用户名: 密码: 验证码:
DnaK基因调控酸土脂环酸芽孢杆菌嗜酸耐热生理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酸土脂环酸芽孢杆菌具有嗜酸、耐热的双重生理特性,能经受酸性条件下的巴氏杀菌过程而存活,研究认为生物抵御不良环境的能力与其体内的热休克蛋白(HeatShock Protein,HSP)有关,该蛋白广泛分布于微生物、动物、植物等各种生物体内,其中对HSP70(DnaK)的研究最深入。DnaK生物学功能广泛,不仅在细胞生长、发育、分化过程中的基因转录、蛋白质合成、折叠、跨膜运输、分解和立体构象的维持等方面发挥重要作用,而且在生物体内广泛地参与了多种复杂的功能,与生物在高温、酸、碱、氧化应激等逆境下的生存关系密切。
     本论文利用同源克隆和基因组步移技术克隆得到酸土脂环酸芽孢杆菌DSM3922TDnaK基因,利用Real Time RT-PCR技术分析酸土脂环酸芽孢杆菌DnaK基因在酸、热、冷胁迫下的表达差异,从mRNA水平探索DnaK蛋白在该菌对酸、热逆境应答中的功能,并在大肠杆菌中异源表达酸土脂环酸芽孢杆菌DnaK基因,研究该基因对宿主菌耐高温、酸、碱、氧化胁迫抗性的影响,主要研究结果如下:
     1.成功获取酸土脂环酸芽孢杆菌DSM3922TDnaK基因全序列,其ORF全长1,854bp,编码617个氨基酸,其推测氨基酸序列与来源于A. acidocaldarius LAA1的分子伴侣蛋白DnaK同源性最高,相似性达86%。
     2. Real Time RT-PCR试验结果表明:该基因在正常生长条件下组成性表达,在热、酸胁迫下表达量在短时间内迅速上调,70℃、80℃、90℃热胁迫5min时,DnaK基因的相对表达量分别为对照组的1.4倍、1.7倍和2.5倍;酸胁迫1h表达量升至最高,为对照组的4.3倍,随后表达量下调,胁迫3h时降至最低,只有对照组的0.08倍;冷胁迫条件下,DnaK基因的表达量迅速下调,冷胁迫处理1h,其表达量仅为对照组的0.48倍,随着处理时间延长,表达量继续降低,处理6h时,表达量为对照组的0.25倍。
     3.构建重组质粒pET28a-DnaK,转化大肠杆菌BL21,诱导其表达酸土脂环酸芽孢杆菌DnaK基因,目标蛋白主要以胞内可溶形式在大肠杆菌中成功表达,重组DnaK经一步亲和层析,得到电泳级纯蛋白,为酸土脂环酸芽孢杆菌DnaK蛋白的结构、功能及与其他热休克蛋白的相互作用机制等的研究提供材料支持。
     4.利用IPTG诱导重组大肠杆菌表达DnaK基因,研究了DnaK基因表达对重组大肠杆菌热、酸、碱及氧化胁迫抗性的影响,结果表明,经过热、酸、氧化胁迫后,重组大肠杆菌的存活率明显高于对照菌株,而两种菌株的存活率在碱胁迫条件下相差不大,说明酸土脂环酸芽孢杆菌DnaK基因在大肠杆菌中异源表达能显著提高宿主菌对高温、酸及氧化胁迫的抗性。
     本论文克隆了酸土脂环酸芽孢杆菌DnaK基因,利用Real Time RT-PCR技术分析了Alicyclobacillus acidoterrestris DnaK基因在热、酸等胁迫条件下的表达差异,从分子水平揭示酸土脂环酸芽孢杆菌耐酸、热逆境的生理适应机制,并进一步研究了其DnaK基因异源表达对宿主耐热、酸、氧化冲击等胁迫抗性的影响,不仅为揭示微生物的环境适应化机制奠定理论基础,也为发酵工业生产中利用转基因技术提高发酵微生物的胁迫抗性,开发对发酵工业生产中主要胁迫因素有较强耐受性的生产菌株具有重要的应用价值。
Alicyclobacillus acidoterrestris is a genus of aerobic, acidophilic, thermophilic,soil-dwelling bacteria, with the ability to survive traditional pasteurization process under theacid condition. This capacity of resisting adverse environment is related to its heat shockproteins(HSPS). HSPS are widely distributed in organisms like microorganism, animal and plant,among which, HSP70(DnaK) was analyzed extensively. DnaK is of wide biological functions,for it not only exerts important influence on gene transcription, protein synthesis, folding andmembrane transport, catabolism and maintenance of stereo conformation in the process ofcellular growth, development and differentiation, but also widely involves in various complexfunctions of organisms. DnaK play a key role in protecting organisms from hostile environments,such as high temperture, acid, alkali, oxidative stress and other adversities.
     This paper has obtained DSM3922TDnaK gene from Alicyclobacillus acidoterrestris byapplying homologous cloning and genome-walking cloning, analyzed expression differences ofDnaK gene in Alicyclobacillus acidoterrestris under acid, heat and cold stress by Real TimeRT-PCR, and explored the functions of DnaK protein of A.acidoterrestris under heat and acidstresses from the mRNA level. Furthermore, the heterologous expression of DnaK gene inE.coli will be performed to investigate the effect on high temperature, acid, alkaline andoxidation stress resistance of host becteria. The main research results were as follows:
     1. It had succeed in obtaining complete sequence of DSM3922TDnaK gene fromAlicyclobacillus acidoterrestris. The DnaK gene contains a complete ORF of1,854bp,encoding617aa, which deduced amino acid sequence shared the highest homology with DnaKfrom A. acidocaldarius LAA1(86%).
     2. RT-PCR experimental results showed that: DnaK was constitutively expressed undernormal growth condition, with expression rapidly rises under heat and acid stress within shorttime. When heat shock took place at70℃,80°C and90°C, the relative expression of DnaK wasrapidly increased and reached1.4times,1.7times and2.5times of control group respectively;when acid stress lasts for1h, expression rises to the highest value as4.3times of control group,and then expression of DnaK gene rapidly decreases; when stress lasts for3h, it decreases to the lowest value as0.08time of control group; under cold stress condition, expression of DnaKgene rapidly decreases, and when cold stress lasts for1h, the expression becomes0.48time ofcontrol group, and with extending of treatment time, expression goes on decreasing. Whentreatment time lasts for6h, the expression becomes0.25time of control group. So we canconclude that DnaK has made significant influence on survival of alicyclobacillusacidoterrestris under acid and heat stress, which may have close relation with specialphysiological function involving heat and acid endurance of Alicyclobacillus acidoterrestris.
     3. It has constructed recombinant plasmids pET28a-DnaK, transformed colon bacillusBL21and induced it to express DnaK of Alicyclobacillus acidoterrestris, and made targetprotein mainly in the method of intracellular soluble form and successfully expressed in colonbacillus, as well as made reconstructed DnaK got further affinity chromatography and obtainedpure electrophoresis protein, and accordingly set material support for exploring the structure,function and interaction mechanism with other heat shock protein of A. acidoterrestris DnaK.
     4. It has applied IPTG to induce recombinant Escherichia coli to express DnaK gene, andthen researched the influence of DnaK gene expression on heat, acid, alkaline and oxidizationstress resistance of recombinant Escherichia coli. The results indicated that survival rate ofrecombinant E. coli after heat, acid and oxidization stress is obviously higher than controlgroup, while survival rate of both groups is of little difference under alkaline stress, andindicates that heterologous expression of DnaK gene from Alicyclobacillus acidoterrestris incolon bacillus can significantly improve endurance for high temperature, oxidization impactand acid stress of host strain.
     DnaK gene was cloned from Alicyclobacillus acidoterrestris and analyzed expressiondifferences of DnaK gene in Alicyclobacillus acidoterrestris under heat and acid stress by RealTime RT-PCR in this paper, as well as revealed physiological adaptation mechanism ofAlicyclobacillus acidoterrestris under acid and heat stress from the molecule level, and furtherresearched the influence of heterologous expression of DnaK gene on heat and acid enduranceof host bacteria. It has not only set theoretical basis for elucidating environmental adaptation ofmicroorganism and acid and heat endurance mechanism but also has important applicationvalue for applying transgenic technology to improve stress resistance of fermentedmicroorganism in the production of fermentation industry and develop the newmicroorganisms with high production and preferable stress tolerant properties for main expressin the production of fermentation industry.
引文
蔡福带.2005.苹果浓缩汁生产中耐热菌的分离鉴定及控制技术研究.[博士学位论文].陕西杨凌:西北农林科技大学
    陈世琼,胡小松.2005.脂环酸芽孢杆菌对苹果汁品质的影响.中国食品学报,5(4):74~78
    陈世琼,陈文峰,胡小松,赵广华.2006.16S rDNA PCR-RFLP法快速鉴定分离自浓缩苹果汁生产线的脂环酸芽孢杆菌.中国食品学报,6(2):99~102
    陈晓红,厉永健.2002.热休克蛋白受体的研究进展.中国肿瘤生物治疗杂志,9(2):133~136
    陈静.2006.蛋白质可逆磷酸化在信号传递中的作用.武汉生物工程学院学报.2(4):233~239
    陈霞,乌日娜,孟和,张和平.2008.乳酸菌耐酸机理.中国乳品工业,36(3):30~34
    丁彦蕊,蔡宇杰,孙俊,须文波.2007.盐桥与全基因组微生物耐热性的关系研究.华中农业大学学报,26(3):335~339
    方进,瞿文学,王文明,李素文,朱立煌.2001.转基因水稻T-DNA侧翼序列的扩增与分析.遗传学报,28(4):345~351
    付瑞燕,李寅.2010.利用代谢工程技术提高工业微生物对胁迫的抗性.生物工程学报,26(9):1209~1217.
    韩永奇.2010.苹果汁出口现状与前景分析.农产品加工,4:32~33
    郝迪萩,赵琳,陈李淼,李文滨.2010.克隆启动子方法的比较及应用.东北农业大学学报,4(3):154~160
    胡贻椿,岳田利,袁亚宏,高振鹏.2008.果汁中脂环酸芽胞杆菌的危害及控制.食品科学,29(1):364~368
    胡贻椿.2007.浓缩苹果汁生产过程中嗜酸耐热菌的分离鉴定及超声波杀灭作用研究.[硕士学位论文].陕西杨凌:西北农林科技大学
    梁成真,张锐,郭三堆.2009.染色体步移技术研究进展.生物技术通报,10:75~82
    郦惠燕,邵靖宇.2002.嗜热菌的耐热分子机制.生命科学,12(1):30~33
    李建科,冯再平,仇农学.2006.耐热菌的竞争定量PCR检测方法优化与建立.中国农业科学,39(2):375~380
    李升康,王玉桥.2009.深海微生物极端酶的研究进展.海洋科学,33(5):98~102
    卢柏松,王国力,黄培堂.1998.嗜热与嗜常温微生物的蛋白质氨基酸组成比较.微生物学通报,38(1):20~25.
    马挺,刘如林.2002.嗜热菌耐热机理的研究进展.微生物学通报,29(2):86~88
    牛丕业.2006.热休克蛋白70在紫外线致DNA损伤与修复中的作用.[博士学位论文].武汉:华中科技大学
    彭书明,雷泞菲,陈放,唐琳.2008.苦瓜中与AGAMOUS相似基因启动子的克隆和表达载体的构建.植物生理学通讯,44(4):693~698
    任红妍.1995.嗜热微生物.生物学通报,30(3):18
    盛嘉元.2009.脂环酸芽孢杆菌产耐酸耐高温淀粉酶及酶学性质研究.[硕士学位论文].南京:南京理工大学
    苏洁,蔡宏,朱玉贤.2006.结核分枝杆菌热休克蛋白HSP70在原核表达载体中的克隆表达与鉴定.中国人畜共患病学报,22(8):712~715
    王闵霞,马欣荣,王天山,谭红.2006.染色体步行PCR技术.应用与环境生物学报,12(3):427~430
    徐佳杰,刘朋波,陶春平.2008.1,3-丙二醇发酵过程中盐浓度的胁迫作用.生物工程学报,24(6):1098~1102
    阳成波,印遇龙,龚建华,郁海,黄瑞林,李铁军.2003.实时定量PCR研究进展及其应用.中国预防兽医学报,25(5):395~399
    张彤,方汉平.2003.微生物分子生态技术:16S rRNA/DNA方法.微生物学通报,30(2):97~81
    张旭辉.2001.热休克蛋白70与热耐受的机制.解放军预防医学杂志,19(1):73~75
    张毅.2009.极端嗜热微生物分子伴侣蛋白研究与嗜热功能蛋白质的规模化制备技术研究.中国基础科学,5:86~89
    张跃灵.2008. Alicyclobacillus acidocaldarius Tc-12-31甘露聚糖酶的研究.[博士学位论文].北京:中国科学院微生物研究所
    周正富.2011.耐辐射异常球菌转录调节蛋白IrrE增强大肠杆菌盐胁迫抗性的全局调控机制.博士学位论文].北京:中国农业科学院
    Abd-Elsalam K A.2003. Bioinformatic tools and guideline for PCR primer design., African Journal ofBiotechnology,2(5):91~95
    Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM.2002. Chaperone suppression ofalpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science,295:865~868
    Bai SL, Zhong X, Ma L, Zheng W, Fan LM, Wei N, Deng XW.2007. A simple and reliable assay fordetecting specific nucleotide sequence variations in plants using optical thin-film biosensor chips. PlantJournal,49(2):354~366
    Bai YG, Wang JS, Zhang ZF, Yang PL, Shi PJ, Luo HY, Meng K, Huang HQ, Yao B.2010. A newxylanase from thermoacidophilic Alicyclobacillus sp. A4with broad-range pH activity and pH stability.Journal of Industrial Microbiology&Biotechnology,37:187~194
    Barbara Di Lauro, Mosè,Rossi, Marco Moracci.2006. Characterization of a β-glycosidase from thethermoacidophilic Bacterium Alicyclobacillus acidocaldarius. Extremophiles,10:301~310
    Barouch W, Prasad K, Greene L and Eisenberg E.1997. Auxilin-induced interaction of the molecularchaperone Hsc70with clathrin baskets. Biochemistry,36(14):4303~4308
    Becker K D. Pan and Whitely C B.1999. Real-time quantitative polymerase chain reaction to assesgene transfer. Human Gene Therapy,10:2259~2566
    Benjamin I J, McMillan D R.1998. Stress (heat shock) proteins: molecular chaperones in cardiovascularbiology and disease. Circulation Research,83:117~132
    Bodsky J L.1996. Post-translational protein translocation: not all hsc70s are created equal. Trends inBiochemical Sciences,21(3):122~126
    Borges J C, Ramos C H.2005. Protein folding assisted by chaperones. Protein and peptide letters.12:257~261
    Boston R S, Viitanen P V, Vierling E.1996. Molecular chaperones and protein folding in plant. PlantMolecular Biology,32(12):191~222
    Bukau B, Horwich A L.1998. The Hsp70and Hsp60chaperonemachines. Cell,92(3):351~366
    Burpo F J.2001. A critical review of PCR primer design algorithms and cross-hybridization case study.Biochemistry,218:1~11
    Chang S S, Kang D H.2004. Alicyclobacillus spp. in the fruit juice industry: history, characteristics,and current isolation/detection procedures. Critical Reviews in Microbiology,30:55~74
    Chang Y.W., Sun Y.J., Wang C., Deng C.,2008. Hsiao Crystal Structures of the70-kDa Heat ShockProteins in Domain Disjoining Conformation. Journal of Biological Chemistry,283:15502~15511
    Chow KC, Tung W.L.1998. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance toEscherichia coli. Biochemical and Biophysical Research Communications.253:502~505
    Christine Q, Todd A S, Susan L.2002. Hsp90as a capacitor of phenotypic variation. Nature,417(6889):598~599
    Clarke C F, Cheng K, Frey A B, Stein R, Hinds P W, Levine A J.1988. Purification of complexes ofnuclear oncogene p53with rat and Escherichia coli heat shock proteins: in vitro dissociation of hsc70anddnaK from murine p53by ATP. Molecular and Cellular Biology,8(3):1206~1215
    Connor C J, Luo H, Gardener B B, Wang H H.2005. Development of a real-time PCR-based systemtargeting the16S rRNA gene sequence for rapid detection of Alicyclobacillus spp. in juice products.International Journal of Food Microbiology,99(3):229~235
    Corbo M R, Bevilacqua A, Campaniello D, D'Amato D, Speranza B, Sinigaglia M.2009. Pro-longingmicrobial shelf life of foods through the use of natural compounds and non-thermal approaches.International Journal of Food Science and Technology,44:223~241
    Darland G, Brock TD.1971. Bacillus acidocaldarius sp. nov., an acidophilic thermophilicspore-forming bacterium. Microbiology,67:9~15
    De Maio A..1999. Heat shock proteins: facts, thoughts, and dreams. Shock,11(1):1~12
    Deinhard G, Blanz P, Poralla K, Altan E.1987. Bacillus acidoterrestris sp. nov., a new thermotolerantacidophile isolated from different soils. Systematic and Applied Microbiology,10:47~53
    Deinhard G, Saar J, Krischke W,Poralla K.1987. Bacillus cycloheptanicus sp. nov., a new thermophilecontaining ω-cycloheptane fatty acids. Systematic and Applied Microbiology,10:68~73
    Ding Y R, Cai Y J, Xu W B.2004. The influence of dipeptide composition on protein thermostability.Febs Letters,569:284~288
    Durak M Z, Churey J J, Danyluk M D, Worobo R W.2010. Identification and haplotype distribution ofAlicyclobacillus spp. from different juices and beverages. International Journal of Food Microbiology.142:286~291
    Everly C, Alberto J.2000. Stressors, stress and survival overview. Frontiers in Bioscience,5:780~786
    Facciponte J G, Wang X Y, Macdonald I J, Park J E, Arnouk H, Grimm M J, Li Y, Kim H, Manjili M H,Easton D P and Subjeck J R.2006. Heat shock proteins HSP70and GP96:structural insights. CancerImmunology Immunotherapy,55(3):339~346
    Figueiredo D, Gertler A, Cabello G, Decuypere E, Buyse J, and Dridi S.2007. Leptin downregulatesheat shock protein-70(HSP-70) gene expression in chicken liver and hypothalamus. Cell and TissueResearch,329:91~101
    Fish A, Danieli T, Ohad I, Nechushtai R. and Livnah O.2005. Structural basis for the thermostability offerredoxin from the cyanobacterium Mastigocladus lam inosus. Journal of Molecular Biology,350(3):599~608
    Flaherty K M, DeLuca-Flaherty C, McKay D B.1990. Three-dimensional structure of the ATPasefragment of a70K heat-shock cognate protein. Nature,346:623~628
    Flaherty K M, McKay D B, Kabsch W, Holmes K C.1991. Similarity of the three-dimensionalstructures of actin and the ATPase fragment of a70-kDa heat shock cognate protein. Proceedings of theNational Academy of Sciences of the United States of America,88,5041~5045
    Forterre P, Elie C.1993. Chromosome structure, DNA polymerases and topoisomerases inArchaebacteria(Archaea). In: Kates M, Kuschner D J, Matheson A T. New Comprehensive Biochemistry.Vol26. Elsevier Science:325~361
    Frydman J, Nimmesgern E, Ohtsuka K and Hartl F U.1994. Folding of nascent polypeptide chains in ahigh molecular mass assembly with molecular chaperones. Nature,370:111~117
    Garsoux G, Lamote J, Gerday C and Feller G.2004. Kinetic and structural optimization to catalysis atlow temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis.Biochemical Journal,384(2):247~253
    Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C. An overview of real-timequantitative PCR: Applications to quantify cytokine gene expression. Methods,2001,25:386~401
    Goto K, Omura T, Hara Y, Sadaie Y.2000. Application of the partical16S rDNA sequences as an indexfor rapid identification of species in the genus Bacillus. Journal of General and Applied Microbiology,46(1):1~8
    Grimshaw J P, Jelesarov I, Sch nfeld H J, Christen P.2001. Reversible thermal transition in GrpE, thenucleotide exchange factor of the DnaK heat-shock system. Journal of Biological Chemistry,276(9):6098~6104
    Gromiha M M.2001. Important inter residue contacts for enhancing the thermal stability ofthermophilic proteins. Biophysical Chemistry,15(1):71~77
    Gupta R S, Aitken K, Falah M and Singh B.1994. Cloning of Giardia lamblia hsp70homologs:Implications regarding origin of eukaryotic cells and of endoplasmic reticulum. Proceedings of the NationalAcademy of Sciences of the United States of America,91:2895~2899
    Gupta R S, Singh B.1992. Cloning of the HSP70gene from Halobacterium marismortui: relatedness ofarchaebacterial HSP70to its eubacterial homologs and a model for the evolution of the HSP70gene. Journalof Bacteriology,174(14):4594~4605
    Gutsmann C A, Pahlavani M A, Heydari A R and Richardson A.1999. Expression of heat shockprotein70decreases with age in hepatocytes and splenocytes from female rats. Mechanisms of Ageing andDevelopment,107(3):255~270
    Haney P J, Badger J H, Buldak G L, Reich C I, Woese C R and Olsen G J.1999. Themalladaptationanalyzed by comparison of protein sequences from mesophilic and extremely thermopohilic Methanococcusspecies. Proceedings of the National Academy of Sciences of the United States of America,96(7):3578~3583
    Hartl F U.1996. Molecular chaperones in cellular protein folding. Nature,381(6583):571~580
    Higgins J A, Ezzel J, Hinnebusch B J, Shipley M, Henchal E A, Ibrahim S S.1998.5′nuclease PCRassay to detect Yersinia pestis. Journal of Clinical Microbiology,36:2284~2288
    Hartl F U, Hayer-Hartl M.2002. Molecular chaperones in the cytosol: from nascent chain to foldedprotein. Science,295(5561):1852~1858
    Horwitz J.1992. Alpha-Crystallin can function as a molecular chaperone. Proceedings of the NationalAcademy of Sciences of the United States of America,89:10449~10453
    Hsu AL, Murphy C T,Kenyon C.2003. Regulation of aging and age-related disease by DAF-16andheat-shock factor. Science,300(5622):1142~1145
    Huggert J, Dheda K, Bustin S, Zumla A.2005. Real-time RT-PCR normalization; strategies andconsiderations. Genes and Immunity,6:279~284
    Ikai A.1980. Thermostability and aliphatic index of globular proteins. Journal of Biochemistry,88(6):1895~1898
    Itoh T, Matsuda H, Mori H.1999. Phylogenetic analysis of the third hsp70homolog in Escherichia coli;a novel member of the Hsc66subfamily and its possible co-chaperone. DNA Research,6:299~305
    Jaenidki R.1996. Stability and folding of ultrastable proteins: eye lens crystallins and enzymes fromthermophiles. Faseb Journal,10(1):84~92
    Jiang CY, Liu Y, Liu YY, You XY, Guo X, Liu SJ.2008. Alicyclobacillus ferro-oxydans sp. nov., aferrous-oxidizing bacterium from solfataric soil. Microbiology,58:2898~2903
    Jordan R, McMacken R.1995. Modulation of the ATPase activity of the molecular chaperone DnaK bypeptides and the DnaJ and GrpE heat shock proteins. Journal of Biological Chemistry,270:4563~4569
    Julie H, Susan M.1999. Structural distribution of stability in a thermophilic enzyme. Proceedings of theNational Academy of Sciences of the United States of America,96(24):13674~13678
    Kadar Z, Maltha S, Szengyel Z, Reczey k, Laat W.2007. Ethanol fermentation of various pretreated andhydrolysed substrates at low initial pH. Applied Biochemistry and Biotechnology,137(1):847~858
    Kalogianni D P, Koraki T, Christopoulos T K, Ioannou PC. Nanoparticle-based DNA biosensor forvisual detection of genetically modified organisms. Biosensors&Bioelectronics,2006,21(7):1069~1076
    Ke LD, Chen Z, Yung WK.2000. A reliability test of standard-based quantitative PCR: exogenous vsendogenous standards. Molecular and Cellular Probes,14(2):127~135
    Kimura Y, Yahara I, Lindquist S.1995. Role of the protein chaperone YDJ1in establishingHsp90-mediated signal transduction pathways. Science,268(5215):1362~1365
    Kirino H, Aoki M, Aoshima M, Hayashi Y, Ohba M, Yamagishi A, Wakagi T and Oshima T.1994.Hydrophobic interaction at the subunit interface contributes to the thermostability of3-isopropylmalatedehydrogenase from an extreme thermophile, thermus-thermophilus. European Journal of Biochiemistry,220(1):275~281
    Kruklitis R, Welty D J, Nakai H.1996. ClpX protein of Escherichia coli activates bacteriophage Mutransposase in the strand transfer complex for initiation of Mu DNA synthesis. Embo Journal,15:935~944
    Kumar S, Tsai C J, Nussinov R.2000. Factors enhancing protein thermostability. Protein Engineering,3(3):179~191
    Laksanalamai P, Pavlov A R, Slesarev A I, Robb F T.2006. Stabilization of Taq DNA polymerase athigh temperature by protein folding pathways from a hypertherm ophilicarchaeon, Pyrococcus furiosus.Biotechnology and Bioengineering,93(1):1~5
    Li X, Su R T C, Hsu H, Sze H.1998. The molecular chaperone calnexin associates with the vacuolarH+-ATPase from oat seedlings. Plant Cell,10(1):119~130
    Lindquist S, Craig E A.1988. The Heat Shock Proteins. Annual Review of Genetics,22:631~677
    Liu Y G, Robert F W.1995. Thermal asymmetric interlaced PCR: automatable amplification andsequencing of insert end fragment from Pl and YAC clones for chromosome walking. Genomics,25:674~681
    Liu Y G,Huang N.1998. Efficient amplification of insert end sequences from bacterial artificialchromosome clones by thermal asym-metric interlaced PCR. Plant Molecular Biology Reporter,16(2):175~181
    Livak K J and Schmittgen T D.2001. Analysis of relative gene expression data using real-timequantitative PCR and the2(-Delta Delta C(T)) Method. Methods,25:402~408
    Macario A J, Lange M, Ahring B K, Conway de Macario E.1999. Stress genes and proteins in thearchaea. Microbiology and Molecular Biology Reviews,63:923~967
    Maria S, Horacio A, Francois F.1999. Ribosomal gene disruption in the extreme thermophile Thermusthermophilus HB8: Generation of a mutant lacking ribosomal protein S17. Eurrop Journal Biochemistry,266(2):524~532
    Marti-Renom M A, Stuart A C, Fiser A, Sanchrez, R, Melo F and Sali A.2000. ComParative Proteinstructure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure,29:291~325
    Mave S A, Sligar S G.2001. Understanding thermostability in cytochrome p450by combinatorialmutagenesis. Protein Science,10(1):161~168
    Mayer M P, Bukau B.2005. Hsp70chaperones: cellular functions and molecular mechanism. Cellularand Molecular Life Sciences,62(6):670~684
    Mccully J D, Myremel T, Lotz M M.1995. The rapid expression of myocardial HSP70mRNA and theheat shock70KD protein can be achieved after only a brief period of retrograde hyperthermic perfusion.Journal of Molecular and Cellular Cardiology,27(3):873~882
    Mcknight I C, Eiroa M N U, Sant Ana A S, Massaguer P R.2010. Alicyclobacillus acidoterrestris inpasteurized exotic Brazilian fruit juices: Isolation, genotypic characterization and heat resistance. FoodMicrobiology,27:1016~1022
    Menéndez-Arias L, Argos P.1989. Engineering protein thermal stability. Sequence statistics point toresidue substitutions in alpha-helices. Journal of Molecular Biology,206(2):397~406
    Merz A, Kn chel T, Jansonius J N, Kirschner K.1999. The hyperthermostable indoleglycerolphosphate synthase from thermotoga maritima is destabilized by mutational disruption of twosolven-exposed salt bridges. Journal of Molecular Biology,288(4):753~763
    Morano K A.2007. New tricks for an old dog: the evolving world of Hsp70. Annals of the New YorkAcademy of Sciences,1113:1~14
    Morimoto R I, Tissières A, Ceorgopoulos C.1990. The stress response, function of the proteins, andperspective. In: Morimo to R I, Tissières A, Gergopoulos C. Stress proteins in biology and medicine. NewYork: Cold Spring Harbor Laboratory Press:175~198
    Mrabet N T, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir A M, Nakano K,Iwama G K.2002. The70-kDa heat shock protein response in two intertidal sculpins, oligo cottus maculosusand o. snyderi: relationship of hsp70and thermal tolerance. Comp. Biochem. Physiol. A: Physiol.,133(l):79~94
    Neal F, Gordon N F, clark B.2004. Heat shock Proteins and Inunune Response, The challenges ofbringing autologous HSp-based vaccines to commercial reality. Methods,2(1):63~69
    Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H.2008. Overexpression of prefold in from thehyperthermophilic archaeum Pyrococcush orikoshii OT3endowed Escherichia coli with organic solventtolerance. Applied Microbiology and Biotechnology,79:443~449
    Pack S P, Yoo Y Je.2003. Protein thermostability structure-based difference of residual propertiesbetween thermophilic and mesophilic proteins. Journal of Molecular Catalysis B-enzymatic,26:257~264
    Phillips G J, Silhavy T J.1990. Heat-shock proteins DnaK and GroEL facilitate export of LacZ hybridproteins in E. coli. Nature,344(6269):882~884
    Rabile H, Jayaraman G C, Burne R A.1996. Streptococcus mutans DnaK protein levels as a function ofexposure to environmental stressors. Journal of Dental Research,75:3232~3232
    Raska M,Weigl E.2005. Heat shock proteins in autoimmune diseases. Biomed Pap Med Fac UnivPalacky Olomouc Czech Repub,149(2):243~249
    Ritossa F.1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Cellularand Molecular Life Sciences,18:571~573
    Robert J.2003. Evolution of heat shock Proteins and immuulty. Development and comparativeimmunology,27:449~464
    Rose T M, Henikoff J G, Henikoff S.2003. CODEHOP (COnsensus-DEgenerate HybridOligonucleotide Primer) PCR primer design. Nucleic Acids Research,31(13):3763~3766
    Rossow J, Maarse A C, Krainer E, Kübrich M, Müller H, Meijer M, Craig E A and Pfanner N.1994.Mitochondrial protein import: Biochemical and genetic evidence for interaction of matrix hsp70and theinner membrane protein MIM44. Journal of Cell Biology,127(6):1547~1556
    Sadeghi M, Naderi-Manesh H, Zarrabi M, Ranjbar B.2006. Effective factors in thermostability ofthermophilic proteins. Biophysical Chemistry,119(3):256~270
    Sandman K, John N.2000. Structure and functional relationships of archaeal and eukaryal histones andnucleosomes. Archives of Microbiology,173:165~169
    Schlesinger, M J.1990. Heat shock proteins. The Journal of Biological Chemistry,265:12111~12114
    Shaw A J, Podkaminer K K, Desai S G, Bardsley J S, Rogers S R, Thorne P G, Hogsett D A, Lynd L R.2008. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings ofthe National Academy of Sciences of the United States of America,105:13769~13774
    Sijerkilde M,Sorensen J G,Loeschehe V.2003. Effects of coldand heat hardening on thermalresistance in Drosophila melanogaster. Journal of insect physiology,49:719~726
    Silva F V M, Gibbsb P.2001. Alicyclobacillus acidoterrestris spores in fruit products and design ofpasteurization processes. Trends in Food Science and Technology,12:68~74
    Singh V K, Utaida S, Jackson L S, Jayaswal R K, Wilkinson B J, Chamberlain N R.2011. Role for dnaKlocus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology and Immunology,153:3162~3173
    Srivastava P K.1994. Heat shock proteins in immune response to cancer. The Fourth ParadigmBirkhauser Verlag,50(11-12):1054~1060
    Sternlicht H, Farr G W, Sternlicht M L, Driscoll J K, Willison K, Yaffe M B.1993. The t-complexpolypeptide complex is a chaperonin for tubulin and actin in vivo. Proceedings of the National Academy ofSciences of the United States of America,90(20):9422~9426
    Strop P, Mayo S L.2000. Contribution of surface salt bridges to protein stability. Biochemistry,39(6):1251~1255
    Szilagyi A, Zavodszky P.2000. Structural differences between mesophilic, moderately thermophilicand extremely thermophilic protein subunits: results of a comprehensive survey. Structure,8(5):493~504
    Tanner J, Hecht R M, Krause K L.1996. Deteminants of enzyme thermostability observed in themolecular structure of Thermus aquaticus D-glyceraldehyde-3-phosphate dehydrogenase at2.5AngstromsResolution. Biochemistry,27(8):2597~2609
    Tavaria M, Gabriele T, Kola I, Anderson R L.1996. A hitchhiker's guide to the human Hsp70family.Cell Stress Chaperones,1:23~28
    Terada K, Mori M.1998. Mitochondrial protein import in animals. Biochim Biophys Acta,1403(1):12~17
    Tissieres A, Mitchell H K, Tracy U M.1974. Protein synthesis in salivary glands of drosophilamelanogaster: relation to chromosome puffs. Journal of Molecular Biology,84:389~398
    Tsuruoka N, Isono Y, Shida O, Hemmi H, Nakayama T, Nishino T.2003. Alicyclobacillus sendaiensissp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. InternationalJournal of Systematic and Evolutionary Microbiology,53:1081~1084
    Uchino F, Doi S.1967. Acido-thermophilic bacteria from thermal waters. Agricultural and BiologicalChemistry,31:817~822
    Vinay K S and Anil K.2001. PCR Primer Design, Molecular Biology Today,2(2):27~32
    Vogt G, Woell S, Argos P.1997. Protein thermal stability, hydrogen bonds, and ion pairs. Journal ofMolecular Biology,269(4):631~643
    Walls I, Chuyate R.2000. Spoilage of fruit juices by Alicyclobacillus Acidoterrestris. Food Australia,52(7):286~291
    Walter S, Buchner J.2002. Molecular chaperones--cellular machines for protein folding. AngewandteChemie,41:1098~1113
    Wang JS, Bai YG, Shi PJ, Luo HY, Huang HQ, Yin J, Yao B.2011. A novel xylanase, XynA4-2, fromthermoacidophilic Alicyclobacillus sp. A4with potential applications In the brewing industry. WorldJournal of Microbiology&Biotechnology,27:207~213
    Wang R, Tombelli S, Minunni M, Spiriti M M, Mascini M.2004. Immobilisation of DNA probes for thedevelopment of SPR-based sensing. Biosensors&Bioelectronics,20:967~974
    Wiegant F A, Souren J E, van Wijk R.1999. Stimulation of survival capacity in heat shocked cells bysubsequent exposure to minute amounts of chemical stressors; role of similarity in hsp-inducing effects.Human&Experimental Toxicology,18:460~470
    Wisotzkey J D, Jurtshuk P Jr, Fox G E, Deinhard G, Poralla K.1992. Comparative sequence analyses onthe16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus andproposal for creation of a new genus, Alicyclobacillus gen. nov. International Journal of SystematicBacteriology,42:263~269
    Wu R, Zhang W, Sun T, Wu J, Yue X, Meng H, Zhang H.2011. Proteomic analysis of responses of anew probiotic bacterium Lactobacillus casei Zhang to low acid stress. International Journal of FoodMicrobiology,147:181~187
    Wu X, Yano M, Washida H, Kido H.2004. The second metal-binding site of70kDa heat-shock proteinis essential for ADP binding, ATP hydrolysis and ATP synthesis. Biochemical Journal,378(3):793~799
    Yamazaki K, Teduka' H, Inone N, Shinano H.1996. Specific primes for detection of A. acidoterrestrisby RT-PCR. Letters in Applied Microbiology,23:350~354
    Yoshimune K, Yoshimura T, Nakayama T, Nishino T, Esaki N.2002. Hsc62, Hsc56, and GrpE, the thirdHsp70chaperone system of Escherichia coli. Biochemical and Biophysical Research Communications,293:1389~1395
    Yu JM, Bao ED, Yan JY, Lei L.2008. Expression and localization of Hsps in the heart and bloodvessel of heat-stressed broilers.Cell Stress and Chaperones,13(3):327~335
    Zhu X, Zhao X, Burkholder W F, Gragerov A, Ogata C M, Gottesman M E, Hendrickson WA.1996.Structural analysis of substrate binding by the molecular chaperone DnaK. Science,272(5268):1606~1614
    Zou Y, Crowley D J, Van Houten B.1998. Involvement of Molecular Chaperonins in NucleotideExcision Repair. DNaK leads to increased Thermal Stability of UvrA, Catalytic UvrB loading, enhancedRepair, and increased UV Resistance. Biological Chemistry,273:12887~12892

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700