用户名: 密码: 验证码:
酚类化合物的酶催化聚合及应用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酶作为催化剂在有机合成中已经得到了较为广泛的研究,但酶催化聚合反应的研究相对较少。酚类化合物在过氧化物酶的催化下可以发生聚合反应,这是一种不使用有毒单体甲醛、且在温和条件下得到酚聚合物的新方法,近年来吸引了众多学者的关注。
     本文在水相胶束体系中,以辣根过氧化物酶为催化剂,成功实现了苯酚的酶催化聚合。由于不使用有机溶剂,该反应体系中酶催化剂的高活性得以保持,酶用量少、反应速率快,表现出高效、低成本、绿色环保的特点,使酶催化苯酚聚合反应的实用性能大大提高。在表面活性剂用量由0.1g增加到0.4g的过程中,苯酚聚合物的产率逐渐增加,最终达95%左右。在水相胶束体系中,苯酚的酶催化聚合反应还可以在较宽的pH值范围内进行,具有较好的酸碱耐受性。通常情况下,在水相胶束体系中只能得到溶解性较差的聚合产物,胶束的盐效应使得在pH=8的磷酸氢二钾-柠檬酸缓冲溶液中,可以得到在丙酮、四氢呋喃、二甲亚砜、DMF等溶剂中可溶的聚苯酚。在此缓冲溶液中,十二烷基苯磺酸钠用量由0.3g增加到0.5g时,反应产率由54.5%增加到80.6%,质均分子量由3.5×10~4增加到8.0×10~4。而反应温度由20℃增加到50℃时,聚合物的分子量逐渐增加,但聚合反应产率先增加后减少。苯酚聚合物的分解温度在300℃以上,表现出较好的热稳定性。以苯酚聚合物为载体制备了一种新型结构的负载型钯配合物催化剂,用于催化芳基碘、芳基溴及活化芳基氯的Heck反应,产率在80%以上。该配合物可重复用于催化碘苯与苯乙烯的反应,重复使用5次,反应产率仍达90.8%。
     在水相胶束体系中,进行了4-甲基苯酚的酶催化聚合,反应产率大于90%,所得产物为平均聚合度小于10的低聚物,这是分子链末端的酚羟基易转化为醌式结构造成的。由于分子量较低且含有甲基,4-甲基苯酚聚合产物在200℃左右即开始分解。4-甲基苯酚低聚物具有与天然多酚类化合物类似的结构,表现出较好的抗自由基性能,清除DPPH自由基和ABTS阳离子自由基的Ic50分别为33.3mg/L和3.4mg/L,与性能较好的天然化合物(芦丁、松脂醇等)的抗自由基性能相当。由于合成方法简单、在空气中长期稳定,无刺激性气味,4-甲基苯酚低聚物作为抗氧化剂具有较好的应用前景。
     在有机溶剂和磷酸盐缓冲溶液(pH=7)的混合体系中,以辣根过氧化物酶为催化剂,得到了4-氯苯酚和4-溴苯酚聚合物(产率在60%左右)。改变有机溶剂种类对聚合反应产率影响不大,但聚合物的分子量变化较大,以甲醇为有机溶剂,4-氯苯酚和4-溴苯酚聚合产物分子量较低,质均分子量在2.0×10~4以下。有机溶剂和缓冲溶液配比改变时,聚合物的产率和分子量均受到较大的影响。4-氯苯酚和4-溴苯酚聚合物对DPPH自由基和ABTS阳离子自由基均表现出一定的抑制作用,4-氯苯酚聚合物清除DPPH自由基和ABTS阳离子自由基的Ic50分别为240mg/L和11.1mg/L。而4-溴苯酚聚合物清除两种自由基的Ic50分别为365mg/L和23.5mg/L,其抗自由基性能稍弱于4-氯苯酚聚合物,可能是由于溴原子半径较大,形成空间位阻,不利于聚合物链与自由基相互作用造成的。
Enzymes used as catalyst in organic synthesis were investigated extensively; however, there arerelatively less reports on polymerization catalyzed by enzyme. Polymerizations of phenol compounds canbe performed by using peroxidase as catalyst. The finding has attracted many scholars' attention because itprovides a new method for producing phenol polymers under mild conditions without formaldehyde.
     In this paper, polymerization of phenol catalyzed by horseradish peroxidase was performed smoothly inaqueous micelle system. Due to no organic solvent added, the high catalytic activity of horseradishperoxidase is maintained. Tiny amount of enzyme is used but the reaction rate is very fast in aqueousmicelle system. The novel reaction system holds advantages of high efficiency, low cost and environmentalbenign. As a result, the practical performance of the enzymatic phenol polymerization will be enhancedgreatly. The yield of the phenol polymer increases by increasing the amount of surfactant from0.1to0.4g,and the final yield is up to95%. The phenol polymerization catalyzed by horseradish peroxidase in aqueousmicelle system can be performed effectively over a wide pH range from4to10and shows good acid-alkalitolerance. Phenol polymer obtained in aqueous micelle system often exhibits poor solubility. Interestingly,phenol polymer shows good solubility in acetone, THF, DMSO and DMF can be prepared inphosphate-citric acid buffer (pH=8) because of the salt effect on micelle. The yield of the phenol polymerobtained in the buffer increases from54.5%to80.6%when the dosage of sodium dodecyl benzenesulfonate rises from0.3g to0.5g. Meanwhile, the weight-average molecular weight of the polymerincreases from3.5×10~4to8.0×10~4. When the reaction temperature rises from20℃to50℃, the averagemolecular weight of the polymer increases but the yield increases first, and then decreases. The decomposition temperature of the soluble phenol polymer is higher than300℃and shows good thermalstability. A novel supported palladium complex catalyst is synthesized by using the obtained phenolpolymer as carrier. Heck reactions of aryl iodides, aryl bromides or activated aryl chlorides can becatalyzed by the complex smoothly and the yields of the product are higher than80%. The complex can bereused for Heck reaction of iodobenzene with styrene and yield of90.8%is obtained at the cycle of five.
     Enzymatic polymerization of p-cresol can also be performed smoothly in aqueous micelle system and theyield of the product is higher than90%. The average degree of the product is less than10probably due tothe phenol structure at the end of the molecular chain turns into quinine structure. p-Cresol oligomerdecomposes at200℃because of the low molecular weight and the presence of methyl. The structure of thep-cresol oligomer is very similar to the natural polyphenolic compounds, and also shows good free radicalscavenging activities. The concentration in mg/L that p-cresol oligomer inhibits free radical by50%(Ic50)was calculated and the result is33.3mg/L (for DPPH free radical) and3.4mg/L (for ABTS cation freeradical) respectively. The free radical scavenging activity is comparable with natural compound (rutin orpinoresinol) showing good performance. The synthetic method of p-cresol oligomer is very simple. Inaddition, it shows good stability in air and has no stimulating smell. As a result, p-cresol oligomer has goodapplication prospect as a novel antioxidant.
     p-Chlorophenol polymer and p-bromophenol polymer with moderate yields are synthesized in themixture of organic solvent and phosphate buffer (pH=7) by using horseradish peroxidase as catalyst. Thetype of the organic solvent has little effect on the polymer yield; nevertheless, the molecular weight of thepolymer varies greatly. p-Chlorophenol polymer and p-bromophenol polymer with weight-averagemolecular weight less than2.0×10~4are produced by choosing methanol as organic solvent. The volumeratio of organic solvent to buffer has great effect on the yield and molecular weight of the polymer. Ic50of p-chlorophenol polymer for DPPH free radical and ABTS cation free radical is240mg/L and11.1mg/Lrespectively. Under the same reaction conditions, Ic50of p-bromophenol polymer for DPPH free radical andABTS cation free radical is365mg/L and23.5mg/L respectively. It is obvious that the free radicalscavenging activity of p-bromophenol polymer is poorer than p-chlorophenol polymer. The reason isprobably due to the steric effect related to the larger bromine atom preventing the interaction of polymerchain with free radicals.
引文
[1]李树本.酶化学[M].北京:化学工业出版社,2008:1-5.
    [2]孙娜,杨丰科,刘均洪.酶催化技术在工业上的应用进展[J].工业催化,2003,11:7-11.
    [3]齐耿耿,孙建中,周其云,等.酶催化聚合研究进展[J].功能高分子学报,2002,15:347-354.
    [4] Kobayashi S, Ohmae M. Enzymatic polymerization to polysaccharides [J]. Adv. Polym. Sci.,2006,194:159-210.
    [5] Mileti N, Loos K, Gross R A. Enzymatic polymerization of polyester. Biocatalysis in PolymerChemistry [M]. Publisher: Wiley-VCH Verlag GmbH&Co. KGaA.2011:83-129.
    [6] Kobayashi S. Recent developments in lipase-catalyzed synthesis of polyesters [J]. Macromol. RapidCommun.,2009,30:237-266.
    [7] Kobayashi S, Makino A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry [J].Chem. Rev.2009,109:5288-5353.
    [8] Peng Xu P, Amarjit S, Kaplan D L. Enzymatic catalysis in the synthesis of polyanilines and derivativesof polyanilines [J]. Adv. Polym. Sci.,2006,194:69-94.
    [9] Hollmann F. Enzymatic Polymerization of vinyl polymers. Biocatalysis in polymer chemistry [M].Publisher: Wiley-VCH Verlag GmbH&Co. KGaA.2011:143-163.
    [10] Amarjit S, Kaplan D L. In vitro enzyme-induced vinyl polymerization [J]. Adv. Polym. Sci.,2006,194:211-224.
    [11] Uyama H. Enzymatic Polymerization. synthesis of polymers: new structures and methods [M].Publisher: Wiley-VCH Verlag GmbH&Co. KGaA.2012:677-699.
    [12] Reihmann M, Ritter H. Synthesis of phenol polymers using peroxidases [J]. Adv. Polym. Sci.,2006,194:1-49.
    [13] Puskas J, Sen M Y, Seo K S. Green polymer chemistry using nature’s catalyst, enzymes [J]. J. Polym.Sci: Part A: Polym. Chem.,2009,47:2959-2976.
    [14] Divaker S. Enzymatic polymerization. Enzymatic transformation [M]. Publisher: Springer India,2013:65-79.
    [15] Kobayashi S, Kashiwa K, Kawasaki T, et al. Novel method for polysaccharide synthesis using anenzyme: the first in vitro synthesis of cellulose via a nonbiosynthetic path utilizing cellulase as catalyst [J].J. Am. Chem. Soc.,1991,113:3079-3084.
    [16] Egusa S, Kitaoka T, Goto M, et al. Synthesis of cellulose in vitro by using a cellulase/surfactantcomplex in a nonaqueous medium [J]. Angew. Chem. Int. Ed.,2007,46:2063-2065.
    [17] Okamoto E, Kiyosada T, Shoda S I, et al. Synthesis of alternatingly6-O-methylated cellulose viaenzymatic polymerization of a substituted cellobiosyl fluoride monomer catalyzed by cellulase [J].Cellulose,1997,4:161-172.
    [18] Fort S, Boyer V, Greffe L, et al. Highly efficient synthesis of (1→4)-oligo-and-polysaccharides using amutant cellulose [J]. J. Am. Chem. Soc.,2000,122:5429-5437.
    [19] Kobayashi S, Shimada J, Kashiwa K, et al. Enzymic polymerization of α-D-maltosyl fluoride utilizingα-amylase as catalyst: a new approach for synthesis of maltooligosaccharides [J]. Macromolecules,1992,25:3237-3246.
    [20] Kobayashi S, Kiyosada T, Shoda S. Synthesis of artificial chitin: irreversible catalytic behavior of aglycosyl hydrolase through a transition state analogue substrate [J]. J. Am. Chem. Soc.,1996,118:13113-13114.
    [21] Ochiai H, Ohmae M, Kobayashi S. Enzymatic synthesis of alternatingly6-O-carboxymethylatedchitotetraose by selective glycosidation with chitinase catalysis [J]. Chem. Lett.,2004,33:694-695.
    [22] Makino A, Ohmae M, Kobayashi S. Synthesis of fluorinated chitin derivatives via enzymaticpolymerization [J]. Macromol. Biosci.,2006,6:862-872.
    [23] Fujita M,Shoda S, Kobayashi S. Xylanase-catalyzed synthesis of a novel polysaccharide having aglucose-cylose repeating unit, a cellulose-xylan hybrid polymer [J]. J. Am. Chem. Soc.,1998,120:6411-6412.
    [24] Kobayashi S, Makino A, Matsumoto H, et al. Enzymatic polymerization to novel polysaccharideshaving a glucose-N-acetylglucosamine repeating unit, a cellulose–chitin hybrid polysaccharide [J].Biomacromolecules,2006,7:1644-1656.
    [25] Kobayashi S, Makino A, Tachibana N, et al. Chitinase-catalyzed synthesis of a chitin-xylan hybridpolymer: a novel water-soluble β(1→4) polysaccharide having an N-acetylglucosamine-xylose repeatingunit [J]. Macromol. Rapid Commun.,2006,27:781-786.
    [26] Uyama H, Kobayashi S. Enzymatic ring-opening polymerization of lactones catalyzed by lipase [J].Chem. Lett.,1993:1149-1150.
    [27] Knani D, Gutman A L, Kohn D H. Enzymatic polyesterification in organic media [J]. J. Polym. Sci.Part A: Polym. Chem.,1993,31:1221-1232.
    [28] Uyama H, Takeya K, Hoshi N, et al. Lipase-catalyzed ring-opening polymerization of12-dodecanolide[J]. Macromolecules,1996,28:7046-7050.
    [29] Poojari Y, Beemat J S, Clarson S J. Enzymatic synthesis of poly(-caprolactone)[J]. Polym. Bull.,2013, DOI10.1007/s00289-013-0916-1.
    [30] Kikuchi H, Uyama H, Kobayash S. Lipase-catalyzed enantioselective copolymerization of substitutedlactones to optically active polyesters [J]. Macromolecules2000,33:8971-8975.
    [31] Yang Y, Yu Y, Zhang Y, et al. Lipase/esterase-catalyzed ring-opening polymerization: A green polyestersynthesis technique [J]. Process Biochemistry,2011,46:1900-1908.
    [32] Xiao Y, Takwa M, Hult K, et al. Systematic comparison of HEA and HEMA as initiators in enzymaticring-opening polymerizations [J]. Macromol. Biosci.,2009,9:713-720.
    [33] Mena M, Chanfreau S, Gimeno M, et al. Enzymatic synthesis of poly-L-lactide-co-glycolide in theionic liquid1-butyl-3-methylimidazolium hexafluorophosphate [J]. Bioprocess. Biosyst. Eng.,2010,33:1095-1101.
    [34] He F, Li S, Garreau H, et al. Enzyme-catalyzed polymerization and degradation of copolyesters ofε-caprolactone and γ-butyrolactone [J]. Polymer,2005,46:12682-12688.
    [35] Hans M, Keul H, Moeller M. Ring-opening polymerization of DD-lactide catalyzed by novozyme435[J]. Macromol. Biosci.2009,9:239-247.
    [36] Vouyiouka S N, Topakas E, Katsini A, A Green route for the preparation of aliphatic polyesters vialipase-catalyzed prepolymerization and low-temperature postpolymerization [J]. Macromol. Mater. Eng.2012, DOI:10.1002/mame.201200188.
    [37] Miao S, Zhang S, Su Z, et al. Chemoenzymatic synthesis of oleic acid-based polyesters for use ashighly stable biomaterials [J]. J. Polym. Sci. Part A: Polym. Chem.,2008,46:4243-4248.
    [38] Habaue S, AsaiM, Morita M, et al. Chemospecific ring-opening polymerization of α-methylenemacrolides [J]. Polymer,2003,44(18):5195-5200.
    [39] Hilker I, Rabani G, Verzijl G K, et al. Chiral polyesters by dynamic kinetic resolution polymerization[J]. Angew. Chem. Int. Ed.,2006,45:2130-2132.
    [40] Ebata H, Toshima K, Matsumura S. Lipase-catalyzed synthesis and properties ofpoly[(12-hydroxydodecanoate)-co-(12-hydroxystearate)] directed towards novel green and sustainableelastomers [J]. Macromol. Biosci.,2008,8:38-45.
    [41] Matsumura S, Harai S, Toshima K. Lipase-catalyzed polymerization of diethyl carbonate and diol toaliphatic poly(alkylene carbonate)[J]. Macromol. Chem. Phys.,2000,201:1632-1639.
    [42] Kaihara S, Fisher J P, Matsumura S. Chemo-enzymatic synthesis of degradablePTMC-b-PECA-b-PTMC triblock copolymers and their micelle formation for pH-dependent controlledrelease [J]. Macromol. Biosci.2009,9:613-621.
    [43] Cruz-Silva R, Roman P, Romero J. Enzymatic synthesis of polyaniline and other electricallyconductive polymers. Biocatalysis in polymer chemistry [M]. Publisher: WILEY-VCH Verlag GmbH&Co.KGaA,2011:187-210.
    [44] Kobayashi S, Kaneko I, Uyama H. Enzymatic oxidation polymerization of o-phenylenediamine [J].Chem. Lett.,1992,393-394.
    [45] Alva K S, Kumar J, Marx K A, et al. Enzymatic synthesis and characterization of a novel water-solublepolyaniline: poly(2,5-diaminobenzenesulfonate)[J]. Macromolecules,1997,30:4024-4029.
    [46] Shan J Y, Cao S K. Enzymatic polymerization of aniline and phenol derivatives catalyzed byhorseradish peroxidase in dioxane [J]. Polym. Adv. Technol.,2000,11:288-293.
    [47] Liu W, Kumar J, Tripathy S, et al. Enzymatically synthesized conducting polyaniline [J]. J. Am. Chem.Soc.,1999,121:71-78.
    [48] Huh P, Kim S C, Kim Y. Optical and electrochemical detection of saccharides withpoly(aniline-co-3-aminobenzeneboronic acid) prepared from enzymatic polymerization [J].Biomacromolecules,2007,8:3602-3607.
    [49] Thiyagarajan M, Samuelson L A, Kumar J, et al. Helical conformational specificity of enzymaticallysynthesized water-soluble conducting polyaniline nanocomposites [J]. J. Am. Chem. Soc.,2003,125:11502-11503.
    [50] Mohammad R N, Ali A E. Comparative study on the enzymatic polymerization of N-substituted anilinederivatives [J]. Polym. Adv. Technol.,2005,16:305-309.
    [51] Mohammad R N, Roya S, Ali A E. Enzymatic oxidation of alkoxyanilines for preparation ofconducting polymers [J]. J. Appl. Polym. Sci.,2007,103:3724-3729.
    [52] Valérie R, Rebeca M, Estibalitz O, et al. Ionic liquid immobilized enzyme for biocatalytic synthesis ofconducting polyaniline [J]. Macromolecules,2006,39:8547-8549.
    [53] Kim S C, Whitten J, Kumar J, et al. Self-doped carboxylated polyaniline: effect of hydrogen bondingon the doping of polymers [J]. Macromolecular Research,2009,17:631-637.
    [54] Caramyshev A V, Lobachov V M, Selivanov D V, et al. Micellar peroxidase-catalyzed synthesis ofchiral polyaniline [J]. Biomacromolecules,2007,8:2549-2555.
    [55] Shumakovich G, Streltsova A, Gorshina E, et al. Laccase-catalyzed oxidative polymerization of anilinedimmer (N-phenyl-1,4-phenylenediamine) in aqueous micellar solution of sodium dodecylbenzenesulfonate[J]. J. Mol. Catal. B: Enzymatic,2011,69:83-88.
    [56] Shumakovich G, Kurova V, Vasil’eva I, et al. Laccase-mediated synthesis of conductingpolyaniline [J]. J. Mol. Catal. B: Enzymatic,2012,77:105-110.
    [57] Ikeda R, Tanaka H, Uyama H, et al. Laccase-catalyzed polymerization of acrylamide [J]. Macromol.Rapid Commun.,1998,19:423-425.
    [58] Tsujimoto T, Uyama H, Kobayashi S. Polymerization of vinyl monomers using oxidase catalysts [J].Macromol. Biosci.,2001,1:228-232.
    [59] Kalra B, Gross R A. Horseradish peroxidase mediated free radical polymerization of methylmethacrylate [J]. Biomacromolecules,2000,1:501-505.
    [60] Shogren R L, Willett J L, Biswas A. HRP-mediated synthesis of starch–polyacrylamide graftcopolymers [J]. Carbohydrate Polymers,2009,75:189-191.
    [61] Loos K. Biocatalysis in polymer chemistry, Wiley-VCH, Weinheim, Germany2011, Chapter7,165-185.
    [62] Ghoul M, Chebil L. Enzymatic polymerization of phenolic compounds by oxidoreductases, SpringerBriefs in Green Chemistry for Sustainability, DOI:10.1007/978-94-007-3919-2_1,2012.
    [63] Klibanov A M. Enzymes that work in organic solvents [J]. Chem. Tech.,1986,16(6):354-359.
    [64] Dordick J S, Marletta M A, Klibanov A M. Polymerization of phenols catalyzed by peroxidase innonaqueous media [J]. Biotechnol. Bioeng.,1987,30:31-36.
    [65] Akkara J A, Senecal K J, Kaplan D L. Synthesis and characterization of polymers produced byhorseradish peroxidase in dioxane [J]. J. Polym. Sci: Part A: Polym. Chem.,1991,29:1561-1574.
    [66] Uyama H, Kurioka H, Kaneko I, et al. Synthesis of a new family of phenol resin by enzymaticoxidative polymerization [J]. Chem. Lett.,1994:423-426.
    [67] Uyama H, Kurioka H, Sugihara J, et al. Enzymatic synthesis and thermal properties of a new class ofpolyphenol [J]. Bull. Chem. Soc. Jpn.,1996,69:189-193.
    [68] Oguchi T, Tawaki S, Uyama H, et al. Soluble polyphenol [J]. Macromol. Rapid Commun.,1999,20:401-403.
    [69] Oguchi T, Tawaki S, Uyama H, et al. Enzymatic synthesis of soluble polyphenol [J]. Bull. Chem. Soc.Jpn.,2000,73:1389-1396.
    [70]马林,孙旭东,董爱武,等.非水介质中辣根过氧化物酶(HRP)催化酚类底物聚合反应速度的影响因素[J].生物化学杂志,1995,11(1):95-99.
    [71]刘伟,马林,王今堆,等.酶在非水介质中催化合成纳米级有机功能材料的研究[J].自然科学进展—国家重点实验室通讯,1995,5(2):236-240.
    [72] Liu W, Ma L, Wang J D, et al. Effect of aggregation of p-phenylphenol on enzymatic polymersynthesis in dioxane/water mixture [J]. J. Polym. Sci: Part A: Polym. Chem.,1995,33:2339-2345.
    [73]许海燕,徐振华,庞正智.过氧化物酶催化酚聚合的研究[J].功能高分子学报,1995,8:355-359.
    [74]周攀登,付时雨.漆酶催化对苯基苯酚的聚合[J].高分子学报,2004,(4):614-616.
    [75] Shan J Y, Han L Y, Bai F L, et al. Enzymatic polymerization of aniline and phenol derivativescatalyzed by horseradish peroxidase in dioxane(Ⅱ)[J]. Polym. Adv. Technol.,2003,14:330-336.
    [76] Kim Y J, Uyama H, Kobayashi S. Regioselective synthesis of poly(phenylene) as a complex withpoly(ethylene glycol) by template polymerization of phenol in water [J]. Macromolecules,2003,36:5058-5060.
    [77] Kim Y J, Uyama H, Kobayashi S. Enzymatic template polymerization of phenol in the presence ofwater-soluble polymers in an aqueous medium [J]. Polym. J.,2004,36:992-998.
    [78] Kim Y J, Uyama H, Kobayashi S. Peroxidase-catalyzed oxidative polymerization of phenol with anonionic polymer surfactant template in water [J]. Macromol. Biosci.,2004,4:497-502.
    [79] Kim Y J, Shibata K, Uyama H, et al. Synthesis of ultrahigh molecular weight phenolic polymers byenzymatic polymerization in the presence of amphiphilic triblock copolymer in water [J]. Polymer,2008,49:4791-4795.
    [80] Peng Y, Liu H W, Zhang X Y, et al. CNT templated regioselective enzymatic polymerization of phenolin water and modification of surface of MWNT thereby [J]. J. Polym. Sci. Part A: Polym. Chem.,2009,47:1627-1635.
    [81]叶伟东,刘泺,吴国锋,等.离子液体在有机合成中的应用研究进展[J].有机化学,2008,28:2081-2094.
    [82] Erbeldinger M, Mesiano A J, Russell A J. Enzymatic catalysis of formation of Z-aspartame in ionicliquid-an alternative to enzymatic catalysis in organic solvents [J]. Biotechnol. Prog.,2000,16(6):1129-1131.
    [83] Eker B, Zagorevski D, Zhu G, et al. Enzymatic polymerization of phenols in room-temperature ionicliquids [J]. J. Mol. Catal. B: Enzymatic,2009,59:177-184.
    [84] Zaragoza-Gasca P, Villamizar-Gálvez O J, García-Arrazola R, et al. Use of ionic liquid for theenzyme-catalyzed polymerization of phenols [J]. Polym. Adv. Technol.,2010,21:454-456.
    [85] Ayyagari M S, Marx K A, Tripathy S K, et al. Controlled free-radical polymerization of phenolderivatives by enzyme-catalyzed reactions in organic solvents [J]. Macromolecules,1995,28:5192-5197.
    [86] Ayyagari M, Akkara J A, Kaplan D L. Enzyme-mediated polymerization reactions:peroxidase-catalyzed polyphenol synthesis [J]. Acta. Polym.,1996,47:193-203.
    [87] Uyama H, Kurioka H, Sugihara J, et al. Peroxidase-catalyzed oxidative polymerization of cresols to anew family of polyphenols [J]. Bull. Chem. Soc. Jpn.,1995,68:3209-3214.
    [88] Uyama H, Kurioka H, Sugihara J, et al. Oxidative polymerization of p-alkylphenols catalyzed byhorseradish peroxidase [J]. J. Polym. Sci. A: Polym. Chem.,1997,35:1453-1459.
    [89] Mita N, Tawaki S, UyamaH, et al. Enzymatic oxidative polymerization of phenol in an aqueoussolution in the presence of a catalytic amount of cyclodextrin [J]. Macromol. Biosci.,2002,2:127-130.
    [90] Tonami H, Uyama H, Kobayashi S, et al. Enzymatic polymerization of m-substituted phenols in thepresence of2,6-di-O-methyl-β-cyclodextrin in water [J]. e-Polymers,2002, no.003:1-7.
    [91] Mejias L, Schollmeyer D, Sepulveda-Boza S, et al. Cyclodextrins in polymer synthesis: enzymaticpolymerization of a2,6-dimethyl-β-cyclodextrin/2,4-dihydroxyphenyl-4ˊ-hydroxybenzylketonehost-guest complex catalyzed by horseradish peroxidase (HRP)[J]. Macromol. Biosci.,2003,3:395-399.
    [92] Xu Y P, Huang G L, Yu Y T. Kinetics of phenolic polymerization catalyzed by peroxidase in organicmedia [J]. Biotechnol. Bioeng.,1995,47:117-119.
    [93] Kurioka H, Komatsu I, Uyama H, et al. Enzymatic oxidative polymerization of alkylphenols [J].Macromol. Rapid Commun.,1994,15:507-510.
    [94] Tonami H, Uyama1H, Kobayashi S, et al. Peroxidase-catalyzed oxidative polymerization ofm-substituted phenol derivatives [J]. Macromol. Chem. Phys.,1999,200:2365-2371.
    [95] Tonami H, Uyama1H, Kobayashi S. Chemoselective oxidative polymerization of m-ethynylphenol byperoxidase catalyst to a new reactive polyphenol [J]. Biomacromolecules,2000,1:149-151.
    [96] Ikeda R, Uyama H, Kobayashi S. Novel synthetic pathway to a poly(phenylene oxide).laccase-catalyzed oxidative polymerization of syringic acid [J]. Macromolecules,1996,29:3053-3054.
    [97] Ikeda R, Sugihara J, Uyama H, et al. Enzymatic oxidative polymerization of2,6-dimethylphenol [J].Macromolecules,1996,29:8702-8705.
    [98] Marjasvaara A, Torvinen M, Kinnunen H, et al. Laccase-catalyzed polymerization of two phenoliccompounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionizationfourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociationexperiments [J]. Biomacromolecules,2006,7:1604-1609.
    [99] Xu P, Kumar J, Samuelson L, et al. Monitoring the enzymatic polymerization of4-phenylphenol bymatrix-Assisted laser desorption ionization time-of-flight mass spectrometry: A novel approach [J].Biomacromolecules,2002,3:889-893.
    [100] Uyama H, Lohavisavapanich C, Ikeda R, et al. Chemoselective polymerization of a phenol derivativehaving a methacryl group by peroxidase catalyst [J]. Macromolecules,1998,31:554-556.
    [101] Reihmann M H, Ritter H. Enzymatically catalyzed synthesis of photocrosslinkable oligophenols [J].Macromol. Chem. Phys.,2000,201:1593-1597.
    [102] Pang Y J, Ritter H, Tabatabai M. Cyclodextrins in polymer chemistry: enzymatically catalyzedoxidative polymerization of para-functionalized phenol derivatives in aqueous medium by use ofhorseradish peroxidase [J]. Macromolecules,2003,36:7090-7093.
    [103] Reihmann M H, Ritter H. Oxidative oligomerization of cyclodextrin-complexed bifunctional phenolscatalyzed by horseradish peroxidase in water [J]. Macromol. Chem. Phys.,2000,201:798-804.
    [104] Reihmann M H, Ritter H. Oxidative copolymerisation of para-functionalized phenols catalyzed byhorseradish peroxidase and thermocrosslinking via Diels-Alder and (1+3) cycloaddition [J]. Macromol.Biosci.,2001,1:85-90.
    [105] Cui Y S, Han X Q, Ding Y J, et al. Enzymatic synthesis of polyphenols with longer conjugationlengths [J]. Polym. Bull.,2010,64:647-656.
    [106] Wang P, Martin B D, Parida S, et al. Multienzymic synthesis of poly(hydroquinone) for use as aredox polymer [J]. J. Am. Chem. Soc.,1995,117:12885-12886.
    [107] Tonami H, Uyama H, Kobayashi S, et al. Chemoenzymatic synthesis of a poly(hydroquinone)[J].Macromol. Chem. Phys.,1999,200:1998-2002.
    [108] Kim S, Silva C, Evtuguin D V, et al. Polyoxometalate/laccase-mediated oxidative polymerization ofcatechol for textile dyeing [J]. Appl. Microbiol. Biotechnol.,2011,89:981-987.
    [109] Kobayashi S, Kurioka H, Uyama H. Enzymatic synthesis of a soluble polyphenol derivative from4,4’-biphenyldiol [J]. Macromol. Rapid Commun.,1996,17:503-508.
    [110] Kobayashi S, Uyama H, Ushiwata T, et al. Enzymatic oxidative polymerization of bisphenol-A to anew class of soluble polyphenol [J]. Macromol. Chem. Phys.,1998,199:777-782.
    [111] Kadota J, Fukuoka T, Uyama H, et al. New positive-type photoresists based on enzymaticallysynthesized polyphenols [J]. Macromol. Rapid Commun.,2004,25:441-444.
    [112] Kim Y H, An E S, Park S Y, et al. Polymerization of bisphenol A using coprinus cinereus peroxidase(CiP) and its application as a photoresist resin [J]. J. Mol. Catal. B: Enzymatic,2007,44:149-154.
    [113] Ikeda R, Tanaka H, Uyama H, et al. Enzymatic synthesis and curing of poly(cardanol)[J]. Polym. J.,2000,32:589-593.
    [114] Kim Y H, An E S, Song B K, et al. Polymerization of cardanol using soybean peroxidase and itspotential application as anti-biofilm coating material [J]. Biotechnol. Lett.,2003,25:1521-1524.
    [115] Won K, Kim Y H, An E S, et al. Horseradish peroxidase-catalyzed polymerization of cardanol in thepresence of redox mediators [J]. Biomacromolecules,2004,5:1-4.
    [116] Kim Y H, Won K, Kwon J M, et al. Synthesis of polycardanol from a renewable resource using afungal peroxidase from coprinus cinereus [J]. J. Mol. Catal. B-Enzymatic,2005,34:33-38.
    [117] Park S Y, Kim Y H, Won K, et al. Enzymatic synthesis and curing of polycardol from renewableresources [J]. J. Mol. Catal. B-Enzymatic,2009,57:312-316.
    [118] Kim Y H, An E S, Park S Y, et al. Enzymatic epoxidation and polymerization of cardanol obtainedfrom a renewable resource and curing of epoxide-containing polycardanol [J]. J. Mol. Catal. B-Enzymatic,2007,45:39-44.
    [119] Mejias L, Reihmann M H, Sepulveda-Boza S, et al. New polymers from natural phenols usinghorseradish or soybean peroxidase [J]. Macromol. Biosci.,2002,2:24-32.
    [120] Uyama H. Artificial polymeric flavonoids: synthesis and application [J]. Macromol. Biosci.,2007,7:410-422.
    [121] Kurisawa M, Chung J E, Uyama H, et al. Laccase-catalyzed synthesis and antioxidant property ofpoly(catechin)[J]. Macromol. Biosci.2003,3:758-764.
    [122] Kurisawa M, Chung J E, Kim Y J. Amplification of antioxidant activity and xanthine oxidaseinhibition of catechin by enzymatic polymerization [J]. Biomacromolecules,2003,4:469-471.
    [123] Kawakita H, Hamamoto K, Ohto K, et al. Polyphenol polymerization by horseradish peroxidase formetal adsorption studies [J]. Ind. Eng. Chem. Res.,2009,48:4440-4444.
    [124] Kawakita H, Nakano S, Hamamoto K, et al. Copper-ion adsorption and gold-ion reduction bypolyphenols prepared by the enzymatic reaction of horseradish peroxidase [J]. J. Appl. Polym. Sci.,2010,118:247-252.
    [1]刘晓辉,刘伟,周勇亮,等.酚类聚合物在水相胶束中的酶促聚合[J].功能高分子学报,1995,8:308-314.
    [2] Mita N, Tawaki S, Uyama H, et al. Precise structure control of enzymatically synthesized polyphenols[J]. Bull. Chem. Soc. Jpn.,2004,77:1523-1527.
    [3] Uyama H, Kurioka H, Sugihara J, et al. Enzymatic synthesis and thermal properties of a new class ofpolyphenol. Bull. Chem. Soc. Jpn.,1996,69:189-193.
    [4] Oguchi T, Tawaki S, Uyama H, et al. Soluble polyphenol. Macromol. Rapid Commun.,1999,20:401-403.
    [5] Peng Y, Liu H W, Zhang X Y, et al. CNT templatedregioselective enzymatic polymerization of phenol inwater andmodification of surface of MWNT thereby. J. Polym. Sci. Part A: Polym. Chem.,2009,47:1627-1635.
    [6] Kim Y J, Uyama H, Kobayashi S. Regioselective synthesis of poly(phenylene) as a complex withpoly(ethylene glycol) by template polymerization of phenol in water [J]. Macromolecules,2003,36:5058-5060.
    [7] Kim Y J, Uyama H, Kobayashi S. Enzymatic template polymerization of phenol in the presence ofwater-soluble polymers in an aqueous medium [J]. Polym. J.,2004,36:992-998.
    [8] Kim Y J, Uyama H, Kobayashi S. Peroxidase-catalyzed oxidative polymerization of phenol with anonionic polymer surfactant template in water [J]. Macromol. Biosci.,2004,4:497-502.
    [9] Suratkar V, Mahapatra S. Solubilization site of organic perfume molecules in sodium dodecyl sulfatemicelles: new insight from proton NMR studies [J]. J. Colloid Interface Sci.,2000,225:32-38.
    [10]王宜鹏,洪海兵,曾科,等.酶催化聚酚及其衍生物的合成和热性能[J].高分子材料科学与工程,2009,25:5-7.
    [11] Shan J Y, Han L Y, Bai F L, et al. Enzymatic polymerization of aniline and phenol derivativescatalyzed by horseradish peroxidase in dioxane(Ⅱ)[J]. Polym. Adv. Technol.,2003,14:330-336.
    [12] Oguchi T, Tawaki S, Uyama H, et al. Enzymatic synthesis of soluble polyphenol [J]. Bull. Chem. Soc.Jpn.,2000,73:1389-1396.
    [13] Liu W, Ma L, Wang J D, et al. Effect of aggregation of p-phenylphenol on enzymatic polymersynthesis in dioxane/water mixture [J]. J. Polym. Sci: Part A: Polym. Chem.,1995,33:2339-2345.
    [14] Zaragoza-Gasca P, Villamizar-Gálvez O J, García-Arrazola R, et al. Use of ionic liquid for theenzyme-catalyzed polymerization of phenols [J]. Polym. Adv. Technol.,2010,21:454-456.
    [15] Uyama H, Kurioka H, Sugihara J, et al. Oxidative polymerization of p-alkylphenols catalyzed byhorseradish peroxidase [J]. J. Polym. Sci. A: Polym. Chem.,1997,35:1453-1459.
    [16] Kim Y J, Uyama H, Kobayashi S. Peroxidase-catalyzed oxidative polymerization of phenol with anonionic polymer surfactant template in water [J]. Macromol. Biosci.,2004,4:497-502.
    [17] Kim Y J, Shibata K, Uyama H, et al. Synthesis of ultrahigh molecular weight phenolic polymers byenzymatic polymerization in the presence of amphiphilic triblock copolymer in water [J]. Polymer,2008,49:4791-4795.
    [18] Mita N, Tawaki S, Uyama H, et al. Enzymatic oxidative polymerization of phenol in an aqueoussolution in the presence of a catalytic amount of cyclodextrin [J]. Macromol. Biosci.,2002,2:127-130.
    [19] Tonami H, Uyama H, Kobayashi S. Chemoselective oxidative polymerization of m-ethynylphenol byperoxidase catalyst to a new reactive polyphenol [J]. Biomacromolecules,2000,1:149-151.
    [1]单锦宇.芳香胺及酚类衍生物在二氧六环中的酶催化聚合[D].郑州大学,2001.
    [2] Shan J Y, Cao S K. Enzymatic polymerization of aniline and phenol derivatives catalyzed byhorseradish peroxidase in dioxane [J]. Polym. Adv. Technol.,2000,11:288-293.
    [3] Shan J Y, Han L Y, Bai F L, et al. Enzymatic polymerization of aniline and phenol derivatives catalyzedby horseradish peroxidase in dioxane(Ⅱ)[J]. Polym. Adv. Technol.,2003,14:330-336.
    [4] Uyama H, Kurioka H, Sugihara J, et al. Enzymatic synthesis and thermal properties of a new class ofpolyphenol [J]. Bull. Chem. Soc. Jpn.,1996,69:189-193.
    [5] Oguchi T, Tawaki S, Uyama H, et al. Soluble polyphenol [J]. Macromol. Rapid Commun.1999,20:401-403.
    [6] Oguchi T, Tawaki S, Uyama H, et al. Enzymatic synthesis of soluble polyphenol [J]. Bull. Chem. Soc.Jpn.,2000,73:1389-1396.
    [7] Xu P, Kumar J, Samuelson L, et al. Monitoring the enzymatic polymerization of4-phenylphenol bymatrix-assisted laser desorption ionization time-of-flight mass spectrometry: A novel approach [J].Biomacromolecules,2002,3:889-893.
    [8] Miyakoshi R, Yokozawa A, Yokozawa T. Catalyst-transfer polycondensation: mechanism ofNi-catalyzed chain-growth polymerization leading to well-defined poly (3-hexylthiophene)[J]. J. Am.Chem. Soc.,2005,127:17542-17547.
    [9] Duchatwau R, Van Meerendonk W J, Yajjou L, et al. Ester-functionalized polycarbonates obtained bycopolymerization of ester-substituted oxiranes and carbon dioxide: a Maldi–Tof-MS analysis study [J].Macromolecules,2006,39:7900-7908.
    [10] Carroccio S, Puglisi C, Montaudo G. Maldi investigation of the photooxidation of Nylon-66[J].Macromolecules,2004,37:6037-6049.
    [11] Liu Z, Rimmer S. Studies on the free radical polymerization of N-vinylpyrrolidinone in3-methylbutan-2-one [J]. Macromolecules,2002,35:1200-1207.
    [12]孙畅.基质辅助激光解析电离—飞行时间质谱在高分子研究中的应用[J].现代科学仪器,2011,4:109-111.
    [13]王晓青,陈栓虎.基质辅助激光解析电离飞行时间质谱在聚合物表征中的应用[J].质谱学报,2008,29:51-59.
    [14] Marjasvaara A, Torvinen M, Kinnunen H, et al. Laccase-catalyzed polymerization of two phenoliccompounds studied by matrix-assisted laser desorption/ionization time-of-flight and electrospray ionizationfourier transform ion cyclotron resonance mass spectrometry with collision-induced dissociationexperiments [J]. Biomacromolecules,2006,7:1604-1609.
    [15] Sahoo S K, Liu W, Samuelson L A, et al. Biocatalytic polymerization of p-cresol: An in-situ NMRapproach to understand the coupling mechanism [J]. Macromolecules,2002,35:9990-9998.
    [16] Eker B, Zagorevski D, Zhu G, et al. Enzymatic polymerization of phenols in room-temperature ionicliquids [J]. J. Mol. Catal. B: Enzymatic,2009,59:177-184.
    [17] Mejias L, Reihmann M H, Sepulveda-Boza S, et al. New polymers from natural phenols usinghorseradish or soybean peroxidase [J]. Macromol. Biosci.,2002,2:24-32.
    [18]蒋庆哲,宋昭峥,赵密福,等.表面活性剂科学与应用[M].北京:中国石化出版社,2009: P112.
    [19]王培义,徐宝财,王军.表面活性剂—合成·性能·应用[M].北京:化学工业出版社,2009: P219.
    [20]冯春梁,于洪学,李亚男,等.储存条件对溶液中辣根过氧化物酶活性的影响[J].琼州大学学报,2007,14:22-25.
    [1] Mizoroki T, Mori K, Ozaki A. Arylation of olefin with aryl iodide catalyzed by palladium [J]. Bull.Chem. Soc. Jap.,1971,44:581-588.
    [2] Heck R F, Nolley J P J. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl,and styryl halides [J]. J. Org. Chem.,1972,37:2320-2322.
    [3] Polshettiwar V, Molnár A. Silica-supported Pd catalysts for Heck coupling reactions [J]. Tetrahedron,2007,63:6949-6976.
    [4] Yin L X, Liebscher J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts[J]. Chem. Rev.,2007,107:133-173.
    [5]王宗廷,张云山,王书超,等. Heck反应最新研究进展[J].有机化学,2007,27:143-152.
    [6] Narayanan R. Recent advances in noble metal nanocatalysts for Suzuki and Heck cross-couplingreactions [J]. Molecules,2010,15:2124-2138
    [7] Daniel L C, Jason M N. A practical six-step synthesis of (S)-camptothecin [J]. Org. Lett.,2001,3(26):4255-4257.
    [8] Kevin J H, Mark T K. Synthesis of2-aryl-oxazolo[4,5-c]quinoline-4(5H)-ones and2-aryl-thiazolo[4,5-c]quinoline-4(5H)-ones [J]. Org. Lett.,2003,5(16):2911-2914.
    [9] Mikroyannidis J A. Synthesis, characterization and photophysics of novel conjugated polymers with1,3,4-oxadiazole pendant on a vinylene unit [J]. Synthetic Metals,2004,145:271-277.
    [10] Shim N, Moon B, Lee H. Optical switching behavior of poly(9-alkoxyfluorene-phenylenevinylene)upon exposure to Lewis acid and base [J]. React. Funct. Polym.,2006,66:1506-1514.
    [11] Tsai C J, Chen Y. Luminescent poly(p-phenylenevinylene) with4-methylcoumarin side groups:synthesis, optical properties and photo-crosslinking behaviors [J]. React. Funct. Polym.,2006,66:1327-1335.
    [12] Mikroyannidis J A, Damouras P A, Maragos V G, et al. Synthesis, photophysics andelectroluminescence of new vinylene-copolymers with2,4,6-triphenylpyridine kinked segments along themain chain [J]. Eur. Polym. J.,2009,45:284-294.
    [13] K hler K, Heidenreich R G, Krauter J G E, et al. Highly active palladium/activated carbon catalysts forHeck reactions: correlation of activity, catalyst properties, and Pd Leaching [J]. Chem. Eur. J.,2002,8:622-631.
    [14] Corma A, Garcia H, Leyva A. Catalytic activity of palladium supported on single wall carbonnano-tubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings,aerobic alcohol oxidation and selective hydrogenation [J]. J. Mol. Catal. A: Chem.,2005,230:97-105.
    [15] Cai M Z, Xu Q H, Jiang J W. The first MCM-41-supported thioether palladium(0) complex: a highlyactive and stereoselective catalyst for Heck arylation of olefins with aryl halides [J]. J. Mol. Catal. A:Chem.,2006,260:190-196.
    [16] Feng X J, Yan M, Zhang X, et al, Preparation and application of SBA-15-supported palladium catalystfor Heck reaction in supercritical carbon dioxide [J]. Chin. Chem. Lett.,2011,22:643-646.
    [17] Djakovitch L, Koehler K. Heck reaction catalyzed by Pd-modified zeolites [J]. J. Am. Chem. Soc.,2001,123:5990-5999.
    [18] Corma A, Garcia H, Leyva A, Basic zeolites containing palladium as bifunctional heterogeneouscatalysts for the Heck reaction [J]. Appl. Catal. A: Gen.,2003,247:41-49.
    [19] Martra G, Bertinetti L, Gerbaldi C, et al. Pd/SiO2as heterogeneous catalyst for Heck reaction:evidence for a sensitivity to the surface structure of supported particles [J]. Catal. Lett.,2009,132:50-57.
    [20] Huang L, Wang Z, Ang T P, et al. A novel SiO2supported Pd metal catalyst for the Heck reaction [J].Catal. Lett.,2006,112:219-225.
    [21]刘刚,章荣立,蔡明中.聚-ω-(甲硒基)十一烷基硅氧烷钯(0)配合物合成与催化性能[J].有机化学,2006,26:215-218.
    [22] Cai M Z, Liu G, Zhou J. Synthesis of silica-supported poly-ω-(methylseleno)undecylsiloxanepalladium(0) complex and its catalytic properties for Heck arylation of alkenes [J]. J. Mol. Catal. A: Chem.,2005,227:107-111.
    [23] Cai M Z, Tong X K, Hu W Y, et al. Silica-bound poly-4-oxa-6,7-bis(diphenylarsino)-heptylsiloxanepalladium(0) complex catalyzed Heck arylation of butyl acrylate and acrylamide with aryl halides [J].React. Funct. Polym.,2006,66:531-536.
    [24] Islam S M, Mondal P, Tuhina K, et al. Reusable polymer-anchored palladium (II) schiff base complexcatalyst for Suzuki cross-coupling, Heck and Cyanation reactions [J]. J. Inorg. Organomet. Polym.,2010,20:264-277.
    [25] Beletskaya I P, Khokhlov A R, Tarasenko E A, et al, Palladium supported on poly(N-vinylimidazole) orpoly(N-vinylimidazole-co-N-vinylcaprolactam) as a new recyclable catalyst for Mizoroki-Heck reaction [J].J. Organomet. Chem.,2007,692:4402-4406.
    [26]刘蒲,王岚,刘一真.壳聚糖钯催化Heck反应合成肉桂酸丁酯的研究[J].分子催化,2004,18:275-230.
    [27]杨元法,曾朝霞,罗孟飞,等.胺基化树脂负载Pd(0)对Heck反应催化性能的研究[J].化学学报,2005,63:1469-1473.
    [28]张磊,崔元臣,徐蕊,等. PVC-DETA-Pd对Heck反应的催化性能研究.高分子学报,2008,(11):1043-1048.
    [29] Cui Y C, Zhang L. Polyvinyl chloride-polyethylene-polyamine supported palladium complexes as highefficient and recyclable catalysts for Heck reaction. Journal of Molecular Catalysis A: Chem.,2005,237:120-125.
    [30] Zhang L, Zhang P Y, Li X, Cui Y C. Sesbania gum xanthate supported palladium complex as anefficient catalyst for Heck reaction. J. Appl. Polym. Sci.,2007,105:2198-2202.
    [31] Zhang H F, Zhang L, Cui Y C. Synthesis of chitosan microsphere-resin supported palladium complexand its catalytic properties for Mizoroki–Heck reaction. React. Funct. Polym.,2007,67,322-328.
    [32] Xu Y, Zhang L, Cui Y C. Catalytic performance of cellulose supported palladium complex for Heckreaction in water. J. Appl. Polym. Sci.,2008,110:2996-3000.
    [33] Caló V, Nacci A, Monopoli A. Regio-and stereoselective carbon-carbon bond formation in ionicliquids [J]. J. Mol. Catal. A: Chem.,2004,214:45-56.
    [34] Altava B, Burguete M I, García-Verdugo E, et al. Palladium N-methylimidazolium supportedcomplexes as efficient catalysts for the Heck reaction [J]. Tetrahed. Lett.,2006,47:2311-2314.
    [1] Dordick J S, Marletta M A, Klibanov A M. Polymerization of phenols catalyzed by peroxidase innonaqueous media [J]. Biotechnol. Bioeng.,1987,30:31-36.
    [2] Kurioka H, Komatsu I, Uyama H, et al. Enzymatic oxidative polymerization of alkylphenols [J].Macromol. Rapid Commun.,1994,15:507-510.
    [3] Uyama H, Kurioka H, Sugihara J, et al. Peroxidase-catalyzed oxidative polymerization of cresols to anew family of polyphenols [J]. Bull. Chem. Soc. Jpn.,1995,68:3209-3214.
    [4] Uyama H, Kurioka H, Sugihara J, et al. Oxidative polymerization of p-alkylphenols catalyzed byhorseradish peroxidase [J]. J. Polym. Sci. A: Polym. Chem.,1997,35:1453-1459.
    [5] Bhuiyan M A R, Hoque M Z, Hossain S J. Free radical scavenging activities of zizyphus mauritiana [J].World Journal of Agricultural Sciences,2009,5:318-322.
    [6] Dias S A, Cardoso1F P, Santin S M O, et al. Free radical scavenging activity and chemical constituentsof urvillea ulmaceae [J]. Pharmaceutical Biology,2009,47:717-720.
    [7] Khomdram S D, Singh P K. Polyphenolic compounds and free radical scavenging activity in eightlamiaceae herbs of manipur [J]. Notulae Scientia Biologicae,2011,3:108-113.
    [8] Mandal P, Misra T K, Ghosal M. Free-radical scavenging activity and phytochemical analysis in the leafand stem of drymaria diandra blume [J]. International Journal of Integrative Biology,2009,7:80-85.
    [9] Amarowicz R, Zegarska Z, Rafa owski R, et al. Antioxidant activity and free radical-scavengingcapacity of ethanolic extracts of thyme, oregano, and marjoram [J]. Eur. J. Lipid Sci. Technol.,2009,111:1111–1117.
    [10]陈旭丹,于晓莹,郝晓萌,等.三种黄酮类化合物抗自由基的研究[J].食品研究与开发,2007,28:20-22.
    [11] Aghdam M N, Dehghan G, Kafshboran H R. Comparative study of ABTS radical scavenging activityand flavonoid contents in several populations of Teucrium polium [C]. International Conference on LifeScience and Technology. Singapore: IACSIT Press,2011:55-58.
    [12] Zhou K Q, Laux J J, Yu L. Comparison of swiss red wheat grain and fractions for their antioxidantproperties [J]. J. Agric. Food Chem.,2004,52,1118-1123.
    [13] Kang W Y. Wang J M. In vitro antioxidant properties and in vivo lowering blood lipid of Forsythiasuspense leaves [J]. Med. Chem. Res.,2010,19:617-628.
    [14]国旭丹,陕方,高锦明,等.苦荞麸乙醇粗提物各极性成分的抗氧化活性研究[J].中国食品学报,2011,6:20-26.
    [15]李彩芳.药用植物抗氧化活性及挥发性成分研究[D].河南大学,2008.
    [16] Uyama H, Kurioka H, Sugihara J, et al. Enzymatic synthesis and thermal properties of a new class ofpolyphenol. Bull. Chem. Soc. Jpn.,1996,69:189-193.
    [17] Reihmann M, Ritter H. Synthesis of phenol polymers using peroxidases [J]. Adv. Polym. Sci.,2006,194:1-49.
    [18] Liu Z Q. Chemical methods to evaluate antioxidant ability [J]. Chem. Rev.,2010,110:5675-5691.
    [19]张丹,潘乐,江峥,等.木鳖子提取液抗氧化活性的分析[J].复旦学报(医学版),2010,37:319-312.
    [20]王崔平.活性氧自由基的检测及其清除研究[D].首都师范大学,2007.
    [21]尚亚靖.酚类抗氧剂的结构修饰剂其细节性机制研究[D].兰州大学,2010.
    [22]孔浩.五种植物油清除自由基及抑菌效果研究[D].西北师范大学,2008.
    [1]张勇.对溴苯酚为原料合成医药中间体—对羟基苯乙醇[D].南京理工大学,2004.
    [2]江镇海.对氯苯酚在农药中的应用和前景[J].今日农药-原料及中间体,2012,36:43-44.
    [3]刘宏宇.2-氯-4-(4-氯苯氧基)-苯乙酮的合成及Ullmann反应的研究[D].中南大学,2008.
    [4] Dordick J S, Marletta M A, Klibanov A M. Polymerization of phenols catalyzed by peroxidase innonaqueous media [J]. Biotechnol. Bioeng.,1987,30:31-36.
    [5] Xu Y P, Huang G L, Yu Y T. Kinetics of phenolic polymerization catalyzed by peroxidase in organicmedia [J]. Biotechnol. Bioeng.,1995,47:117-119.
    [6]马林,孙旭东,董爱武,等.非水介质中辣根过氧化物酶(HRP)催化酚类底物聚合反应速度的影响因素[J].生物化学杂志,1995,11(1):95-99.
    [7] Uyama H, Kurioka H, Sugihara J, et al. Enzymatic synthesis and thermal properties of a new class ofpolyphenol [J]. Bull. Chem. Soc. Jpn.,1996,69:189-193.
    [8] Liu W, Ma L, Wang J D, et al. Effect of aggregation of p-phenylphenol on enzymatic polymer synthesisin dioxane/water mixture [J]. J. Polym. Sci: Part A: Polym. Chem.1995,33:2339-2345.
    [9] Tonami H, Uyama1H, Kobayashi S, et al. Peroxidase-catalyzed oxidative polymerization ofm-substituted phenol derivatives [J]. Macromol. Chem. Phys.,1999,200:2365-2371.
    [10] Mita N, Maruichi N, Tonami H, et al. Enzymatic oxidative polymerization of p-t-butylphenol andcharacterization of the product polymer [J]. Bull. Chem. Soc. Jpn.,2003,76:375-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700