用户名: 密码: 验证码:
天然产物白首乌二苯酮的神经保护作用和两面针碱的免疫调控作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、背景
     天然产物来源广泛,结构多样,药理作用独特,大多数都经过长期的临床应用,其疗效确切,使用安全性高。目前有50%的临床应用药物来自天然产物及其衍生物,并且许多结构新颖的天然产物及其衍生物正处于临床和临床前研究阶段。因此,从天然产物中寻找高效低毒易得的先导化合物成为药物研究的热点,天然产物在今后仍将是新药的重要来源。
     随着各种分离、分析和结构测定方法以及色谱、波谱联用技术的飞速发展,化学分离和结构鉴定已经不是天然药物研究的瓶颈。目前天然产物研究面临的一个问题就在于其药理活性和作用机制的阐述较少或研究不深,尤其是结构新颖的天然产物。针对合理阐释其作用机制和结合靶标这一难点,本文第一章综述了基因组学、蛋白质组学和计算机辅助的方法在天然产物靶标发现和机制研究中的应用,希望能够为活性天然产物靶标发现和机制研究的方法及相关技术提供一个比较全面的认识,然后进一步将第一章的方法应用到天然产物cynandione A和氯化两面针碱(nitidine chloride,后文所用两面针碱均指氯化两面针碱)的机制研究中,来阐明这两个天然产物如何发挥相应的药理活性。
     脑卒中是一种死亡率高、致残率高的常见病、多发病,并且近几年来发病率呈上升趋势。缺血性脑卒中约占所有脑卒中(stroke)的80%,是指局部脑组织因血液循环障碍,缺血、缺氧而发生的软化坏死。缺血性脑卒中的病因主要是由于供应脑部血液的动脉出现粥样硬化和血栓形成,使管腔狭窄甚至闭塞,导致局灶性急性脑供血不足而发病;也有因异常物体(固体、液体、气体)沿血液循环进入脑动脉或供应脑血液循环的颈部动脉,造成血流阻断或血流量骤减而产生相应支配区域脑组织软化坏死。目前临床治疗脑卒中的药物由于其价格、抗药性以及对出血、胃肠道、神经系统等毒副作用,应用受到了一定的限制,因此,寻找高效低毒易得的分子来防治脑卒中尤为必要。
     第二章介绍的天然产物cynandione A是从白首乌中分离得到的苯乙酮类化合物,近年来文献报导cynandione A具有抗氧化、抗谷氨酸兴奋毒和胃保护等药理活性。但目前对其作用机制尚无文献报道,值得进一步的深入研究。
     多发性硬化症(multiple sclerosis)至今仍是整个医学界未解的难题之一。该病是一种慢性、自身免疫性疾病,通过破坏脑、脊髓以及视神经的神经纤维保护层髓磷脂,影响正常的神经传递而导致身体残疾。由于该病具有极高的复发率和致残率,已成为常见的、重要的神经系统疾病之一。由于该病的发病高峰在30岁左右,因此,严重影响青壮年人口的工作和生活质量,也给国家和政府造成极大负担,制约社会和经济发展。
     目前临床上对该病尚无特效治疗方法,缺乏令人满意的治疗药物。急性期主要给予糖皮质激素,复发-缓解期主要治疗药物包括:干扰素-γ,醋酸格拉替雷和单克隆抗体那他珠单抗。重度患者还可以考虑自体干细胞移植。西医的激素疗法虽然能够缓解急性期症状,但毒副作用明显,故不推荐长期使用;免疫调节剂干扰素、格尔德霉素和那他珠单抗等不仅费用昂贵,且长期使用针对单一靶点药物容易出现耐受。且上述药物均需经静脉、或注射给药,不能有效改善多发性硬化症复发和髓鞘脱失等问题。因此,研制能够有效控制多发性硬化症的复发、改善髓鞘脱失的药物具有重大意义。传统中医药具有多靶点、系统调节的作用特点,因此,针对防治多发性硬化症这一复杂性、难治性疾病具有一定优势。
     第三章介绍的天然产物两面针碱是从芸香科植物两面针[Zanthoxylum nitidum(Roxb.) DC]的根中分离到的具有多种药理活性的苯骈菲啶类生物碱,是两面针的主要有效成分,是两面针及其制剂的主要质量控制指标成分。近年来文献报导氯化两面针碱在抗炎、镇痛、抗真菌、抗疟以及抗肿瘤等方面具有广泛的药理活性、开发利用价值和应用前景。基于上述研究进展,并且目前对两面针碱的免疫调控作用尚未进行充分报道,本章首先探讨了两面针碱潜在的治疗多发性硬化症的药理活性,进而在体外细胞模型上研究两面针碱对不同种类和活化状态的免疫细胞的调控作用,最后采用亲和层析的方法寻找与两面针碱存在相互作用的蛋白质以解释其作用靶标,更深一层地阐明两面针碱的作用机制。
     2、目的
     采用文献综述的方法进一步研究活性天然产物cynandione A和两面针碱的作用机制,为合理开发利用天然产物cynandione A和两面针碱提供重要的科学依据,并为寻找及发现新的神经保护和免疫调控药物提供化学小分子模板。
     3、方法
     (1)通过清除自由基、抗氧化和抗谷氨酸兴奋毒的活性筛选,发现活性先导物cynandione A,然后,采用二维电泳和LC-MS的蛋白质组学方法研究cynandione A神经保护作用的机制。
     (2)体内实验采用大鼠大脑中动脉缺血再灌注(缺血性脑卒中)模型,探讨cynandioneA神经保护作用及其体内抗缺血性脑卒中损伤的机制。SD大鼠经10%水合氯醛(350mg/kg)腹腔麻醉,分离右侧颈总动脉(common carotid artery,CCA)、颈内动脉(internalcarotid artery,ICA)、颈外动脉(external carotid artery,ECA)。结扎CCA近心端、ECA起始端后,在CCA处剪“V”形小口,沿CCA插入线栓(长40mm,直径0.26mm,并于20mm长处标记),经ICA向颅内插至大脑中动脉分叉处,插入深度为18-20mm。再灌注时外拉线使球端回至ECA,拔除插线,结扎ECA。假手术组除不插线外,其余步骤同手术组。大脑中动脉栓塞后2h恢复血供。通过神经功能缺失体征评分、大鼠存活率和四氮唑法染色评价cynandione A抗脑缺血损伤的神经保护作用。通过大鼠脑组织HE染色和DPYSL2、HMGB1免疫组织化学分析探讨cynandione A神经保护作用。
     (3)实验性自身免疫性脑脊髓膜炎(experimental autoimmune encephalomyelitis,EAE)是一种得到普遍认可和应用的多发性硬化症实验动物模型。造模方法是皮下注射MOG33-55并辅以CFA,通过树突状细胞激活体内CD4+T细胞,产生Th17细胞,并使之穿过血脑屏障,攻击自身神经髓鞘,从而导致中枢神经白质脱髓鞘,引起EAE。免疫当天记为第0天,于第0天和第2天给予各组小鼠腹腔注射400ng/只百日咳毒素(PTX)。通过神经功能评分、脊髓组织HE染色、髓鞘碱性蛋白的免疫组织化学以及血浆和组织细胞因子的水平来评价两面针碱防治实验性自身免疫性脑脊髓膜炎的作用。
     (4)进一步作用机制的研究是采用基因芯片、二维电泳和计算机辅助的方法推断两面针碱可能的作用通路。首先确定合理的给药浓度、刺激剂剂量、给药时间和不同种类的细胞模型。分别考察两面针碱对活化状态下的骨髓细胞、骨髓来源的树突状细胞、小鼠腹腔巨噬细胞、RAW264.7巨噬细胞、脾细胞和磁珠分选的CD4+T细胞的影响。然后验证三种方法推断的两面针碱调控的作用通路。
     (5)两面针碱作用靶标的研究是采用生物素标记的亲和层析方法。生物素-抗生物素蛋白(biotin-avidin)系统常被用来寻找天然产物或活性小分子的靶蛋白。这种方法首先需要将小分子通过连接链(spacer)与生物素相连,然后通过生物素与亲和柱的亲和力将小分子固定在亲和柱上,接着在此亲和柱上加入细胞提取物,与小分子有作用的蛋白就会被保留。最后,改变流动相将靶蛋白洗脱并进行功能和结构确定。基于生物素-抗生物素蛋白系统可以寻找靶标蛋白的性质,我们希望选择合适的两面针碱衍生物,通过嫁接连接臂与生物素相连获得生物素标记的两面针碱衍生物,将来用于寻找与两面针碱作用的细胞内靶标蛋白。通过pulldown实验和western blot实验证明两面针碱与质谱鉴定到的蛋白的相互作用,再通过SPR和ITC等实验表明此蛋白与两面针碱确实存在相互作用,从而对下游通路产生影响,进一步产生防治EAE的作用。
     4、结果
     第二章介绍了天然产物cynandione A的神经保护作用机制研究。首先通过细胞水平清除自由基、抗氧化和抗谷氨酸兴奋毒的活性筛选,发现了神经保护活性先导化合物cynandione A,然后进一步采用二维电泳和LC-MS的蛋白质组学方法研究其调控的蛋白质,结果分析cynandione A能够下调DPYSL2和HMGB1蛋白的表达,并且能抑制RAF-MEK-ERK1/2通路而起到抗谷氨酸兴奋毒的保护作用。体内药效评价发现该天然产物能够减轻大鼠脑缺血再灌注后的神经功能缺失的评分,延长大鼠存活率,改善大鼠脑缺血再灌注的脑组织病理学,显示出一定的抗脑缺血损伤的保护作用。并且组织分布证明cynandione A能够透过血脑屏障。进一步的作用机制研究表明cynandione A是通过下调DPYSL2蛋白的表达和抑制HMGB1蛋白的截留来发挥抗脑缺血的保护作用。
     第三章研究了天然产物两面针碱的免疫调控的作用机制和靶标。首先在整体动物水平发现两面针碱腹腔内注射能够显著推迟EAE发病时间并且减轻EAE的行为学评分。组织病理学考察发现两面针碱能够减少单核炎性细胞浸润和髓鞘脱失。另外,两面针碱显著减少血清和组织炎性因子IL-1β,IL-6和TNF-α水平,而提高抑炎性因子IL-10水平。以上结果显示两面针碱具有抑制小鼠实验性自身免疫性脑脊髓炎的药理活性。在其体内有效的基础上,我们筛选了脑脊髓炎发病过程中起到关键作用的树突状细胞、巨噬细胞和CD4~+T细胞三类细胞,进一步研究两面针碱对其的调控作用。通过活性筛选发现两面针碱能够促进活化的树突状细胞和巨噬细胞分泌IL-10,然后采用基因组学、蛋白质组学和计算机辅助手段鉴定了两面针碱的作用通路MAPK和NF-κB,并通过实验证明两面针碱能够增强活化的MAPK和NF-κB通路而促进IL-10分泌。进一步研究发现IL-10对NF-κB通路存在负反馈调节作用,从而减少炎性因子IL-1β,IL-6和TNF-α的分泌。另外,我们还通过采用IL-10的抗体、外源性的IL-10以及IL-10敲除实验证明两面针碱是通过IL-10来缓解EAE的发病。
     在天然产物两面针碱的免疫调控的作用机制基础上,实验进一步采用亲和层析的方法寻找与两面针碱存在相互作用的蛋白质以解释其作用靶标,更深一层地阐明两面针碱的作用机制。通过pulldown实验和western blot实验证明两面针碱可与HSP90相互作用,SPR和ITC等实验表明HSP90与两面针碱确实存在相互作用。两面针碱通过与HSP90结合,调控HSP90与某伴侣蛋白的相互作用,从而诱导下游通路提高IL-10的分泌,并且进一步产生防治EAE的作用。
     5、结论
     天然产物cynandione A能够下调DPYSL2和HMGB1蛋白的表达,并且能抑制RAF-MEK-ERK1/2通路而起到抗谷氨酸兴奋毒的保护作用。体内药效评价发现cynandione A是通过下调DPYSL2蛋白的表达和抑制HMGB1蛋白的截留来发挥抗脑缺血的保护作用。
     天然产物两面针碱能够增强活化的MAPK和NF-κB通路而促进IL-10分泌。进一步研究发现IL-10对NF-κB通路存在负反馈调节作用,从而减少炎性因子IL-1β,IL-6和TNF-α的分泌。另外,我们还通过采用IL-10的抗体、外源性的IL-10以及IL-10敲除实验证明两面针碱是通过IL-10来缓解EAE的发病。进一步的作用靶标研究发现两面针碱与HSP90存在相互作用,并且两面针碱通过与HSP90结合,调控HSP90与某伴侣蛋白的相互作用,从而诱导下游通路提高IL-10的分泌,并且进一步产生防治EAE的作用。
     这些发现拓展了天然产物cynandione A和两面针碱在神经保护和免疫调控作用的认识,进一步揭示了它们在防治缺血性脑卒中和多发性硬化症方面的应用潜力,为寻找及发现新的神经保护和免疫调控药物提供化学小分子模板。
1Background
     A natural product is a chemical compound or substance produced by a livingorganism (found in nature) that usually has a pharmacological or biological activity for usein pharmaceutical drug discovery and drug design. Natural products may be extracted fromtissues of terrestrial plants, marine organisms or microorganism fermentation broths. Acrude extract from any one of these sources typically contains novel, structurally diversechemical compounds, of which the natural environment is a rich source. Drugs derivedfrom natural products have been used for control of major diseases like cardiovasculardiseases, tumors and infectious diseases. Currently, about50%clinical drugs are derivedfrom natural products, and more natural products and their derivatives are in clinical orpre-clinical trials. Therefore, the research and development of natural products is a hottopic in drug development, and they remain an important source of new drugs.
     As the rapid development of various chromatographic separation, analysis, structuredetermination approaches, chemical separation and structural identification are not thebottleneck of natural products research. However, a problem of natural products research isthat their pharmacological activities and mechanisms of action are not well clarilied andunderstood, especially the novel natural products. Therefore, the first chapter reviewsgenomics, proteomics, as well as computer-aided strategies to appropriate thesemechanisms and the implications for target discovery of natural products. Furthermore, weapply these approaches to discover the target genes or proteins of natural productscynandione A and nitidine chloride and clarify the mechanisms of their actions.
     Stroke is the leading cause of adult disability and the third most common cause ofdeath in industrialized nations. Ischemic stroke occurs when there is an acute blockage ofarterial blood flow to the brain. Neurons contain low levels of endogenous antioxidants;consequently, the brain is very much vulnerable to the injurious effects of reactive oxygenspecies (ROS). Indeed, it has been shown that oxidative stress is a contributory factor inthe determination of the fate of cells during cerebral ischemia and in the outcome of acuteischemic stroke. To date, thrombolytic therapy with tissue plasminogen activators is theonly approved therapy in the United States and Canada for the treatment of acute ischemicstroke. Thrombolytic therapy with tissue plasminogen activator, however, is limited by a very narrow time window. Part of the reason for this limited3-hour window of efficacy isthe generation of free radicals associated with delayed reperfusion that causes oxidativedamage to the brain, which could increase the risk of cerebral hemorrhage and edema.Though numerous potential neuroprotective agents targeting different injurious factors inthe ischemic cascade including oxidative stress have been investigated, almost all of themexcept edaravone have proven inefficacious in humans in studies with a vigorous trialdesign.
     Cynandione A and28other derivative compounds were identified from the roots ofCynanchum (C.) wilfordii and C. auriculatum by liquid chromatography electrosprayionization tandem mass spectrometry. Furthermore, cynandione A was obtained duringactivity-guided isolation of the active component of the methanolic extract from dried rootsof C. wilfordii and was found to mitigate neurotoxicity induced by a variety of neurotoxicagents such as H2O2, the excitotoxic neurotransmitter, L-glutamate and kainate in vitro. Itwas further shown that cynandione A could protect against CCl4-mediated hepatotoxicityin vitro, probably due to its radical scavenging properties. In the second chapter, we soughtto further characterize the neuroprotective effects of cynandione A and otheracetophenones extracted from the roots of C. auriculatum and the underlying mechanismusing pheochromocytoma tumor cell line PC12and to investigate whether cynandione Aprotected against ischemic injuries in rats with experimentally induced cerebral ischemia.
     Multiple sclerosis remains one of the unsolved problems in the medical community.This chronic autoimmune disease is able to destroy the brain, spinal cord, and nerve fiberlayer of the myelin and affects normal nerve, then causes physical disabilities. Because ofhigh recurrence rate and morbidity, chronic course in young people, multiple sclerosis hasbecome a common disease of the nervous system and makes a great burden to the socialand economic development. Current medications in the treatment of multiple sclerosis,including glucocorticoids, relapse-remission treatment and stem cell transplantation, arelimited by a number of well-characterized clinical side-effects, such as hepatotoxicity,blood dyscrasias, and gastrointestinal and cardiac toxic effects. Therefore, the explorationof new anti-multiple sclerosis drugs with high efficacy and less toxicity is eagerly needed.Traditional Chinese medicine (TCM), a unique medical system with the significantcharacteristic of the use of multi-component drugs, can hit multiple targets with itscomponents, improve therapeutic efficacy, reduce drug-related side effects and may alsobe an effective way of decreasing drug resistance. Natural products have aroused much interest recently due to its superiority in the treatment of complex multi-factor diseases,such as multiple sclerosis.
     Nitidine chloride, a benzo[c]phenanthridine alkaloids isolated from Zanthoxylumnitidium (Roxb.) DC., was reported to have significant anti-tumor, anti-fungal,anti-malarial, and anti-inflammatory activities. In our previous study, nitidine chlorideexhibited analgesic and anti-inflammatory activities, however, the precise molecular targetand underlying mechanisms of its anti-inflammatory and immunomodulatory efficacy arepoorly clarified to date. In the third chapter, we explored genomic, proteomic, andcomputational approaches to investigate its possible mechanisms that contributed tonitidine mediated signal transduction pathways in the regulation of IL-10secretion in DCsand macrophages. Moreover, nitidine chloride effectively inhibited pro-inflammatorycytokines secretion, significantly enhanced IL-10secretion, and mitigated the occurrenceof EAE in vivo. Therefore, our findings indicated that nitidine chloride is a promisingcandidate compound that can be further optimized to be a therapeutic agent for multiplesclerosis.
     2Objective
     This subject will reveal the molecular mechanism of action of bioactive naturalproducts cynandione A (to protect against ischemic injuries in rats with experimentallyinduced cerebral ischemia) and nitidine (to promote IL-10secretion in EAE treatment formultiple sclerosis) and will provide important scientific foundation and information fordrug design and development to study novel structure and mechanism neuroprotective,anti-inflammatory and immune-modulating agents.
     3Methods
     (1) Cellular level and cerebral ischemia animal model identified cynandione A as aneuroprotective lead, and using two-dimensional electrophoresis and LC-MS proteomicsapproaches to study its neuroprotective effect.
     (2) Using rat middle cerebral artery ischemia reperfusion model to explorecynandione A neuroprotective effect and its mechanism in vivo. Adult maleSprague-Dawley rats (250-300g) were injected intraperitoneally with5or30mg/kgcynandione A or8mg/kg nimodipine for3days. Rats were anesthetized by peritonealinjection of chloral hydrate at350mg/kg, and the middle cerebral artery was occluded for 2h with a silicone rubber-coated nylon monofilament (40mm in length and0.26mm indiameter). The occluding filament was withdrawn after2h to allow reperfusion. Rats wereinjected intraperitoneally with5or30mg/kg cynandione A or8mg/kg nimodipine for3days following occlusion of the middle cerebral artery. In sham-operated rats, the leftcommon carotid artery was exposed and external carotid artery was opened withoutintroducing the filament into the internal carotid artery. Neurological deficit score of eachrat was obtained at24and72h after occlusion of the middle cerebral artery. Rats were alsosacrificed3days after reperfusion, and rat brains were dissected coronally into2-mm brainslices using a metallic brain matrix. Slices were immediately stained by immersion in1%2,3,5-triphenyl tetrazolium chloride and then in4%paraformaldehyde for preservation.After brain tissues preservation, the areas of the infarcted regions and of both hemisphereswere calculated for each coronal slice by image analysis software ImageJ. Also, HEstaining and immunohistochemical analysis were performed to explore neuroprotectiveeffect of cynandione A.
     (3) Experimental autoimmune encephalomyelitis (EAE), an inflammatorydemyelinating disease of the central nervous system (CNS), is the prime model for humanmultiple sclerosis. Female C57BL/6mice were intraperitoneally injected with nitidine atthe dose of10mg/kg day which is lower than the LD50for nitidine for a week beforeMOG sensitization, and the nitidine treatment continued through all the experiment. Thecontrol groups were injected with DMSO or PBS of equal volume with the former. Thenthe mice were immunized by subcutaneous injection at three sites of dorsal with300μg ofMOG35-55peptide emulsified in complete Freund’s adjuvant supplemented with0.5mgMycobacterium tuber-culosis strain H37RA. Furthermore, mice received intraperitonealinjections with400ng of pertussis toxin at the time of immunization and48h later.Clinical signs of disease were observed usually between EAE induction and assessed dailyexactly according to the following scoring criteria:0, no detectable signs of EAE;1,flaccid tail;2, hind limb weakness or abnormal gait;3, complete hind limb paralysis;4,paralysis of fore and hind limbs; and5, moribund or death. Intermediate scores (0.5) wereassigned if the neurological signs exhibited a lower severity than typically observed.Finally, blood serum and spinal cord from mice suffering EAE induction for21days wereobtained and analyzed.
     (4) Further mechanism research is to explore gene chip, two-dimensionalelectrophoresis and computer aided approaches to investigate the possible mechanism of action of nitidine. To determine reasonable dosage concentration, stimulants dose, dosingtime and different kinds of cell model. Bone marrow cells, bone marrow-derived dendriticcells, peritoneal macrophages, RAW264.7macrophages, spleen cells and CD4+T cellsseparated by magnetic beads were obtained and analyzed by ELISA, respectively. Thenverify its regulatory pathways.
     (5) In order to further understand its biological mechanisms and to identify its targetproteins, a biotinylated derivative of nitidine was synthesized, using a peptide-bond as thelinkage between artemisinin and D-biotin. This approach starts with immobilizing abioactive compound on a matrix in a way that does not interfere with its activity. The smallmolecule ligand is modified by introducing an appropriate functional group (referred to asa linker), through which it can be immobilized by attachment to the affinity matrix——astep that is important for later phase separation. There are various commercially availableactivated resins that allow for the attachment of specific chemical groups (for example,sulfhydryl, amino, hydroxyl or carboxyl groups). After the immobilized small moleculeligand has been incubated with protein extracts and any unbound proteins havesubsequently been removed in a series of washing steps, specifically bound proteins areseparated by solid-phase elution, using buffer conditions that disrupt the interactionbetween the target protein and the immobilized small molecule ligand. Finally, the proteinis typically identified by MS. Predicting or inferring the protein targets need to bevalidated in the biological method. Through the pulldown and western blot experiments,SPR, and ITC experiments showed that nitidine is able to bind and interact with the proteinin macrophages, thus influence on the downstream pathways, further promotes IL-10secretion in EAE treatment for MS.
     4Results
     The second chapter described neuroprotective effects of natural product cynandione A.Viability assays using the WST-8method and LDH release assays showed that cynandioneA dose-dependently attenuated glutamate-induced cytotoxicity. Comparative proteomicanalysis by two-dimensional gel electrophoresis and MALDI-TOF MS/MS of PC12cellstreated with cynandione A showed10μM cynandione A caused broad changes in proteinexpression in PC12cells including downregulation of high mobility group box1(HMGB1)and dihydropyrimidinase-like2(DPYSL2) and inhibit RAF-MEK-ERK1/2pathway.Immunoblotting studies showed that10μM cynandione A aborted glutamate-induced increase in DPYSL2and HMGB1levels in PC12cells and30mg/kg cynandione A alsoattenuated the rise in HMGB1levels and mitigated DPYSL2cleavage in brain tissues ofrats with cerebral ischemia. Furthermore, rats with cerebral ischemia treated with30mg/kgcynandione A exhibited markedly improved neurological deficit scores at24and72hcompared with control and a7.2%reduction in cerebral infarction size at72h (P <0.05vs.control). Our findings demonstrated that cynandione A mitigated ischemic injuries andshould be further explored as a neuroprotective agent for ischemic stroke.
     The third chapter demonstrated anti-inflammatory and immune-modulating effects ofnatural product nitidine. Nitidine is a clinically efficient ingredient from extracts ofzanthoxylum nitidum, an indigenous plant in Southern China that shows anti-inflammatoryand analgesic properties. Here, we found that this molecule was able to interfere withmaturation of DCs and their ability to present antigens to T cells, and nitidine-treatedBMDCs could secrete more IL-10and less IL-1β,IL-6and TNF-α in response tolipopolysaccharide (LPS) in vitro. Up-regulation of MAPK and NF-κB pathwaysactivation was shown to be responsible for IL-10preferential production. These resultswere consistent with the observation that IL-10concentration of serum fromnitidine-treated mice suffered from EAE induction was higher compared with controlgroup. In addition, nitidine was able to interfere with the onset of EAE and decreased EAEclinicopathological features in mice by inhibiting immune response to MOG35-55peptides.Further study found that IL-10is able to negative feedback regulate the NF-κB pathway,thus reducing IL-1β,IL-6and TNF-α secretion. In addition, through IL-10antibody,exogenous IL-10and IL-10knockout experiments showed that nitidine could alleviate theincidence of EAE by IL-10. Our results suggest that nitidine has powerfulanti-inflammatory and immune-modulating function in vitro, as well as in vivo, and wouldbe regarded as a new anti-inflammatory and immune-modulating drug with greatpotentiality for the treatment of autoimmune diseases in the future.
     In order to further understand its biological mechanisms, affinity chromatography wasadopted to identify target proteins of nitidine. Through the pulldown and western blotexperiments, SPR, and ITC experiments showed that nitidine is able to bind and interactwith the protein in macrophages, thus influence on the downstream pathways, furtherpromotes IL-10secretion in EAE treatment for multiple sclerosis.
     5Conclusions
     Natural product cynandione A caused downregulation of HMGB1and DPYSL2andinhibit RAF-MEK-ERK1/2pathway to attenuate glutamate-induced cytotoxicity in vitro.Furthermore, cynandione A protected against ischemic injuries in rats with experimentallyinduced cerebral ischemia. Our findings demonstrated that cynandione A mitigatedischemic injuries and should be further explored as a neuroprotective agent for ischemicstroke.
     Our present study found that nitidine could mitigate EAE and secrete more IL-10andless IL-1β,IL-6and TNF-α in response to LPS in vitro. Further mechanism study foundthat nitidine could promote the activated dendritic cells and macrophages to secrete IL-10.Affinity chromatography results suggested that nitidine is able to bind and interact withHSP90in dendritic cells and macrophages. This subject will reveal the molecularmechanism of action of nitidine to promote IL-10secretion in EAE treatment for multiplesclerosis and will provide important scientific foundation and information for drug designand development to study novel structure and mechanism anti-inflammatory andimmune-modulating agents.
引文
[1] Shukla S. K., Gupta S., Ojha S. K., et al. Cardiovascular friendly natural products: a promisingapproach in the management of CVD. Natural Product Research,2010,24(9):873-898.
    [2] Gordaliza M. Natural products as leads to anticancer drugs. Clinical and TranslationalOncology,2007,9(12):767-776.
    [3] Bailly C. Ready for a comeback of natural products in oncology. Biochemical Pharmacology,2009,77(9):1447-1457.
    [4] Demain A. L. Antibiotics: Natural products essential to human health. Medicinal ResearchReviews,2009,29(6):821-842.
    [5] Cragg G. M., Newman D. J. Biodiversity: A continuing source of novel drug leads. Pure andApplied Chemistry,2005,77(1):7-24.
    [6] Butler M. S. Natural products to drugs: natural product-derived compounds in clinical trials.Natural Product Reports,2008,25(3):475-516.
    [7] Kinghorn A. D., Chin Y. W., Swanson S. M. Discovery of natural product anticancer agentsfrom biodiverse organisms. Current Opinion In Drug Discovery Development,2009,12(2):189-196.
    [8] Qi Y., Ma S. The medicinal potential of promising marine macrolides with anticancer activity.ChemMedChem,2011,6(3):399-409.
    [9] Molinski T. F., Dalisay D. S., Lievens S. L., et al. Drug development from marine naturalproducts. Nature Reviews Drug Discovery,2008,8(1):69-85.
    [10] Cragg G. M., Grothaus P. G., Newman D. J. Impact of natural products on developing newanti-cancer agents. Chemical Reviews,2009,109(7):3012-3043.
    [11] Newman D. J., Cragg G. M. Natural Products as Sources of New Drugs over the Last25Years⊥. Journal of Natural Products,2007,70(3):461-477.
    [12] Harvey A. L. Natural products in drug discovery. Drug Discovery Today,2008,13(19-20):894-901.
    [13] Ganesan A. The impact of natural products upon modern drug discovery. Current Opinion inChemical Biology,2008,12(3):306-317.
    [14] Ji H. F., Li X. J., Zhang H. Y. Natural products and drug discovery. EMBO Reports,2009,10(3):194-200.
    [15] Carlson E. E. Natural products as chemical probes. ACS Chemical Biology,2010,5(7):639-653.
    [16] Gresham V., McLeod H. L. Genomics: Applications in mechanism elucidation. Advanced DrugDelivery Reviews,2009,61(5):369-374.
    [17] Luesch H., Chanda S. K., Raya R. M., et al. A functional genomics approach to the mode ofaction of apratoxin A. Nature Chemical Biology,2006,2(3):158-167.
    [18] Bredel M., Jacoby E. Chemogenomics: an emerging strategy for rapid target and drugdiscovery. Nature Reviews Genetics,2004,5(4):262-275.
    [19] Kawasumi M., Nghiem P. Chemical genetics: elucidating biological systems withsmall-molecule compounds. Journal of Investigative Dermatology,2007,127(7):1577-1584.
    [20] Gaither L. A. Chemogenomics approaches to novel target discovery. Expert Review ofProteomics,2007,4(3):411-419.
    [21] Ahn Y. H., Chang Y. T. Tagged small molecule library approach for facilitated chemicalgenetics. Accounts of Chemical Research,2007,40(10):1025-1033.
    [22] Zheng X. S., Chan T. F., Zhou H. H. Genetic and genomic approaches to identify and study thetargets of bioactive small molecules. Chemistry&Biology,2004,11(5):609-618.
    [23] Hoon S., Smith A. M., Wallace I. M., et al. An integrated platform of genomic assays revealssmall-molecule bioactivities. Nature Chemical Biology,2008,4(8):498-506.
    [24] Lamb J., Crawford E. D., Peck D., et al. The Connectivity Map: using gene-expressionsignatures to connect small molecules, genes, and disease. Science,2006,313(5795):1929-1935.
    [25] Iorio F., Tagliaferri R., Bernardo D. Identifying network of drug mode of action by geneexpression profiling. Journal of Computational Biology,2009,16(2):241-251.
    [26] Lamb J. The Connectivity Map: a new tool for biomedical research. Nature Reviews Cancer,2007,7(1):54-60.
    [27] Bordeleau M. E., Mori A., Oberer M., et al. Functional characterization of IRESes by aninhibitor of the RNA helicase eIF4A. Nature Chemical Biology,2006,2(4):213-220.
    [28] Fisch K. M., Gurgui C., Heycke N., et al. Polyketide assembly lines of uncultivated spongesymbionts from structure-based gene targeting. Nature Chemical Biology,2009,5(7):494-501.
    [29] Nishimura S., Arita Y., Honda M., et al. Marine antifungal theonellamides target3β-hydroxysterol to activate Rho1signaling. Nature Chemical Biology,2010,6:516-526.
    [30] Wright A. E., Botelho J. C., Guzmán E., et al. Neopeltolide, a macrolide from a lithistid spongeof the family neopeltidae⊥. Journal of Natural Products,2007,70(3):412-416.
    [31] Ulanovskaya O. A., Janjic J., Suzuki M., et al. Synthesis enables identification of the cellulartarget of leucascandrolide A and neopeltolide. Nature Chemical Biology,2008,4(7):418-424.
    [32] Altmann K. H., Carreira E. M. Unraveling a molecular target of macrolides. Nature ChemicalBiology,2008,4(7):388-389.
    [33] Peddibhotla S., Dang Y., Liu J. O., et al. Simultaneous arming and structure/activity studies ofnatural products employing OH insertions: An expedient and versatile strategy for naturalproducts-based chemical genetics. Journal of the American Chemical Society,2007,129(40):12222-12231.
    [34] Veenstra T. D. Proteomic approaches in drug discovery. Drug Discovery Today,2007,3(4):433-440.
    [35] Mallick P., Kuster B. Proteomics: a pragmatic perspective. Nature Biotechnology,2010,28(7):695-709.
    [36] Sleno L., Emili A. Proteomic methods for drug target discovery. Current Opinion in ChemicalBiology,2008,12(1):46-54.
    [37] Timms J. F., Cramer R. Difference gel electrophoresis. Proteomics,2008,8(23-24):4886-4897.
    [38] MacKeigan J., Clements C., Lich J., et al. Proteomic Profiling Drug-Induced Apoptosis inNon-Small Cell Lung Carcinoma Identification of RS/DJ-1and RhoGDIalpha. CancerResearch,2003,63(20):6928-6934.
    [39] Wenzel U., Herzog A., Kuntz S., et al. Protein expression profiling identifies molecular targetsof quercetin as a major dietary flavonoid in human colon cancer cells. Proteomics,2004,4(7):2160-2174.
    [40] Lee K., Yim E., Kim C., et al. Proteomic analysis of anti-cancer effects by paclitaxel treatmentin cervical cancer cells. Gynecologic Oncology,2005,98(1):45-53.
    [41] Ha W., Wu P., Kok T., et al. Involvement of protein kinase C and E2F-5in euxanthone-inducedneurite differentiation of neuroblastoma. International Journal of Biochemistry and CellBiology,2006,38(8):1393-1401.
    [42] Chen D., Xiao L., Cai X., et al. Involvement of multitargets in paeoniflorin-inducedpreconditioning. Journal of Pharmacology and Experimental Therapeutics,2006,319(1):165-180.
    [43] Wang Y., Cheung Y., Yang Z., et al. Proteomic approach to study the cytotoxicity of dioscin(saponin). Proteomics,2006,6(8):2422-2432.
    [44] Wang Y., Che C., Chiu J., et al. Dioscin (saponin)-induced generation of reactive oxygenspecies through mitochondria dysfunction: a proteomic-based study. Journal of ProteomeResearch,2007,6(12):4703-4710.
    [45] Yue Q., Cao Z., Guan S., et al. Proteomics characterization of the cytotoxicity mechanism ofganoderic acid D and computer-automated estimation of the possible drug target network.Molecular&Cellular Proteomics,2008,7(5):949-961.
    [46] Wang X., Chen Y., Han Q., et al. Proteomic identification of molecular targets of gambogicacid: Role of stathmin in hepatocellular carcinoma. Proteomics,2009,9(2):242-253.
    [47] Dal Piaz F., Vassallo A., Lepore L., et al. Sesterterpenes as Tubulin Tyrosine Ligase Inhibitors.First Insight of Structure Activity Relationships and Discovery of New Lead. Journal ofMedicinal Chemistry,2009,52(12):327-329.
    [48] Bantscheff M., Schirle M., Sweetman G., et al. Quantitative mass spectrometry in proteomics: acritical review. Analytical and Bioanalytical Chemistry,2007,389(4):1017-1031.
    [49] Rix U., Superti-Furga G. Target profiling of small molecules by chemical proteomics. NatureChemical Biology,2008,5(9):616-624.
    [50] Harsha H., Molina H., Pandey A. Quantitative proteomics using stable isotope labeling withamino acids in cell culture. Nature Protocols,2008,3(3):505-516.
    [51] Gygil S. P., Rist B., Gerber S. A., et al. Quantitative analysis of complex protein mixtures usingisotope-coded affinity tags. Nature Biotechnology,1999,17(10):994-999.
    [52] Wiese S., Reidegeld K. A., Meyer H. E., et al. Protein labeling by iTRAQ: a new tool forquantitative mass spectrometry in proteome research. Proteomics,2007,7(3):340-350.
    [53] Bantscheff M., Eberhard D., Abraham Y., et al. Quantitative chemical proteomics revealsmechanisms of action of clinical ABL kinase inhibitors. Nature Biotechnology,2007,25(9):1035-1044.
    [54] Wang C., Zhou J., Wang S., et al. Combined comparative and chemical proteomics on themechanisms of levo-tetrahydropalmatine-induced antinociception in the formalin test. Journalof Proteome Research,2010,9(6):3225-3234.
    [55] Ong S. E., Schenone M., Margolin A. A., et al. Identifying the proteins to whichsmall-molecule probes and drugs bind in cells. Proceedings of the National Academy ofSciences of the United States of America,2009,106(12):4617-4622.
    [56] Hu L., Xu S., Pan C., et al. Preparation of a biochip on porous silicon and application forlabel-free detection of small molecule-protein interactions. Rapid Communications in MassSpectrometry,2007,21(7):1277-1281.
    [57] Zhu H., Snyder M. Protein chip technology. Current Opinion in Chemical Biology,2003,7(1):55-63.
    [58] Huang J., Zhu H., Haggarty S. J., et al. Finding new components of the target of rapamycin(TOR) signaling network through chemical genetics and proteome chips. Proceedings of theNational Academy of Sciences of the United States of America,2004,101(47):16594-16599.
    [59] Becker F., Murthi K., Smith C., et al. A three-hybrid approach to scanning the proteome fortargets of small molecule kinase inhibitors. Chemistry&Biology,2004,11(2):211-223.
    [60] Licitra E. J., Liu J. O. A three-hybrid system for detecting small ligand–protein receptorinteractions. Proceedings of the National Academy of Sciences of the United States of America,1996,93(23):12817-12821.
    [61] Shim J. S., Lee J., Park H. J., et al. A new curcumin derivative, HBC, interferes with the cellcycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function.Chemistry&Biology,2004,11(10):1455-1463.
    [62] Formosa T., Barry J., Alberts B., et al. Using protein affinity chromatography to probe structureof protein machines. Methods in Enzymology,1991,208,24-45.
    [63] Saxena C., Higgs R. E., Zhen E., et al. Small-molecule affinity chromatography coupled massspectrometry for drug target deconvolution. Expert Opioion on Drug Discovery,2009,4(7):701-714.
    [64] Leslie B. J., Hergenrother P. J. Identification of the cellular targets of bioactive small organicmolecules using affinity reagents. Chemical Society Reviews,2008,37(7):1347-1360.
    [65] Terstappen G., Schlüpen C., Raggiaschi R., et al. Target deconvolution strategies in drugdiscovery. Nature Reviews Drug Discovery,2007,6(11):891-903.
    [66] Vegas A. J., Fuller J. H., Koehler A. N. Small-molecule microarrays as tools in liganddiscovery. Chemical Society Reviews,2008,37(7):1385-1394.
    [67] Bach S., Knockaert M., Reinhardt J., et al. Roscovitine targets, protein kinases and pyridoxalkinase. Journal of Biological Chemistry,2005,280(35):31208-31219.
    [68] Sato S., Kwon Y., Kamisuki S., et al. Polyproline-rod approach to isolating protein targets ofbioactive small molecules: isolation of a new target of indomethacin. Journal of the AmericanChemical Society,2007,129(4):873-880.
    [69] Makoto K., Hideo O., Kaori H., et al. The identification of an osteoclastogenesis inhibitorthrough the inhibition of glyoxalase I. Proceedings of the National Academy of Sciences of theUnited States of America,2008,105(33):11691-11696.
    [70] Snyder J., Hall A., Ni-Komatsu L., et al. Dissection of melanogenesis with small moleculesidentifies prohibitin as a regulator. Chemistry&Biology,2005,12(4):477-484.
    [71] Oda Y., Owa T., Sato T., et al. Quantitative chemical proteomics for identifying candidate drugtargets. Analytical Chemistry,2003,75(9):2159-2165.
    [72] Wang G., Shang L., Burgett A., et al. Diazonamide toxins reveal an unexpected function forornithine δ-amino transferase in mitotic cell division. Proceedings of the National Academy ofSciences of the United States of America,2007,104(7):2068-2073.
    [73] Emami K., Nguyen C., Ma H., et al. A small molecule inhibitor of β-catenin/CREB-bindingprotein transcription. Proceedings of the National Academy of Sciences of the United States ofAmerica,2004,101(34):12682-12687.
    [74] Yamamoto K., Yamazaki A., Takeuchi M., et al. A versatile method of identifying specificbinding proteins on affinity resins. Analytical Biochemistry,2006,352(1):15-23.
    [75] Zhang Q., Major M., Takanashi S., et al. Small-molecule synergist of the Wnt/β-cateninsignaling pathway. Proceedings of the National Academy of Sciences of the United States ofAmerica,2007,104(18):7444-7448.
    [76] Wulff J. E., Siegrist R., Myers A. G. The natural product avrainvillamide binds to theoncoprotein nucleophosmin. Journal of the American Chemical Society,2007,129(46):14444-14451.
    [77] Dal Piaz F., Vassallo A., Lepore L., et al. Sesterterpenes as Tubulin Tyrosine Ligase Inhibitors.First Insight of Structure Activity Relationships and Discovery of New Lead. Journal ofMedicinal Chemistry,2009,52(12):327-329.
    [78] Clerc J., Florea B. I., Kraus M., et al. Syringolin A selectively labels the20S proteasome inmurine EL4and wild-type and bortezomib-adapted leukaemic cell lines. ChemBioChem,2009,10(16):2638-2643.
    [79] Lomenick B., Hao R., Jonai N., et al. Target identification using drug affinity responsive targetstability (DARTS). Proceedings of the National Academy of Sciences of the United States ofAmerica,2009,106(51):21984-21989.
    [80] Suenaga K., Kajiwara S., Kuribayashi S., et al. Synthesis and cytotoxicity of aurilide analogs.Bioorganic&Medicinal Chemistry Letters,2008,18(14):3902-3905.
    [81] Sievers C., Billig G., Gottschalk K., et al. Prohibitins are required for cancer cell proliferationand adhesion. PLoS One,2010,5(9):e12735.
    [82] Merkwirth C., Dargazanli S., Tatsuta T., et al. Prohibitins control cell proliferation andapoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes&Development,2008,22(4):476-488.
    [83] Sato S., Murata A., Orihara T., et al. Marine natural product aurilide activates theOPA1-mediated apoptosis by binding to prohibitin. Chemistry&Biology,2011,18(1):131-139.
    [84] Semenzato M., Cogliati S., Scorrano L. Prohibitin (g) cancer: aurilide and killing byOpa1-dependent cristae remodeling. Chemistry&Biology,2011,18(1):8-9.
    [85] Costa V., Giacomello M., Hudec R., et al. Mitochondrial fission and cristae disruption increasethe response of cell models of Huntington's disease to apoptotic stimuli. EMBO MolecularMedicine,2010,2:490-503.
    [86] Wang J. X., Jiao J. Q., Li Q., et al. miR-499regulates mitochondrial dynamics by targetingcalcineurin and dynamin-related protein-1. Nature Medicine,2010,17(1):71-78.
    [87] Kotake Y., Sagane K., Owa T., et al. Splicing factor SF3b as a target of the antitumor naturalproduct pladienolide. Nature Chemical Biology,2007,3(9):570-575.
    [88] Kaida D., Motoyoshi H., Tashiro E., et al. Spliceostatin A targets SF3b and inhibits bothsplicing and nuclear retention of pre-mRNA. Nature Chemical Biology,2007,3(9):576-583.
    [89] Hasegawa M., Miura T., Kuzuya K., et al. Identification of SAP155as the target of GEX1A(Herboxidiene), an antitumor natural product. ACS Chemical Biology,2011,6:229-233.
    [90] Fan L., LAGISETTI C., Edwards C. C., et al. Sudemycins, novel small molecule analogues ofFR901464, induce alternative gene splicing. ACS Chemical Biology,2011,6(6):582-589.
    [91] Van Alphen R., Wiemer E., Burger H., et al. The spliceosome as target for anticancer treatment.British Journal of Cancer,2008,100(2):228-232.
    [92] Adam G., Sorensen E., Cravatt B. Chemical Strategies for Functional Proteomics. Molecular&Cellular Proteomics,2002,1(10):781-790.
    [93] Cravatt B., Wright A., Kozarich J. Activity-based protein profiling: from enzyme chemistry toproteomic chemistry. Annual Review of Biochemistry,2008,77,383-414.
    [94] Jessani N., Cravatt B. The development and application of methods for activity-based proteinprofiling. Current Opinion in Chemical Biology,2004,8(1):54-59.
    [95] Speers A., Cravatt B. Chemical strategies for activity-based proteomics. ChemBioChem,2004,5(1):41-47.
    [96] Sadaghiani A. M., Verhelst S. H. L., Bogyo M. Tagging and detection strategies foractivity-based proteomics. Current Opinion in Chemical Biology,2007,11(1):20-28.
    [97] Peters E. C., Gray N. S. Chemical proteomics identifies unanticipated targets of clinical kinaseinhibitors. ACS Chemical Biology,2007,2(10):661-664.
    [98] Leung D., Hardouin C., Boger D., et al. Discovering potent and selective reversible inhibitorsof enzymes in complex proteomes. Nature Biotechnology,2003,21(6):687-691.
    [99] Duncan J., Gyenis L., Lenehan J., et al. An Unbiased Evaluation of CK2Inhibitors byChemoproteomics: Characterization of Inhibitor Effects on CK2and Identification of NovelInhibitor Targets. Molecular&Cellular Proteomics,2008,7(6):1077-1088.
    [100] Greenbaum D., Baruch A., Hayrapetian L., et al. Chemical Approaches for FunctionallyProbing the Proteome. Molecular&Cellular Proteomics,2002,1(10):60-68.
    [101] Kato D., Boatright K., Berger A., et al. Activity-based probes that target diverse cysteineprotease families. Nature Chemical Biology,2005,1(1):33-38.
    [102] Blum G., Mullins S., Keren K., et al. Dynamic imaging of protease activity with fluorescentlyquenched activity-based probes. Nature Chemical Biology,2005,1(4):203-209.
    [103] Hemelaar J., Borodovsky A., Kessler B., et al. Specific and covalent targeting of conjugatingand deconjugating enzymes of ubiquitin-like proteins. Molecular and Cellular Biology,2004,24(1):84-95.
    [104] Hemelaar J., Galardy P., Borodovsky A., et al. Chemistry-based functional proteomics:mechanism-based activity-profiling tools for ubiquitin and ubiquitin-like specific proteases.Journal of Proteome Research,2004,3(2):268-276.
    [105] Borodovsky A., Ovaa H., Meester W., et al. Small-molecule inhibitors and probes forubiquitin-and ubiquitin-like-specific proteases. ChemBioChem,2005,6(2):287-290.
    [106] Rollinger J., Langer T., Stuppner H. Integrated in Silico Tools for Exploiting the NaturalProduct's Bioactivity. Planta Medica,2006,72(8):671-678.
    [107]陈凯先,蒋华良,稽汝运.(2000).计算机辅助药物设计:原理、方法及应用.上海:上海科学技术出版社.
    [108] Li H., Gao Z., Kang L., et al. TarFisDock: a web server for identifying drug targets withdocking approach. Nucleic Acids Research,2006,34(suppl2):W219-224.
    [109] Alvarez S. E., Harikumar K. B., Hait N. C., et al. Sphingosine-1-phosphate is a missingcofactor for the E3ubiquitin ligase TRAF2. Nature,2010,465(7301):1084-1088.
    [110] Hait N., Allegood J., Maceyka M., et al. Regulation of Histone Acetylation in the Nucleus bySphingosine-1-Phosphate. Science,2009,325(5945):1254-1257.
    [111] Song Y., Shao Z., Dexheimer T. S., et al. Structure-based design, synthesis, and biologicalstudies of new anticancer norindenoisoquinoline topoisomerase I inhibitors. Journal ofMedicinal Chemistry,2010,53(5):1979-1989.
    [112] Jenkins J. L., Bender A., Davies J. W. In silico target fishing: Predicting biological targets fromchemical structure. Drug Discovery Today,2007,3(4):413-421.
    [113] Ekins S., Mestres J., Testa B. In silico pharmacology for drug discovery: applications to targetsand beyond. British Journal of Pharmacology,2007,152(1):21-37.
    [114] Rognan D. Chemogenomic approaches to rational drug design. British Journal ofPharmacology,2007,152(1):38-52.
    [115] Young D. W., Bender A., Hoyt J., et al. Integrating high-content screening and ligand-targetprediction to identify mechanism of action. Nature Chemical Biology,2007,4(1):59-68.
    [116] Prathipati P., Ma N. L., Manjunatha U. H., et al. Fishing the target of antitubercular compounds:in silico target deconvolution model development and validation. Journal of Proteome Research,2009,8(6):2788-2798.
    [117] Bender A., Mikhailov D., Glick M., et al. Use of ligand based models for protein domains topredict novel molecular targets and applications to triage affinity chromatography data. Journalof Proteome Research,2009,8(5):2575-2585.
    [118] Liu X., Ouyang S., Yu B., et al. PharmMapper server: a web server for potential drug targetidentification using pharmacophore mapping approach. Nucleic Acids Research,2010,38(suppl2):W609-W614.
    [119] Jeong C. H., Bode A. M., Pugliese A., et al.[6]-Gingerol suppresses colon cancer growth bytargeting leukotriene A4hydrolase. Cancer Research,2009,69(13):5584-5591.
    [120] Wishart D. S. DrugBank and its relevance to pharmacogenomics. Pharmacogenomics,2008,9(8):1155-1162.
    [121] Wishart D. S., Knox C., Guo A. C., et al. DrugBank: a knowledgebase for drugs, drug actionsand drug targets. Nucleic Acids Research,2008,36(suppl1):D901-D906.
    [122] Greenbaum D., Baruch A., Hayrapetian L., et al. Chemical Approaches for FunctionallyProbing the Proteome. Molecular&Cellular Proteomics,2002,1(10):60-68.
    [123] Chambers C. H., John B. M., Susana P. G., et al. Ammosamides A and B target myosin.Angewandte Chemie International Edition,2009,48:728-732.
    [124] Sumiya E., Shimogawa H., Sasaki H., et al. Cell-Morphology Profiling of a Natural ProductLibrary Identifies Bisebromoamide and Miuraenamide A as Actin-Filament Stabilizers. ACSChemical Biology,2011,6(5):425-431.
    [125] Chen X., Murphy R. F. Objective clustering of proteins based on subcellular location patterns.Journal of Biomedicine and Biotechnology,2005,2:87-95.
    [126] Kuhn M., Campillos M., Letunic I., et al. A side effect resource to capture phenotypic effects ofdrugs. Molecular Systems Biology,2010,6(1):343(1-6).
    [127] Campillos M., Kuhn M., Gavin A. C., et al. Drug target identification using side-effectsimilarity. Science,2008,321(5886):263-266.
    [128] Shyur L. F., Yang N. S. Metabolomics for phytomedicine research and drug development.Current Opinion in Chemical Biology,2008,12(1):66-71.
    [129] B ttcher T., Pitscheider M., Sieber S. A. Natural products and their biological targets:proteomic and metabolomic labeling strategies. Angewandte Chemie International Edition,2010,49(15):2680-2698.
    [130] Ma H., Goryanin I. Human metabolic network reconstruction and its impact on drug discoveryand development. Drug Discovery Today,2008,13(9-10):402-408.
    [131] Feng Y., Mitchison T. J., Bender A., et al. Multi-parameter phenotypic profiling: using cellulareffects to characterize small-molecule compounds. Nature Reviews Drug Discovery,2009,8(7):567-578.
    [132] Leuenroth S. J., Okuhara D., Shotwell J. D., et al. Triptolide is a traditional Chinesemedicine-derived inhibitor of polycystic kidney disease. Proceedings of the National Academyof Sciences,2007,104(11):4389-4394.
    [133] McCallum C., Kwon S., Leavitt P., et al. Triptolide binds covalently to a90kDa nuclearprotein. Role of epoxides in binding and activity. Immunobiology,2007,212(7):549-556.
    [134] Vispé S., DeVries L., Créancier L., et al. Triptolide is an inhibitor of RNA polymerase I andII–dependent transcription leading predominantly to down-regulation of short-lived mRNA.Molecular Cancer Therapeutics,2009,8(10):2780-2790.
    [135] Pan J. RNA polymerase-An important molecular target of triptolide in cancer cells. CancerLetters,2010,292(2):149-152.
    [136] Titov D. V., Gilman B., He Q. L., et al. XPB, a subunit of TFIIH, is a target of the naturalproduct triptolide. Nature Chemical Biology,2011,7(3):182-188.
    [137] Papalia G. A., Leavitt S., Bynum M. A., et al. Comparative analysis of10small moleculesbinding to carbonic anhydrase II by different investigators using Biacore technology.Analytical Biochemistry,2006,359(1):94-105.
    [138] Cipres A., O’Malley D. P., Li K., et al. Sceptrin, a marine natural compound, inhibits cellmotility in a variety of cancer cell lines. ACS Chemical Biology,2010,5(2):195-202.
    [139] Yue Q., Cao Z., Guan S., et al. Proteomics characterization of the cytotoxicity mechanism ofganoderic acid D and computer-automated estimation of the possible drug target network.Molecular&Cellular Proteomics,2008,7(5):949-961.
    [140] Winger J., Hantschel O., Superti-Furga G., et al. The structure of the leukemia drug imatinibbound to human quinone reductase2(NQO2). BMC Structural Biology,2009,9,7.
    [141] Kuntz D. A., Nakayama S., Shea K., et al. Structural investigation of the binding of5-substituted swainsonine analogues to golgi α-mannosidase II. ChemBioChem,2010,11(5):673-680.
    [142] Fuse S., Tsukamoto H., Yuan Y., et al. Functional and structural analysis of a key region of thecell wall inhibitor moenomycin. ACS Chemical Biology,2010,5(7):701-711.
    [143] Tyner J. W., Deininger M. W., Loriaux M. M., et al. RNAi screen for rapid therapeutic targetidentification in leukemia patients. Proceedings of the National Academy of Sciences,2009,106(21):8695-8700.
    [144] Kassner P. D. Discovery of novel targets with high throughput RNA interference screening.Combinatorial Chemistry&High Throughput Screening,2008,11(3):175-184.
    [145] Oi N., Jeong C. H., Nadas J., et al. Resveratrol, a red wine polyphenol, suppresses pancreaticcancer by inhibiting leukotriene A4hydrolase. Cancer Research,2010,70(23):9755-9764.
    [1] Das P., McElroy W., Cooper R. Potential mechanisms responsible for chlorotriazine-inducedalterations in catecholamines in pheochromocytoma (PC12) cells. Life Sciences,2003,73(24):3123-3138.
    [2]肖勤,陈生弟,费俭.左旋多巴和多巴胺对PC12细胞的毒性及其他抗帕金森病药物的神经保护作用.中华老年医学杂志,2004,23(7):496-499.
    [3]杨红亚,王同聚. PC12细胞相关分子研究近况.中西医结合心脑血管病杂志,2008,6(2):223-225.
    [4] Higuchi Y., Matsukawa S. Active oxygen-mediated chromosomal1–2Mbp giant DNAfragmentation into internucleosomal DNA fragmentation in apoptosis of glioma cells inducedby glutamate. Free Radical Biology and Medicine,1998,24(3):418-426.
    [5] Tyurin V., Tyurina Y., Quinn P., et al. Glutamate-induced cytotoxicity in PC12pheochromocytoma cells: role of oxidation of phospholipids, glutathione and proteinsulfhydryls revealed by bcl-2transfection. Molecular Brain Research,1998,60(2):270-281.
    [6] Biagas K. Hypoxic-ischemic brain injury: advancements in the understanding of mechanismsand potential avenues for therapy. Current Opinion in Pediatrics,1999,11(3):223-228.
    [7] Noda M., Nakanishi H., Akaike N. Glutamate release from microglia via glutamate transporteris enhanced by amyloid-beta peptide. Neuroscience,1999,92(4):1465-1474.
    [8]虞希冲,朱桐君.谷氨酸转运体,谷氨酸/胱氨酸转运体与谷氨酸神经细胞毒作用.中国临床药理学与治疗学,2003,8(5):490-493.
    [9]宋明旭,杨吉成,王蒋平.谷氨酸诱导的PC12细胞损伤的研究.苏州科技学院学报:自然科学版,2006,23(1):62-65.
    [10] Tadesse H., Deschênes-Furry J., Boisvenue S., et al. KH-type splicing regulatory proteininteracts with survival motor neuron protein and is misregulated in spinal muscular atrophy.Human Molecular Genetics,2008,17(4):506-524.
    [11] Trabucchi M., Briata P., Garcia-Mayoral M. F., et al. The RNA-binding protein KSRPpromotes the biogenesis of a subset of microRNAs. Nature,2009,459(7249):1010-1014.
    [12] Kowara R., Moraleja K., Chakravarthy B. Involvement of nitric oxide synthase andROS-mediated activation of L-type voltage-gated Ca2+channels in NMDA-induced DPYSL3degradation. Brain Research,2006,1119(1):40-49.
    [13] Vercauteren F. G. G., Clerens S., Roy L., et al. Early dysregulation of hippocampal proteins intransgenic rats with Alzheimer's disease-linked mutations in amyloid precursor protein andpresenilin1. Molecular Brain Research,2004,132(2):241-259.
    [14] Kim Y. J., Lee W. S., Ip C., et al. Prx1suppresses radiation-induced c-Jun NH2-terminal kinasesignaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-JunNH2-terminal kinase complex. Cancer Research,2006,66(14):7136-7142.
    [15] Nejatbakhsh N., Guo C.-H., Lu T. Z., et al. Caltubin, a novel molluscan tubulin-interactingprotein, promotes axonal growth and attenuates axonal degeneration of rodent neurons. Journalof Neuroscience,2011,31(43):15231-15244.
    [16] Rossoll W., Bassell G. Spinal muscular atrophy and a model for survival of motor neuronprotein function in axonal ribonucleoprotein complexes. Cell Biology of the Axon,2009,48,87-107.
    [17] Cappelletti G., Maggioni M. G., Maci R. Influence of MPP+on the state of tubulinpolymerisation in NGF-differentiated PC12cells. Journal of Neuroscience Research,1999,56(1):28-35.
    [18] Zea Longa E W. P., Carlson S, Cummins R. Reversible middle cerebral arteryocclusion without craniectomy in rats. Stroke,1989,2084-2091.
    [19] Zhang Y., Shan L., Xu W., et al. LC-MS/MS method for the determination of cynandione A inrat plasma and tissues. Biomedical Chromatography,2008,22(10):1173-1179.
    [20] Inagaki N., Chihara K., Arimura N., et al. CRMP-2induces axons in cultured hippocampalneurons. Nature Neuroscience,2001,4(8):781-782.
    [21] Arimura N., Menager C., Fukata Y., et al. Role of CRMP-2in neuronal polarity. Journal ofNeurobiology,2004,58(1):34-47.
    [22] Wang L., Strittmatter S. A family of rat CRMP genes is differentially expressed in the nervoussystem. Journal of Neuroscience,1996,16(19):6197-6207.
    [23] Suzuki Y., Nakagomi S., Namikawa K., et al. Collapsin response mediator protein-2acceleratesaxon regeneration of nerve-injured motor neurons of rat. Journal of Neurochemistry,2003,86(4):1042-1050.
    [24] Gu Y., Hamajima N., Ihara Y. Neurofibrillary tangle-associated collapsin response mediatorprotein-2(CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522. Biochemistry,2000,39(15):4267-4275.
    [25] Chung M., Lee J., Lee J., et al. Alteration of collapsin response mediator protein-2expressionin focal ischemic rat brain. Neuroreport,2005,16(15):1647-1653.
    [26] Jiang S., Kappler J., Zurakowski B., et al. Calpain cleavage of collapsin response mediatorproteins in ischemic mouse brain. European Journal of Neuroscience,2007,26(4):801-809.
    [27] Kim J., Lim C., Yu Y., et al. Induction and subcellular localization of high-mobility groupbox-1(HMGB1) in the postischemic rat brain. Journal of Neuroscience Research,2008,86(5):1125-1131.
    [28] Lotze M., Tracey K. High-mobility group box1protein (HMGB1): nuclear weapon in theimmune arsenal. Nature Reviews Immunology,2005,5(4):331-342.
    [29] Yang Q., Wang J. Z., Li J. C., et al. High-mobility group protein box-1and its relevance tocerebral ischemia. Journal of Cerebral Blood Flow and Metabolism,2010,30(2):243-254.
    [30] Qiu J., Nishimura M., Wang Y., et al. Early release of HMGB-1from neurons after the onset ofbrain ischemia. Journal of Cerebral Blood Flow and Metabolism,2007,28(5):927-938.
    [31] Liu K., Mori S., Takahashi H., et al. Anti-high mobility group box1monoclonal antibodyameliorates brain infarction induced by transient ischemia in rats. FASEB Journal,2007,21(14):3904-3916.
    [32] Muhammad S., Barakat W., Stoyanov S., et al. The HMGB1receptor RAGE mediates ischemicbrain damage. Journal of Neuroscience,2008,28(46):12023-12031.
    [33] Pedrazzi M., Raiteri L., Bonanno G., et al. Stimulation of excitatory amino acid release fromadult mouse brain glia subcellular particles by high mobility group box1protein. Journal ofNeurochemistry,2006,99(3):827-838.
    [34] Faraco G., Fossati S., Bianchi M., et al. High mobility group box1protein is released by neuralcells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo.Journal of Neurochemistry,2007,103(2):590-603.
    [35] Bushey M. M., Jorgenson J. W. Automated instrumentation for comprehensivetwo-dimensional high-performance liquid chromatography of proteins. Analytical Chemistry,1990,62(2):161-167.
    [36] Opiteck G. J., Lewis K. C., Jorgenson J. W., et al. Comprehensive on-line LC/LC/MS ofproteins. Analytical Chemistry,1997,69(8):1518-1524.
    [37] Moritz R. L., Ji H., Schütz F., et al. A proteome strategy for fractionating proteins and peptidesusing continuous free-flow electrophoresis coupled off-line to reversed-phasehigh-performance liquid chromatography. Analytical Chemistry,2004,76(16):4811-4824.
    [38] Barabási A., Oltvai Z. Network biology: understanding the cell's functional organization.Nature Reviews Genetics,2004,5(2):101-113.
    [39] Yue Q., Cao Z., Guan S., et al. Proteomics characterization of the cytotoxicity mechanism ofganoderic acid D and computer-automated estimation of the possible drug target network.Molecular&Cellular Proteomics,2008,7(5):949-961.
    [40] Manning G., Whyte D. B., Martinez R., et al. The protein kinase complement of the humangenome. Science,2002,298(5600):1912-1934.
    [41] Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway byprotein interactions. Biochemical Journal,2000,351,289-305.
    [42] Canagarajah B. J., Khokhlatchev A., Cobb M. H., et al. Activation mechanism of the MAPkinase ERK2by dual phosphorylation. Cell,1997,90(5):859-869.
    [43] Chang F., Steelman L. S., Shelton J. G., et al. Regulation of cell cycle progression andapoptosis by the Ras/Raf/MEK/ERK pathway. International Journal of Oncology,2003,22(3):469-480.
    [44] Stanciu M., Wang Y., Kentor R., et al. Persistent activation of ERK contributes toglutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuroncultures. Journal of Biological Chemistry,2000,275(16):12200-12206.
    [45] Seo S. R., Chong S. A., Lee S. I., et al. Zn2+-induced ERK activation mediated by reactiveoxygen species causes cell death in differentiated PC12cells. Journal of Neurochemistry,2001,78(3):600-610.
    [46] Vanhoutte P., Barnier J.-V., Guibert B., et al. Glutamate induces phosphorylation of Elk-1andCREB, along with c-fos activation, via an extracellular signal-regulated kinase-dependentpathway in brain slices. Molecular&Cellular Biology,1999,19(1):136-146.
    [47] Lin C.-W., Wu M.-J., Liu I. Y.-C., et al. Neurotrophic and cytoprotective action of luteolin inPC12cells through ERK-dependent induction of Nrf2-driven HO-1expression. Journal ofAgricultural and Food Chemistry,2010,58(7):4477-4486.
    [48] Lee S. Y., Lee J. W., Lee H., et al. Inhibitory effect of green tea extract on β-amyloid-inducedPC12cell death by inhibition of the activation of NF-κB and ERK/p38MAP kinase pathwaythrough antioxidant mechanisms. Molecular Brain Research,2005,140(1):45-54.
    [49] Jin Y., FAN Y., LIU Z. Neuroprotection by sodium ferulate against glutamate‐inducedapoptosis is mediated by ERK and PI3kinase pathways1. Acta Pharmacologica Sinica,2007,28(12):1881-1890.
    [50] Wilhelm S. M., Carter C., Tang L., et al. BAY43-9006exhibits broad spectrum oral antitumoractivity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved intumor progression and angiogenesis. Cancer Research,2004,64(19):7099-7109.
    [51] Wilhelm S., Carter C., Lynch M., et al. Discovery and development of sorafenib: a multikinaseinhibitor for treating cancer. Nature Reviews Drug Discovery,2006,5(10):835-844.
    [52] Cao C., Lu S., Sowa A., et al. Priming with EGFR tyrosine kinase inhibitor and EGF sensitizesovarian cancer cells to respond to chemotherapeutical drugs. Cancer Letters,2008,266(2):249-262.
    [53] Quintás-Cardama A., Lazar A. J., Woodman S. E., et al. Complete response of stage IV analmucosal melanoma expressing KIT Val560Asp to the multikinase inhibitor sorafenib. NatureClinical Practice Oncology,2008,5(12):737-740.
    [1] Wang Z., Jiang W., Zhang Z., et al. Nitidine Chloride inhibits LPS-induced inflammatorycytokines production via MAPK and NF-kappaB pathway in RAW264.7cells. Journal ofEthnopharmacology,2012,144(1):145-150.
    [2] Hu J., Zhang W. D., Liu R. H., et al. Benzophenanthridine alkaloids from Zanthoxylum nitidum(Roxb.) DC, and their analgesic and anti-inflammatory activities. Chemistry&Biodiversity,2006,3(9):990-995.
    [3] Del Poeta M., Chen S. F., Von Hoff D., et al. Comparison of in vitro activities of camptothecinand nitidine derivatives against fungal and cancer cells. Antimicrobial Agents andChemotherapy,1999,43(12):2862-2868.
    [4] Gakunju D., Mberu E., Dossaji S., et al. Potent antimalarial activity of the alkaloid nitidine,isolated from a Kenyan herbal remedy. Antimicrobial Agents and Chemotherapy,1995,39(12):2606-2609.
    [5] Cushman M., Mohan P., Smith E. C. R. Synthesis and biological activity of structural analogsof the anticancer benzophenanthridine alkaloid nitidine chloride. Journal of MedicinalChemistry,1984,27(4):544-547.
    [6] Pan X., Han H., Wang L., et al. Nitidine chloride inhibits breast cancer cells migration andinvasion by suppressing c-Src/FAK associated signaling pathway. Cancer Letters,2011,313(2):181-191.
    [7] Chen J., Wang J., Lin L., et al. Inhibition of STAT3signaling pathway by nitidine chloridesuppressed the angiogenesis and growth of human gastric cancer. Molecular CancerTherapeutics,2012,11(2):277-287.
    [8] Teuscher C., Bunn J. Y., Fillmore P. D., et al. Gender, age, and season at immunizationuniquely influence the genetic control of susceptibility to histopathological lesions and clinicalsigns of experimental allergic encephalomyelitis: implications for the genetics of multiplesclerosis. American Journal of Pathology,2004,165(5):1593-1602.
    [9] Luccarini I., Ballerini C., Biagioli T., et al. Combined treatment with atorvastatin andminocycline suppresses severity of EAE. Experimental Neurology,2008,211(1):214-226.
    [10] Esposito M., Ruffini F., Bellone M., et al. Rapamycin inhibits relapsing experimentalautoimmune encephalomyelitis by both effector and regulatory T cells modulation. Journal ofNeuroimmunology,2010,220(1):52-63.
    [11] Sloane E., Ledeboer A., Seibert W., et al. Anti-inflammatory cytokine gene therapy decreasessensory and motor dysfunction in experimental Multiple Sclerosis: MOG-EAE behavioral andanatomical symptom treatment with cytokine gene therapy. Brain, Behavior, and Immunity,2009,23(1):92-100.
    [12] Morini M., Roccatagliata L., Dell'Eva R., et al. α-Lipoic acid is effective in prevention andtreatment of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology,2004,148(1):146-153.
    [13] Chen X., Pi R., Zou Y., et al. Attenuation of experimental autoimmune encephalomyelitis inC57BL/6mice by osthole, a natural coumarin. European Journal of Pharmacology,2010,629(1):40-46.
    [14] Furlan R., Kurne A., Bergami A., et al. A nitric oxide releasing derivative of flurbiprofeninhibits experimental autoimmune encephalomyelitis. Journal of Neuroimmunology,2004,150(1):10-19.
    [15] Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases.Annual Review of Immunology,1992,10(1):153-187.
    [16] Greter M., Heppner F. L., Lemos M. P., et al. Dendritic cells permit immune invasion of theCNS in an animal model of multiple sclerosis. Nature Medicine,2005,11(3):328-334.
    [17] Gutcher I., Becher B. APC-derived cytokines and T cell polarization in autoimmuneinflammation. Journal of Clinical Investigation,2007,117(5):1119-1127.
    [18] Steinman L. A brief history of TH17, the first major revision in the TH1/TH2hypothesis of Tcell-mediated tissue damage. Nature Medicine,2007,13(2):139-145.
    [19] Gocke A. R., Cravens P. D., Ben L.-H., et al. T-bet regulates the fate of Th1and Th17lymphocytes in autoimmunity. Journal of Immunology,2007,178(3):1341-1348.
    [20] Bettelli E., Oukka M., Kuchroo V. K. TH-17cells in the circle of immunity and autoimmunity.Nature Immunology,2007,8(4):345-350.
    [21] Manel N., Unutmaz D., Littman D. R. The differentiation of human TH-17cells requirestransforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunology,2008,9(6):641-649.
    [22] Park H., Li Z., Yang X. O., et al. A distinct lineage of CD4T cells regulates tissueinflammation by producing interleukin17. Nature Immunology,2005,6(11):1133-1141.
    [23] Lan R. Y., Ansari A. A., Lian Z. X., et al. Regulatory T cells: development, function and role inautoimmunity. Autoimmunity Reviews,2005,4(6):351-363.
    [24] Zozulya A. L., Wiendl H. The role of regulatory T cells in multiple sclerosis. Nature ClinicalPractice Neurology,2008,4(7):384-398.
    [25] Baecher Allan C., Hafler D. A. Human regulatory T cells and their role in autoimmune disease.Immunological Reviews,2006,212(1):203-216.
    [26] Kohm A. P., Carpentier P. A., Anger H. A., et al. Cutting edge: CD4+CD25+regulatory T cellssuppress antigen-specific autoreactive immune responses and central nervous systeminflammation during active experimental autoimmune encephalomyelitis. Journal ofImmunology,2002,169(9):4712-4716.
    [27] Matsumoto Y., Sakuma H., Kohyama K., et al. Paralysis of CD4+CD25+regulatory T cellresponse in chronic autoimmune encephalomyelitis. Journal of Neuroimmunology,2007,187(1):44-54.
    [28] Yu P., Gregg R. K., Bell J. J., et al. Specific T regulatory cells display broad suppressivefunctions against experimental allergic encephalomyelitis upon activation with cognate antigen.Journal of Immunology,2005,174(11):6772-6780.
    [29] McGeachy M. J., Stephens L. A., Anderton S. M. Natural recovery and protection fromautoimmune encephalomyelitis: contribution of CD4+CD25+regulatory cells within the centralnervous system. Journal of Immunology,2005,175(5):3025-3032.
    [30] Ellestad K. K., Tsutsui S., Noorbakhsh F., et al. Early life exposure to lipopolysaccharidesuppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendriticcells and regulatory T cells. Journal of Immunology,2009,183(1):298-309.
    [31] Zhang X., Koldzic D. N., Izikson L., et al. IL-10is involved in the suppression of experimentalautoimmune encephalomyelitis by CD25+CD4+regulatory T cells. International Immunology,2004,16(2):249-256.
    [32] Schwartz R., Dameshek W. Drug-induced immunological tolerance. Nature,1959,183,1682-1683.
    [33] Schwartz R., Dameshek W., Donovan J. The effects of6-mercaptopurine on homograftreactions. Journal of Clinical Investigation,1960,39(6):952-958.
    [34] Stern J. N., Illés Z., Reddy J., et al. Peptide15-mers of defined sequence that substitute forrandom amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis.Proceedings of the National Academy of Sciences of the United States of America,2005,102(5):1620-1625.
    [35] Shi Y., Feng Y., Kang J., et al. Critical regulation of CD4+T cell survival and autoimmunity byβ-arrestin1. Nature Immunology,2007,8(8):817-824.
    [36] Saraiva M., O'Garra A. The regulation of IL-10production by immune cells. Nature ReviewsImmunology,2010,10(3):170-181.
    [37] Ouyang W., Rutz S., Crellin N. K., et al. Regulation and functions of the IL-10family ofcytokines in inflammation and disease. Annual Review of Immunology,2011,29,71-109.
    [38] Ninomiya-Tsuji J., Kishimoto K., Hiyama A., et al. The kinase TAK1can activate the NIK-IkappaB as well as the MAP kinase cascade in the IL-1signalling pathway. Nature,1999,398(6724):252-256.
    [39] Liu X., Jiang H., Li H. SHAFTS: a hybrid approach for3D molecular similarity calculation.1.Method and assessment of virtual screening. Journal of Chemical Information and Modeling,2011,51(9):2372-2385.
    [40] Aggarwal B. B. Signalling pathways of the TNF superfamily: a double-edged sword. NatureReviews Immunology,2003,3(9):745-756.
    [41] Kyriakis J. M., Avruch J. Mammalian mitogen-activated protein kinase signal transductionpathways activated by stress and inflammation. Physiological Reviews,2001,81(2):807-869.
    [42] Tak P. P., Firestein G. S. NF-kappaB: a key role in inflammatory diseases. Journal of ClinicalInvestigation,2001,107(1):7-11.
    [43] Kontoyiannis D., Pasparakis M., Pizarro T. T., et al. Impaired on/off regulation of TNFbiosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associatedimmunopathologies. Immunity,1999,10(3):387-398.
    [44] Kotlyarov A., Neininger A., Schubert C., et al. MAPKAP kinase2is essential for LPS-inducedTNF-alpha biosynthesis. Nature Cell Biology,1999,1(2):94-97.
    [45] Vermeulen L., De Wilde G., Van Damme P., et al. Transcriptional activation of the NF-kappaBp65subunit by mitogen-and stress-activated protein kinase-1(MSK1). EMBO Journal,2003,22(6):1313-1324.
    [46] Saccani S., Pantano S., Natoli G. p38-Dependent marking of inflammatory genes for increasedNF-kappa B recruitment. Nature Immunology,2002,3(1):69-75.
    [47] Alpert D., Schwenger P., Han J., et al. Cell stress and MKK6b-mediated p38MAP kinaseactivation inhibit tumor necrosis factor-induced IkappaB phosphorylation and NF-kappaBactivation. Journal of Biological Chemistry,1999,274(32):22176-22183.
    [48] Son E. W., Mo S. J., Rhee D. K., et al. Vitamin C blocks TNF-alpha-induced NF-kappaBactivation and ICAM-1expression in human neuroblastoma cells. Archives of PharmacalResearch,2004,27(10):1073-1079.
    [49] Campbell J., Ciesielski C. J., Hunt A. E., et al. A novel mechanism for TNF-alpha regulationby p38MAPK: involvement of NF-kappaB with implications for therapy in rheumatoidarthritis. Journal of Immunology,2004,173(11):6928-6937.
    [50] Hayden M. S., Ghosh S. Shared principles in NF-kappaB signaling. Cell,2008,132(3):344-62.
    [51] Handschumacher R. E., Harding M. W., Rice J., et al. Cyclophilin: a specific cytosolic bindingprotein for cyclosporin A. Science,1984,226(4674):544-547.
    [52] Harding M. W., Galat A., Uehling D. E., et al. A receptor for the immuno-suppressant FK506is a cis-trans peptidyl-prolyl isomerase. Nature,1989,341(6244):758-760.
    [53] Fenteany G., Standaert R. F., Lane W. S., et al. Inhibition of proteasome activities andsubunit-specific amino-terminal threonine modification by lactacystin. Science,1995,726-726.
    [54] Chen J. K., Lane W. S., Schreiber S. L. The identification of myriocin-binding proteins.Chemistry&Biology,1999,6(4):221-235.
    [55] Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized ppb-rangemass accuracies and proteome-wide protein quantification. Nature Biotechnology,2008,26(12):1367-1372.
    [56] Miao F., Yang X., Zhou L., et al. Structural modification of sanguinarine and chelerythrine andtheir antibacterial activity. Natural Product Research,2011,25(9):863-875.
    [57] Braun M., Camps X., Vostrowsky O., et al. Synthesis of a biotinated lipofullerene as a newtype of transmembrane anchor. European Journal of Organic Chemistry,2000,2000(7):1173-1181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700