用户名: 密码: 验证码:
黝铜矿型铜铅锌硫化矿浮选新药剂及其综合回收新工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呷村铜铅锌多金属硫化矿富含黝铜矿,生产实践表明其分选困难。为提高该类资源的综合回收水平,本文首先对其矿石性质进行了工艺矿物学和密度泛函理论研究。工艺矿物学研究表明,由于呷村多金属硫化矿中各目的矿物呈微细粒状相互紧密镶嵌,导致其矿物单体解离较困难。密度泛函理论研究表明,相较黄铜矿铜的主要矿物-黝铜矿与方铅矿之间可浮性更接近,尤其是含铁杂质的黝铜矿与方铅矿之间很难浮选分离。可见针对该黝铜矿型铜铅锌硫化矿应用常规的浮选药剂和采用传统的全优先、部分混浮工艺很难取得令人满意的浮选分离效果,因此有必要展开新型高选择性捕收剂和浮选新工艺乃至选冶联合综合回收工艺的研究。
     然后就呷村实际矿石进行了铜、铅浮选的捕收剂筛选,发现新型捕收齐EICTU(N-乙基-N’-异丙氧羰基硫脲)、BITCM(S-苄基-N-乙氧羰基硫氮酯)分别对呷村铜、铅矿物的捕收能力和选择性均相对最优。并在与矿物金属离子的络合作用和对单矿物的捕收性能及其在单矿物表面的吸附行为方面比较了新型捕收剂和常规药剂的浮选性能,进一步证实了EICTU、BITCM分别对铜、铅硫化矿物具有很强的捕收能力和最优的选择性。再采用密度泛函方法对各捕收剂分子的构效关系及EICTU、BTITCM在矿物表面的吸附机理进行了研究。构效关系方面通过分析各捕收剂分子的羰基硫原子共价键键长和Mulliken布居及捕收剂分子与矿物晶体之间的前线轨道能量匹配情况,同样可知EICTU、BITCM分别对铜、铅硫化矿物具有很强捕收能力和最优的选择性。吸附机理方面通过对EICTU、BITCM在矿物表面的吸附进行分子模拟,发现EICTU在黝铜矿、黄铜矿表面吸附BITCM在方铅矿表面吸附时,捕收剂分子的羰基S、羰基O分别与相应铜原子或铅原子分别生成正配键、反馈键而与之发生反应,由于反馈键作用相对较弱,正配键起主导作用;黝铜矿表面的锌、砷、银杂质缺陷对EICTU吸附的影响较小,而铁杂质缺陷明显不利于EICTU的吸附。
     针对呷村黝铜矿型铜铅锌多金属硫化矿对各浮选工艺进行研究、比较发现,全优先浮选工艺有利于降低精矿互含,部分混合浮选工艺有利于银的回收,且这两种工艺结合EICTU和BITCM后,其浮选综合回收率均得到明显提升;以铜为主的铜铅等可浮选新工艺能在降低精矿互含损失的同时提高银的回收率,其与EICTU、BITCM相结合能最大限度地提高呷村多金属硫化矿的浮选综合回收率;在应用EICTU和BITCM的等可浮选闭路实验中,铜、铅、锌、银回收率分别为77.82%、71.83%、84.42%、79.11%,相较选厂现行药剂制度和流程下的浮选闭路实验结果,铜、铅、锌、银回收率分别提高了5.79%、7.91%、1.06%、8.34%,但该工艺的铜精矿和铅精矿1的互含损失仍然严重,因此有必要针对等可浮选铜铅混合精矿采用冶炼方法替代浮选进行分离。
     对等可浮选铜铅混合精矿进行两段逆流氧压酸浸工艺的研究发现,该工艺的Cu、Zn浸出率分别高达96.30%、97.37%,杂质元素Fe、As、Sb浸出率分别低至15.23%、6.20%、0.50%,且Pb、Ag基本上不被浸出,铜、锌与铅银分离较彻底。等可浮选-氧压酸浸综合回收新工艺的铜、铅、锌、银综合回收率分别高达82.94%、80.05%、90.40%、79.11%,相较应用EICTU、BITCM的单一的等可浮选工艺,铜、铅、锌回收率分别提高5.12%、8.22%、5.98%,银回收率不受影响。该工艺的资源综合回收率较高,且具有冶炼规模小、流程短等优点,故本文针对黝铜矿型铜铅锌多金属硫化矿最终推荐采用结合应用EICTU、BITCM的等可浮选与铜铅混合精矿氧压酸浸的选冶联合综合回收新工艺。图107幅,表53个,参考文献158篇
Gacun Cu-Pb-Zn polymetallic sulfide ore is rich in tetrahedrite, and productive practice has shown that its flotation separation is very difficult. In order to improve the comprehensive recovery of this kind of resource, the studies of process mineralogy and density functional theory were done first to understand the ore property in this thesis. The research result of the process mineralogy showed that mineral liberation of the ore is difficult because its minerals inlay closely each other and furthermore their particle sizes are so fine. And the research result of the density functional theory showed that the flotation separation between tetrahedrite, which is the primary Cu mineral in Gacun mine, and galena is more difficult than the separation between chalcopyrite and galena, and the floatability of impure tetrahedrite bearing iron is especially close to galena. It is thus clear that the flotation separation indexes of this tetrahedrite type Cu-Pb-Zn sulfide ore will be unsatisfactory if only routine flotation reagents and conventional processes such as differential flotation or partial bulk flotation are applied, so that the studies of new collectors, new flotation process and even beneficiation-metallurgy combination process are necessary.
     Afterward, the screening experiments of Cu collectors and Lead collectors with the Gacun raw ore were done, and experiment results showed that both of collecting capabilities and selectivities of the two new-type collectors named EICTU (N-ethyl-N'-isopropoxycarbonyl thiourea) and BITCM (S-benzyl-N-ethoxycarbonyl dithiocarbamate) are respectively optimal for Cu and Pb. It was confirmed by the comparison of collectors'complexations with metal ions, collection performances with pure natural minerals and adsorption behaviors on the surfaces of the pure minerals that the selectivities of EICUT for copper and BITCM for lead are both superior to routine collectors, and furthermore the collecting capabilities of the two new-type collectors are also excellent. And then the researches of structure-activity relationships of collectors and the microscopic mechanisms on atomic level how EICTU and BITCM absorb on mineral surfaces were done with density functional method. On the aspect of structure-activity relationship, the analysises of bond lengths of carbonyl S atoms and Mulliken populations of collector molecules and the energy matching of frontier molecular orbitals between collector molecules and mineral crystals have been done, and the results showed again that both of selectivities and collecting capabilities of EICUT and BITCM are separately excellent for Cu and Pb. On the aspect of adsorption mechanism, the adsorptions of EICTU and BITCM molecules on mineral crystal surfaces were simulated, and the research results showed that when an EICTU molecule adsorbs on the surface of tetrahedrite or chalcopyrite or when a BITCM molecule adsorbs on galena surface, carbonyl S and carbonyl O of the collector react with corresponding Cu atoms or Pb atoms and yield respectively normal covalent bonding and back donating bonding and furthermore normal covalent bonding take leading role, and the effects of Zn, As, Ag impurities in tetrahedrite surface on EICTU's adsorption are negligible but Fe impurity is obvious disadvantage for the adsorption.
     Three kinds of flotation processes were studied contrastively with Gacun Cu-Pb-Zn polymetallic sulfide ore, and the result showed that differential flotation is beneficial to decrease dirtpercentages of concentrate products whilst partial bulk flotation is helpful to recover silver, and the performaces of the both two prossces were improved distinctly after their combination with EICTU and BITCM, while the new process, Cu-Pb iso-flotation emphasizing on Cu, is able to decrease dirtpercentages of concentrates and increase the Ag recovery simultaneously. The iso-flotation combined with EICTU and BITCM is able to improve furthest the flotation comprehensive recovery of Gacun polymetallic sulfide ore. The percent recoveries of Cu, Pb, Zn and Ag were respectively77.82%,71.83%,84.42%and79.11%in the closed-circuit test of this new process combined with the two new-type collectors, and the recoveries of these metals were raised separately5.79%,7.91%,1.06%and8.34%than the result of the closed-circuit test whose reagent regime and process flow were exactly the same as Gacun dressing plant. But the flotation separation indexes of Cu-Pb bulk concentrate of iso-flotation were still unsatisfactory, so that it is necessary that the flotation is substituted by certain a befitting metallurgical method for a more thorough separation of the bulk concentrate.
     The experimental investigation of two stage oxygen pressure acid leaching of iso-flotation Cu-Pb bulk concentrate showed that the extraction ratios of Cu and Zn were as high as96.30%and97.37%, while the extraction ratios of impurities such as Fe, As and Sb were as low as15.23%,6.20%and0.50%, and furthermore Pb and Ag weren't extracted basically, so Cu and Zn can be separated with Pb and Ag relatively thoroughly by this process. The comprehensive recoveries of Cu, Pb, Zn and Ag of the iso-flotation-oxygen pressure acid leaching process were respectively as high as82.94%,80.05%,90.40%and79.11%, and the recoveries of Cu, Pb and Zn were raised separately5.12%,8.22%and5.98%whilst Ag recovery stayed the same compared with the single iso-flotation. The benefication-metallurgy combination new process combining iso-flotation and oxygen pressure acid leaching was recommended in the end for the tetrahedrite type Cu-Pb-Zn polymetallic sulfide ore, because that the comprehensive recoveries of this process are high whilst its metallurgical scale is small and process flow is short.
引文
[1]Adkins S J, Pearse M J. The influences of collector chemistry on kinetics and selectivity in base-metal sulphide flotation[J]. Minerals Engineering,1992,5(3-5): 295-310.
    [2]Liu G Y, Zhong H, Dai T G. The separation of Cu/Fe sulfide minerals at slightly alkaline conditions by using ethoxycarbonyl thionocarbamates as collectors: Theory and practice[J]. Minerals Engineering,2006,19(13):1380-1384.
    [3]Liu G Y, Zhong H, Xia L Y, et al. Improving copper flotation recovery from a refractory copper porphyry ore by using ethoxycarbonyl thiourea as a collector[J]. Minerals Engineering,2011,24(8):817-824.
    [4]Liu R Q, Sun W, Hu Y H, et al. New collectors for the flotation of unactivated marmatite[J]. Minerals Engineering,2010,23(2):99-103.
    [5]Mainza A N, Simukanga S, Witika L K. Evaluating the performance of new collectors on feed to Nkana concentrator's flotation circuit[J]. Minerals Engineering,1999,12(5):571-577.
    [6]Mainza A N, Simukanga S, Witika L K. Effect of different collector dose rates on cobalt segregation[J]. Minerals Engineering,1999,12(9):1033-1040.
    [7]Sheridan M S, Nagaraj D R, Fornasiero D, et al. The use of a factorial experimental design to study collector properties of N-allyl-O-alkyl thionocarbamate collector in the flotation of a copper ore[J]. Minerals Engineering,2002,15(5):333-340.
    [8]刘广义.硫化铜矿石的综合利用及新型捕收剂研究[D].长沙:中南大学,2004.
    [9]袁露.硫化铜浮选新型捕收剂的合成技术[D].长沙:中南大学,2012.
    [10]狄宁.N-烷氧丙基-N’-乙氧羰基硫脲的合成及性能研究[D].长沙:中南大学,2012.
    [11]Shen W Z, Fornasiero D, Ralston J. Effect of collectors, conditioning pH and gases in the separation of sphalerite from pyrite[J]. Minerals Engineering,1998, 11(2):145-158.
    [12]Maier G S, Dobias B.2-mercaptobenzothiazole and derivatives in the flotation of galena, chalcocite and sphalerite:A study of flotation, adsorption and microcalorimetry[J]. Minerals Engineering,1997,10(12):1375-1393.
    [13]Fairthorne G, Fornasiero D, Ralston J. Interaction of thionocarbamate and thiourea collectors with sulphide minerals:a flotation and adsorption study[J]. International Journal of Mineral Processing,1997,50(4):227-242.
    [14]Pecina Trevino E T, Uribe Salas A, Nava Alonso F. Effect of dissolved oxygen and galvanic contact on the floatability of galena and pyrite with Aerophine 3418A[J]. Minerals Engineering,2003,16(4):359-367.
    [15]Pecina Trevino E T, Uribe Salas A, Nava Alonso F, et al. On the sodium-diisobutyl dithiophosphinate (Aerophine 3418A) interaction with activated and unactivated galena and pyrite [J]. International Journal of Mineral Processing,2003,71(1-4):201-217.
    [16]王荣生,浦永林.小茅山银铜铅锌矿石的选矿工业应用研究[J].有色金属:选矿部分,2009,(6):23-25.
    [17]张渊,陈华强,张俊辉.天宝山铜铅锌多金属矿提高铜回收率的试验研究[J].矿产综合利用,2008,(2):32-37.
    [18]张渊,刘韬,张俊辉.天宝山铜铅锌多金属矿矿石性质及选矿工艺研究[J].金属矿山,2008,(5):13-18.
    [19]王云,张丽军.复杂铜铅锌多金属硫化矿选矿试验研究[J].有色金属:选矿部分,2007,(6):21-26.
    [20]张锦林,李朝晖,王德海.难选铜铅锌多金属硫化矿选矿工艺的探讨[J].中国有色冶金,2004,(4):31-36.
    [21]陈代雄,田松鹤.复杂铜铅锌硫化矿浮选新工艺试验研究[J].有色金属:选矿部分,2003,(2):16-22.
    [22]陈代雄,杨建文,李观奇,等.高海拔地区复杂铜铅锌多金属硫化矿浮选试验研究及应用[J].有色金属:选矿部分,2009,(6):41-46.
    [23]陈代雄,杨建文,李晓东.高硫复杂难选铜铅锌选矿工艺流程试验研究[J].有色金属:选矿部分,2011,(1):13-18.
    [24]李碧平,陈代雄,薛峰,等.西藏宝翔纳如松铜铅锌多金属矿浮选工艺研究[J].湖南有色金属,2009,(5):31-36.
    [25]贾仰武.云南某铜铅锌硫化矿铜铅分离浮选试验研究[J].矿冶工程,2009,(4):31-36.
    [26]K·M·阿松奇克.汉吉兹矿床的多金属矿石选矿工艺的制定[J].国外金属矿选矿,2008,(6):39-41.
    [27]陈文化.复杂铜铅锌硫化矿浮选试验研究[J].湖南有色金属,2003,(5):21-25.
    [28]Chander S. A brief review of pulp potentials in sulfide flotation[J]. International Journal of Mineral Processing,2003,72(1-4):141-150.
    [29]Hintikka V V, Leppinen J O. Potential control in the flotation of sulphide minerals and precious metals[J]. Minerals Engineering,1995,8(10):1151-1158.
    [30]Qing W Q, He M F, Chen Y P. Improvement of flotation behavior of Mengzi lead-silver-zinc ore by pulp potential control flotation[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):949-954.
    [31]Smith L K, Bruckard W J. The separation of arsenic from copper in a Northparkes copper-gold ore using controlled-potential flotation[J]. International Journal of Mineral Processing,2007,84(1-4):15-24.
    [32]Uribe Salas A, Martinez Cavazos T E, Nava Alonso F C, et al. Metallurgical improvement of a lead/copper flotation stage by pulp potential control [J]. International Journal of Mineral Processing,2000,59(1):69-83.
    [33]Woods R. Electrochemical potential controlling flotation[J]. International Journal of Mineral Processing,2003,72(1-4):151-162.
    [34]罗仙平,付中元,陈华强,等.会理铜铅锌多金属硫化矿浮选新工艺研究[J].金属矿山,2008,(8):31-36.
    [35]罗仙平,王淀佐,孙体昌,等.某铜铅锌多金属硫化矿电位调控浮选试验研究[J].金属矿山,2006,(6):18-23.
    [36]程琍琍,罗仙平,孙体昌,等.某铜铅锌硫化矿电位调控优先浮选研究[J].中国矿业,2011,(6):31-36.
    [37]李博,刘述平,唐湘平.铜铅锌多金属共生矿湿法冶金研究进展[J].矿产综合利用,2010,(6):33-36.
    [38]曾青云,熊谟喜,陈均球,等.赣南荡坪复合硫化矿的三氯化铁直接浸出试验研究[J].江西有色金属,1995,(4):15-21.
    [39]黄敏,成诚.铅锌铜银金多金属精矿氯化浸出综合回收工艺[J].化学工程与装备,2012,(6):99-101.
    [40]李元坤,寇建军.铜铅锌银多金属矿湿法分离新工艺[J].有色金属:冶炼部分,2002,(3):16-21.
    [41]陈宁,王怀宇,程永高.铜铅锌多金属硫化矿分离试验研究[J].湿法冶金,2011,(2):15-21.
    [42]李元坤.某含银高铅复杂多金属矿的分离提取[J].矿产综合利用,2003,(5):21-26.
    [43]王成彦,陈永强.四川呷村复杂银精矿沸腾焙烧工业试验研究报告[R].北京:北京矿冶研究总院,2007.
    [44]王成彦,王忠.四川鑫源复杂铜精矿处理扩大试验研究报告[R].北京:北京矿冶研究总院,2005.
    [45]Roy Chaudhury G, Das R P. Bacterial leaching-Complex sulphides of copper, lead and zinc[J]. International Journal of Mineral Processing,1987,21(1-2): 57-64.
    [46]Tipre D R, Dave S R. Bioleaching process for Cu-Pb-Zn bulk concentrate at high pulp density[J]. Hydrometallurgy,2004,75(1-4):37-43.
    [47]Cao J Y, Zhang G J, Mao Z S, et al. Precipitation of valuable metals from bioleaching solution by biogenic sulfides[J]. Minerals Engineering,2009,22(3): 289-295.
    [48]He Z G, Gao F L, Zhong H, et al. Effects of 1-cysteine on Ni-Cu sulfide and marmatite bioleaching by Acidithiobacillus caldus[J]. Bioresource Technology, 2009,100(3):1383-1387.
    [49]Olubambi P A, Ndlovu S, Potgieter J H, et al. Role of ore mineralogy in optimizing conditions for bioleaching low-grade complex sulphide ores[J]. Transactions of Nonferrous Metals Society of China,2008,18(5):1234-1246.
    [50]Shi S Y, Fang Z H, Ni J R. Comparative study on the bioleaching of zinc sulphides[J]. Process Biochemistry,2006,41(2):438-446.
    [51]Yang C R, Qin W Q, Lai S S, et al. Bioleaching of a low grade nickel-copper-cobalt sulfide ore[J]. Hydrometallurgy,2011,106(1-2):32-37.
    [52]谢克强,杨显万,舒毓璋,等.铜铅锌多金属复杂硫化矿综合回收工艺研究[J].中国有色冶金,2006,(2):12-17.
    [53]杨大锦.四川呷村复杂多金属精矿冶炼工艺试验研究报告[R].昆明:云南冶金集团总公司技术中心,2007.
    [54]杨大锦.白玉县复杂多金属硫化矿精矿综合回收工艺试验研究报告[R].昆明:云南冶金集团总公司技术中心,2007.
    [55]陆业大,王魁埏.四川省白玉县呷村银多金属复杂硫化矿氧压浸出工艺扩大试验研究报告[R].北京:中国恩菲工程技术有限公司,2007.
    [56]陆业大,王魁埏.白玉县呷村复杂铜铅锌银混合精矿氧压浸出试验研究报告[R].北京:中国恩菲工程技术有限公司,2009.
    [57]Akcil A. A preliminary research on acid pressure leaching of pyritic copper ore in Kure Copper Mine, Turkey[J]. Minerals Engineering,2002,15(12): 1193-1197.
    [58]Liang D Q, Wang J K, Wang Y H, et al. Recovery of silver and zinc by acid pressure oxidative leaching of silver-bearing low-grade complex sulfide ores[J]. International Journal of Mineral Processing,2008,89(1-4):60-64.
    [59]McDonald R G, Muir D M. Pressure oxidation leaching of chalcopyrite:Part Ⅱ. Comparison of medium temperature kinetics and products and effect of chloride ion[J]. Hydrometallurgy,2007,86(3-4):206-220.
    [60]McDonald R G, Muir D M. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products[J]. Hydrometallurgy,2007,86(3-4):191-205.
    [61]Ruiz M C, Abarzua E, Padilla R. Oxygen pressure leaching of white metal[J]. Hydrometallurgy,2007,86(3-4):131-139.
    [62]Subramanian K N, Ferrajuolo R. Oxygen pressure leaching of Fe-Ni-Cu sulfide concentrates at 110℃—effect of low chloride addition[J]. Hydrometallurgy, 1976,2(2):117-125.
    [63]赵开乐,王昌良,邓伟,et al.四川白玉铜铅锌共生矿清洁分离技术研究[J].金属矿山,2011,(5):96-100.
    [64]陈建华,钟建莲,李玉琼.黄铁矿、白铁矿和磁黄铁矿的电子结构及可浮性[J].中国有色金属学报,2011,21(7):1719-1727.
    [65]陈建华,王进明,龙贤灏.硫化铜矿物电子结构的第一性原理研究[J].中南大学学报:自然科学版,2011,42(12):3612-3617.
    [66]李玉琼,陈建华,陈哗.黄铁矿(100)表面性质的密度泛函理论计算及其对浮选的影响[J].中国有色金属学报,2011,21(4):919-926.
    [67]陈建华,陈哗,曾小钦.铁杂质对闪锌矿表面电子结构及活化影响的第一性原理研究[J].中国有色金属学报,2009,19(8):1517-1523.
    [68]Edelbro R, Sandstrom A, Paul J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite[J]. Applied Surface Science,2003,206(1-4):300-313.
    [69]Pradip, Rai B. Molecular modeling and rational design of flotation reagents[J]. International Journal of Mineral Processing,2003,72(1-4):95-110.
    [70]Von Oertzen G U, Jones R T, Gerson A R. Electronic and optical properties of Fe, Zn and Pb sulfides[J]. Journal of Electron Spectroscopy and Related Phenomena,2005,144-147:1245-1247.
    [71]Von Oertzen G U, Skinner W M, Nesbitt H W. Ab initio and XPS studies of pyrite (100) surface states[J]. Radiation Physics and Chemistry,2006,75(11): 1855-1860.
    [72]何开华,余飞,姬广富.第一性原理研究ZnS掺V的光学性质和电子结构[J].高压物理学报,2006,20(1):56-60.
    [73]肖奇,邱冠周,胡岳华.黄铁矿机械化学的计算模拟(Ⅰ)—晶格畸变与化学反应活性的关系[J].中国有色金属学报,2001,11(5):900-905.
    [74]Reich M, Becker U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite[J]. Chemical Geology,2006,225(3-4):278-290.
    [75]Blanchard M, Alfredsson M, Brodholt J, et al. Arsenic incorporation into FeS2 pyrite and its influence on dissolution:A DFT study[J]. Geochimica et Cosmochimica Acta,2007,71(3):624-630.
    [76]Chen J H, Wang L, Chen Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing,2011,98(3-4):132-136.
    [77]Chen Y, Chen J H, Guo J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals Engineering, 2010,23(14):1120-1130.
    [78]王淀佐,白世斌.浮选有机抑制剂的结构与性能[J].有色金属,1983,(2):45-62.
    [79]王淀佐.国外浮选药剂的研究动向—几类新捕收剂的结构与性能[J].国外金属矿选矿,1973,(8):26-32.
    [80]王淀佐.国外浮选药剂的研究动向(—几类捕收剂的结构与性能—续上期)[J].国外金属矿选矿,1973,(9):32-38.
    [81]王淀佐.浮选药剂的结构与性能—一百种含硫有机浮选剂的分子设计[J].有色金属,1979,(2):52-58.
    [82]王淀佐.浮选剂的结构与性能(Ⅰ)[J].中南矿冶学院学报,1980,(4):128-133.
    [83]王淀佐.浮选剂的结构与性能(Ⅱ)[J].中南矿冶学院学报,1981,(1):68-73.
    [84]王淀佐.含硫非离子型极性捕收剂的结构与性能—兼论新型高效捕收剂研制途径[J].中南矿冶学院学报,1983,(4):83-89.
    [85]Cao Y C, Jiang Y R, Xue Y L, et al. Calculation of topological connectivity index for minerals[J]. Transactions of Nonferrous Metals Society of China,2001, 11(5):790-794.
    [86]蒋玉仁,曹育才,薛玉兰.TCPO螯合捕收剂的结构与性能关系[J].矿产综合利用,2001,(3):57-61.
    [87]王国芝,徐刚,徐盛明,等.浮选药剂结构与性能关系的研究进展[J].矿产保护与利用,2012,(1):53-58.
    [88]夏柳荫.双季铵盐型Gemini捕收剂对铝硅酸盐矿物的浮选特性与机理研究[D].天津:天津大学,2009.
    [89]Liu G Y, Zhong H, Dai T G, et al. Investigation of the effect of N-substituents on performance of thionocarbamates as selective collectors for copper sulfides by ab initio calculations[J]. Minerals Engineering,2008,21(12-14):1050-1054.
    [90]Liu G Y, Zeng H B, Lu Q Y, et al. Adsorption of mercaptobenzoheterocyclic compounds on sulfide mineral surfaces:A density functional theory study of structure-reactivity relations[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,409(9):1-9.
    [91]Yekeler M, Yekeler H. A density functional study on the efficiencies of 2-mercaptobenzoxazole and its derivatives as chelating agents in flotation processes[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2006,286(1-3):121-125.
    [92]Chen J H, Li Y Q, Long Q R. Molecular structures and activity of organic depressants for marmatite,jamesonite and pyrite flotation [J]. Transactions of Nonferrous Metals Society of China,2010, (10):1993-1999.
    [93]夏柳荫,钟宏,刘广义.取代基对十二烷基阳离子表面活性剂捕收铝硅酸盐矿物的影响[J].中南大学学报:自然科学版,2010,41(1):83-89.
    [94]陈建华,陈晔,袁星宇,et a1.伯胺阳离子捕收剂的密度泛函理论研究[J].矿产保护与利用,2008,(3):25-29.
    [95]陈建华,梁梅莲,蓝丽红.偶氮类有机抑制剂对硫化矿的抑制性能[J].中国有色金属学报,2011,20(11):2239-2247.
    [96]张剑锋,胡岳华,徐兢,等.苯氧乙酸类浮选抑制剂性能的量子化学计算[J].中国有色金属学报,2004,14(8):1437-1441.
    [97]杜平,曹学锋,胡岳华,et a1.胺类捕收剂的结构与性能研究[1)[J].轻金属,2003,(1):27-31.
    [98]冯其明,陈荩.硫化矿浮选电化学[M].长沙:中南工业大学出版社,1992:58.
    [99]王淀佐.硫化矿浮选与矿浆电位[M].北京:高等教育出版社,2008:3-7.
    [100]谢希德.固体能带理论[M].上海:复旦大学出版社,2007:12-55.
    [101]赵成大.固体量子化学[M].北京:高等教育出版社,2003:128-141.
    [102]钟建莲,陈建华,李玉琼,等.硫铁矿晶体化学及前线轨道研究[J].广西大 学学报:自然科学版,2011,(3):41-56.
    [103]岳利文.含硫捕获剂与硫化矿表面作用的理论研究[D].北京:北京化工大学,2008.
    [104]李海普,胡岳华,王淀佐,等.阳离子表面活性剂与高岭石的相互作用机理[J].中南大学学报:自然科学版,2004,35(2):228-233.
    [105]李玉琼.晶格缺陷对黄铁矿晶体电子结构和浮选行为影响的第一性原理研究[D].南宁:广西大学,2011.
    [106]孙伟.高碱石灰介质中电位调控浮选技术原理与应用[D].长沙:中南大学,2001.
    [107]Chen Y, Chen J H. The first-principle study of the effect of lattice impurity on adsorption of CN on sphalerite surface[J]. Minerals Engineering,2010,23(9): 676-684.
    [108]Chen J H, Chen Y, Li Y Q. Effect of vacancy defects on electronic properties and activation of sphalerite(110) surface by first-principles [J]. Transactions of Nonferrous Metals Society of China,2010,20(3):502-506.
    [109]Von Oertzen G U, Skinner W M, Nesbitt H W, et al. Cu adsorption on pyrite (100):Ab initio and spectroscopic studies[J]. Surface Science,2007,601(24): 5794-5799.
    [110]魏明安,王荣生.四川呷村银多金属矿选矿扩大连选试验研究报告[R].北京:北京矿冶研究总院,2005.
    [111]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005:194.
    [112]李正勤.晶体化学基本原理在浮选中的应用[J].湖南有色金属,1985,(3):18-22.
    [113]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[J].国外金属矿选矿,1998,(4):8-11.
    [114]Makovicky E, Skinner B J. Studies of the sulfosalts of copper VII:Crystal structures of the exolution products Cu12.3Sb4S13 and Cu13.8Sb4S13 of unsubstituted synthetic tetrahedrite[J]. The Canadian Mineralogist,1979,17(3): 619-634.
    [115]Knight K S, Marshall W G, Zochowski S W. The low-temperature and high-pressure thermoelastic and structural properties of chalcopyrite[J]. The Canadian Mineralogist,2011,49(1):1015-1034.
    [116]Noda Y, Masumoto K, Ohba S, et al. Temperature dependence of atomic thermal parameters of lead chalcogenides, PbS, PbSe and PbTe[J]. Acta Crystallographica:Section C,1987,43(7):1443-1445.
    [117]Skinner B J. Unit-cell edges of natural and synthetic sphalerites[J]. American Mineralogist,1961,46(5):1399-1411.
    [118]Rieder M, Crelling J C, Sustai O, et al. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic[J]. International Journal of Coal Geology,2007,71(2):115-121.
    [119]陈建华,王檑,陈晔,等.空位缺陷对方铅矿电子结构及浮选行为影响的密度泛函理论[J].中国有色金属学报,2010,20(9):1815-1821.
    [120]Chen S H, Gong W Q, Mei G J, et al. Quantitative structure-biodegradability relationship of sulfide mineral flotation collectors [J]. International Journal of Mineral Processing,2011,101(1-4):112-115.
    [121]Somasundaran P, Wang D Z. Application of flotation agents and their structure-property relationships[M]. Amsterdam:Elsevier,2006:143-201.
    [122]Yang F, Sun W, Hu Y H. QSAR analysis of selectivity in flotation of chalcopyrite from pyrite for xanthate derivatives:Xanthogen formates and thionocarbamates[J]. Minerals Engineering,2012,39(10):140-148.
    [123]Forsling W, Sun Z X. Use of surface complexation models in sulphide mineral flotation[J]. International Journal of Mineral Processing,1997,51(1-4):81-95.
    [124]Hart B, Biesinger M, Smart R S C. Improved statistical methods applied to surface chemistry in minerals flotation[J]. Minerals Engineering,2006,19(6-8): 790-798.
    [125]Kartio I, Laajalehto K, Suoninen E. Application of electron spectroscopy to characterization of mineral surfaces in flotation studies[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1994,93(12):149-158.
    [126]Ye X, Gredelj S, Skinner W, et al. Regrinding sulphide minerals - Breakage mechanisms in milling and their influence on surface properties and flotation behaviour[J]. Powder Technology,2010,203(2):133-147.
    [127]Bouiton A, Fornasiero D, Ralston J. Effect of iron content in sphalerite on flotation[J]. Minerals Engineering,2005,18(11):1120-1122.
    [128]Chen Y, Chen J H, Lan L H, et al. The influence of the impurities on the flotation behaviors of synthetic ZnS[J]. Minerals Engineering,2012,27(2): 65-71.
    [129]Laajalehto K, Suoninen E, Heimala S. Studies of the effect of antimony impurity on the flotation behaviour of galena[J]. International Journal of Mineral Processing,1991,33(1-4):95-102.
    [130]Mielczarski J. The role of impurities of sphalerite in the adsorption of ethyl xanthate and its flotation[J]. International Journal of Mineral Processing,1986, 16(3-4):179-194.
    [131]凌竞宏.三种不同类型矿床黄铁矿浮选行为的比较[D].长沙:中南矿冶学院,1982.
    [132]原田种臣.性状不同的黄铁矿可浮性差异比较[J].日本矿业会志,1967,83(949):749-753.
    [133]今泉常正.晶格缺陷对黄铁矿浮选特性的影响[J].日本矿业会志,1970,86(992):853-858.
    [134]陈晔.晶格缺陷对闪锌矿半导体性质及浮选行为影响的第一性原理研究[D].南宁:广西大学,2007.
    [135]Liu G Y, Zhong H, Dai T, et al. Investigation of the effect of N-substituents on performance of thionocarbamates as selective collectors for copper sulfides by ab initio calculations[J]. Minerals Engineering,2008,21(12-14):1050-1054.
    [136]刘广义,钟宏,戴塔根,等.用Mac-12提高德兴铜矿铜金钼回收率的研究[J].金属矿山,2005,(10):33-36.
    [137]王福良.铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D].沈阳:东北大学,2008.
    [138]张麟.铜录山铜矿浮选基础研究与应用[D].长沙:中南大学,2008.
    [139]周国华.提高锌浸出渣中银浮选回收率的工艺与理论研究[D].长沙:中南大学,2002.
    [140]邹文博.几种阳离子捕收剂对氧化铁矿的反浮选性能研究[D].长沙:中南大学,2011.
    [141]Bulatovic S M. Handbook of Flotation Reagents[M]. Amsterdam:Elsevier, 2007:5-41.
    [142]Crozier R D. Sulphide collector mineral bonding and the mechanism of flotation[J]. Minerals Engineering,1991,4(7-11):839-858.
    [143]Su Y Z, Dong W, Zhang J H, et al. Poly[bis(2-aminophenyloxy) disulfide]:A polyaniline derivative containing disulfide bonds as a cathode material for lithium battery[J]. Polymer,2007,48(1):165-173.
    [144]杨刚,杨高文,徐桦,等.巯基苯并类浮选剂的浮选作用机理及其分子设计[J].化学学报,2004,62(2):153-159.
    [145]刘广义,詹金华,钟宏,等.溶液中巯基苯并噻唑、咪唑和恶唑反应性的理 论研究[J].中国有色金属学报,2010,20(11):2249-2253.
    [146]王淀佐,林强,蒋玉仁.选矿与冶金药剂分子设计[M].长沙:中南工业大学出版社,1996:88-110.
    [147]Klopman G. Chemical reactivity and paths[J]. Journal of American Chemical Society,1968,90(2):223-230.
    [148]魏明安,王荣生,李崇德.提高呷村银铜铅锌矿选矿铅回收率技术研究报告[R].北京:北京矿冶研究总院,2009.
    [149]黎维中.难处理铅锌银硫化矿物资源综合回收的研究与实践[D].长沙:中南大学,2007.
    [150]孙运礼,刘守信,师伟红.提高呷村铜铅锌多金属矿选矿工艺指标小型试验研究简报[R].白银:西北矿冶研究院,2006.
    [151]孙运礼,刘守信,师伟红.提高呷村铜铅锌多金属矿选矿工艺指标工业调试阶段总结[R].白银:西北矿冶研究院,2007.
    [152]Dehghan R, Noaparast M, Kolahdoozan M. Leaching and kinetic modelling of low-grade calcareous sphalerite in acidic ferric chloride solution[J]. Hydrometallurgy,2009,96(4):275-282.
    [153]Kaplun K, Li J, Kawashima N, et al. Cu and Fe chalcopyrite leach activation energies and the effect of added Fe3+[J]. Geochimica et Cosmochimica Acta, 2011,75(20):5865-5878.
    [154]Ruiz M C, Gallardo E, Padilla R. Copper extraction from white metal by pressure leaching in H2SO4-FeSO4-O2[J]. Hydrometallurgy,2009,100(1-2): 50-55.
    [155]Xie K Q, Yang X W, Wang J K, et al. Kinetic study on pressure leaching of high iron sphalerite concentrate[J]. Transactions of Nonferrous Metals Society of China,2007,17(1):187-194.
    [156]王昌良,戴新宇.呷村铜铅锌银多金属硫化矿混合浮选试验研究报告[R].成都:中国地质科学院成都矿产综合利用研究所,2009.
    [157]顾祖荣,董爱国.四川鑫源矿业有限责任公司银多金属冶炼项目可行性研究报告[R].北京:中国恩菲工程技术有限公司,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700