetrahedron Lett.2005,46(35):5907-5911.
    [86] Jiang H.F., Zhao J.W., Wang A.H., An efficient and eco-friendly process for theconversion of carbon dioxide into oxazolones and oxazolidinones under Supercriticalconditions [J]. Synthesis-stuttgart.2008,(5):763-769.
    [87] Dijkstra Z.J., Doornbos A.R., Weyten H., et al., Formation of carbamic acid in organicsolvents and in supercritical carbon dioxide [J]. J. Supercrit. Fluid.2007,41(1):109-114.
    [88] Jiang H.F., Zhao J.W., Silver-catalyzed activation of internal propargylic alcohols insupercritical carbon dioxide: efficient and eco-friendly synthesis of4-alkylidene-1,3-oxazolidin-2-ones [J]. Tetrahedron Lett.2009,50(1):60-62.
    [89] Qi C.R., Jiang H.F., Efficient synthesis of beta-oxopropylcarbamates in compressed CO2without any additional catalyst and solvent [J]. Green Chem.2007,9(12):1284-1286.
    [90] Qi C.R., Huang L.B., Jiang H.F., Efficient Synthesis of beta-Oxoalkyl Carbamates fromCarbon Dioxide, Internal Propargylic Alcohols, and Secondary Amines Catalyzed bySilver Salts and DBU [J]. Synthesis-stuttgart.2010,(9):1433-1440.
    [91] Huang K., Sun C.L., Shi Z.J., Transition-metal-catalyzed C-C bond formation throughthe fixation of carbon dioxide [J]. Chem. Soc. Rev.2011,40(5):2435-2452.
    [92] Shi M., Nicholas K.M., Palladium-catalyzed carboxylation of allyl stannanes [J]. J. Am.Chem. Soc.1997,119(21):5057-5058.
    [93] Takaya J., Tadami S., Ukai K., et al., Copper(I)-catalyzed carboxylation of aryl-andalkenylboronic esters [J]. Org. Lett.2008,10(13):2697-2700.
    [94] Ohishi T., Nishiura M., Hou Z.M., Carboxylation of organoboronic esters catalyzed byN-heterocyclic carbene copper(I) complexes [J]. Angew. Chem. Int. Ed.2008,47(31):5792-5795.
    [95] Yeung C.S., Dong V.M., Beyond Aresta's complex: Ni-and Pd-catalyzed organozinccoupling with CO(2)[J]. J. Am. Chem. Soc.2008,130(25):7826-+.
    [96] Aresta M., Dibenedetto A., Utilisation of CO2as a chemical feedstock: opportunities andchallenges [J]. Dalton. Trans.2007,(28):2975-2992.
    [97] Ochiai H., Jang M., Hirano K., et al., Nickel-catalyzed carboxylation of organozincreagent with CO(2)[J]. Org. Lett.2008,10(13):2681-2683.
    [98] Boogaerts I.I.F., Fortman G.C., Furst M.R.L., et al., Carboxylation of N-H/C-H BondsUsing N-Heterocyclic Carbene Copper(I) Complexes [J]. Angew. Chem. Int. Ed.2010,49(46):8674-8677.
    [99] Yoo W.J., Capdevila M.G., Du X.W., et al., Base-Mediated Carboxylation ofUnprotected Indole Derivatives with Carbon Dioxide [J]. Org. Lett.2012,14(20):5326-5329.
    [100] Kikuchi S., Sekine K., Ishida T., et al., C?C Bond Formation with Carbon DioxidePromoted by a Silver Catalyst [J]. Angew. Chem. Int. Ed.2012,51(28):6989-6992.
    [101] Li S.H., Yuan W.M., Ma S.M., Highly Regio-and Stereoselective Three-ComponentNickel-Catalyzed syn-Hydrocarboxylation of Alkynes with Diethyl Zinc and CarbonDioxide [J]. Angew. Chem. Int. Ed.2011,50(11):2578-2582.
    [102] Zhang L., Cheng J.H., Carry B., et al., Catalytic Boracarboxylation of Alkynes withDiborane and Carbon Dioxide by an N-Heterocyclic Carbene Copper Catalyst [J]. J. Am.Chem. Soc.2012,134(35):14314-14317.
    [103] Williams C.M., Johnson J.B., Rovis T., Nickel-Catalyzed Reductive Carboxylation ofStyrenes Using CO2[J]. J. Am. Chem. Soc.2008,130(45):14936-+.
    [104] Takaya J., Iwasawa N., Hydrocarboxylation of Allenes with CO2Catalyzed by SilylPincer-Type Palladium Complex [J]. J. Am. Chem. Soc.2008,130(46):15254-+.
    [105] Takaya J., Sasano K., Iwasawa N., Efficient One-to-One Coupling of Easily Available1,3-Dienes with Carbon Dioxide [J]. Org. Lett.2011,13(7):1698-1701.
    [106] Correa A., Martin R., Palladium-Catalyzed Direct Carboxylation of Aryl Bromides withCarbon Dioxide [J]. J. Am. Chem. Soc.2009,131(44):15974-+.
    [107] Fujihara T., Nogi K., Xu T.H., et al., Nickel-Catalyzed Carboxylation of Aryl and VinylChlorides Employing Carbon Dioxide [J]. J. Am. Chem. Soc.2012,134(22):9106-9109.
    [108] Hunt A.J., Sin E.H.K., Marriott R., et al., Generation, Capture, and Utilization ofIndustrial Carbon Dioxide [J]. Chemsuschem2010,3(3):306-322.
    [109] Peshkov V.A., Pereshivko O.P., Van der Eycken E.V., A walk around theA(3)-coupling [J]. Chem. Soc. Rev.2012,41(10):3790-3807.
    [110] Pereshivko O.P., Peshkov V.A., Van der Eycken E.V., Unprecedented Cu(I)-CatalyzedMicrowave-Assisted Three-Component Coupling of a Ketone, an Alkyne, and a PrimaryAmine [J]. Org. Lett.2010,12(11):2638-2641.
    [111] Yoo W.J., Li C.J., Copper-catalyzed four-component coupling between aldehydes,amines, alkynes, and carbon dioxide [J]. Adv. Synth. Catal.2008,350(10):1503-1506.
    [112] Jiang H.F., Transition metal-catalyzed organic reactions in supercritical carbon dioxide[J]. Curr. Org. Chem.2005,9(3):289-297.
    [113] Zhou L., Bohle D.S., Jiang H.F., et al., Synthesis of Propargylamines by aCopper-Catalyzed Tandem Anti-Markovnikov Hydroamination and Alkyne Addition [J].Synlett2009,(6):937-940.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700