用户名: 密码: 验证码:
聚己内酯、聚氧化乙烯/纳米Si_3N_4复合材料结晶行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米氮化硅(Si3N4)是一种性能优异的陶瓷材料被广泛应用于聚合物基纳米复合材料的制备。但纳米Si3N4陶瓷粉体具有高表面能、高比表面积在使用过程中很容易团聚,导致其在聚合物基体中很难达到纳米级的分散。使用改性剂对纳米Si3N4进行表面修饰能够有效地改善聚合物基体和纳米粒子之间的相容性,提高粒子的分散性。利用性能优异的无机纳米粒子开发新型特殊性能的聚合物基纳米复合材料国内外已有大量文献报道,而对纳米材料如何影响聚合物结晶行为的研究尚不完善。故本文针对纳米Si3N4的表面改性、纳米Si3N4在聚合物基体中的分散、聚合物基体的结晶行为以及纳米粒子对基体结晶过程的影响进行了研究。
     1、根据聚合物的化学结构特征,参照本实验室的工作经验,采用小分子改性剂KH570对纳米Si3N4进行表面修饰,以便提高其与聚合物基体的相容性,阻碍团聚的发生。通过红外(IR)、热重分析仪(TGA)、透射电镜(TEM)、沉降实验等手段对改性后的纳米Si3N4进行表征,结果表明改性剂KH570已成功键接在纳米Si3N4上,最佳百分用量为Si3N4用量的33wt%,键接方式主要为化学键键接,化学包覆率为13.05wt%,改性Si3N4在聚合物基体中的分散达到了纳米尺度上的分散。
     2、采用溶液共混法制备了聚己内酯PCL/纳米Si3N4复合材料,利用差示扫描量热分析仪(DSC)、偏光显微镜(POM)、 X射线衍射(XRD)和透射电镜(TEM)研究了PCL和PCL/Si3N4纳米复合体系的结晶行为,并探讨了降温速率、Si3N4的含量、Si3N4的表面性质等因素对体系结晶过程的影响。主要发现纳米Si3N4具有成核作用,可以减弱聚合物PCL对降温速率的依赖,但不会改变PCL的晶体结构;随其含量的增加聚合物的结晶温度Tc和结晶开始温度Tstart也提高,并在5wt%时出现最大值;PCL44℃等温结晶、PCL48℃等温结晶以及PCL/Si3N4复合材料48℃等温结晶球晶生长速率分别为16.46×lO-3μm/s、3.87×lO-3μm/s,且球晶生长速率越慢,球晶半径却越大。
     3、使用DSC法测试了PEO和PEO/Si3N4纳米复合物的结晶曲线和熔融曲线并总结、阐述了结晶温度Tc和熔融温度Tm及单位质量吸收的热量△H随分子量变化的关系,又进一步将数据处理得到了相对结晶度Xt与结晶时间t的变化曲线并利用Avrami方程对曲线进行了模拟。对POM照片进行定性观察和定量分析,绘制了球晶半径对结晶时间的曲线和晶核密度对结晶时间的曲线,并解释了它们的变化与分子量的关系。最后使用TEM和XRD分析了聚合物的晶体结构,发现PEO的晶型与分子量无关,但低分子量的PEO结晶能力更好,晶体更完善。
Nano-silicon nitride (SisN4) powder is a high performance structural ceramic material and it has been widely used in the preparation of polymer nanocomposites. However, the high surface energy and large specific surface area of nano-Si3N4easily leads to aggregation when it is used in the materials. So the powder can not reach nanometer scale dispersion in the polymer matrix. By adding modifier, the compatibility between polymer matrix and nano-particles as well as the dispersion of nano-particles can be improved effectively. A lot of literatures have described the methods of developing novel polymer-based nanocomposites with special properties using high performance inorganic nano-particles, but it is not clearly explained on how the nano-particles affecting the crystallization behavior of semi-crystalline polymer matrix. In this paper, the surface modification of nano-SisN4, the dispersion behavior of nano-Si3N4in the semi-crystalline polymer matrix, the crystallization behavior of the polymer matrix and the impact of nano-Si3N4on the crystallization process of the polymer matrix are deeply investigated.
     1. According to the chemical structure characteristics of the crystalline polymer and the experience of our laboratory, low molecular modification agent KH570is used to modify the surface of nano-Si3N4and improve the compatibility between nano-Si3N4and the polymer matrix as well as to prevent the happening of the aggregation. The structure of modified nano-Si3N4is investigated by IR,TGA, TEM and settlement experiment, The results show that modifier KH570is already successful bonded on the surface of nano-Si3N4, the best percentage is33wt%and the chemical coating rate is13.05wt%, the modified nano-Si3N4has reached nanometer scale dispersion in the polymer matrix.
     2. The composites of PCL/nano-Si3N4and PEO/nano-Si3N4were prepared by solution blending. The crystallization behavior of polycaprolactone (PCL) and PCL/Si3N4nanocomposites is measured by DSC, polarizing microscope (POM), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and how the cooling rate, the content of nano-Si3N4, the surface properties of nano-Si3N4and other factors'effect on the crystallization process are explained too. The results show that nano-Si3N4has nucleation effect and can reduce the dependence of the polymer on the cooling rate, while the crystal structure of PCL is not changed during the process. With the increasing content of nano-Si3N4, the crystallization temperature Tc and the initial crystallization temperature Tstart of polymer matrix are improved when the content of nano-Si3N4reaches5wt%, Tc and Tstart can reach maximum. The spherocrystal growth rate of PCL are16.46×10-3μm/s and12.83×10-μm/s when the isothermal crystallize are at44℃and48℃, respectively, while the spherocrystal growth rate of PCL/Si3N4composite is3.87×10-3μm/s when the isothermal crystallize is at48℃. The slower the spherulite growth rate, the bigger the spherocrystal radius is.
     3. The crystallization curve and the molten curve of PEO and PEO/Si3N4nanocomposites are measured by DSC. The changing of the crystallization temperature Tc and melting temperature Tm and AH with different molecular weight and are summarized. Further data processing is made to get the curve of the relative crystallinity Xt with crystallization time and the data is simulated by using Avrami equation. The plots of the spherocrystal radius to the crystalline time and the crystalline nucleation density to the crystalline time are investigated by analyzing the PEO photos. The changing of the spherocrystal radius and the crystalline nucleation density with different molecular weight are explained. The crystal structure of the polymers is studied by using TEM and XRD, and the results show that the crystal structure of PEO is independent on the molecular weight. But the PEO with low molecular weight has a better crystallinity and more perfect crystal structure.
引文
[1]J. A. Lim, F. Liu, S. Ferdous, et al. Polymer semiconductor crystals[J]. Materials Today,2010,13(5):14-24
    [2]高小铃,傅强,G.Strobl.高分子结晶的新进展、新模型[J].高分子通报,2003,(1):25-33
    [3]罗艳红,姜勇,金熹高,等.原子力显微镜研究高聚物结晶的最新进展[J].科学通报,2002,(15):1121-1125
    [4]温慧颖,蒙延峰,蒋世春,等.高分子结晶理论的新概念与新进展[J].高分子学报,2008,(2):107-115
    [5]J. Hoffman, J. Lauritzen, E. Passaglia, et al. Kinetics of polymer crystallization from solution and the melt[J]. Colloid & Polymer Science,1969,231(1):564-592
    [6]B.Heck, E.PerezG, Strobl. Two Competing Crystallization Modes in a Smectogenic Polyester[J]. Macromolecules,2010,43(9):4172-4183
    [7]G.Strobl. Colloquium:Laws controlling crystallization and melting in bulk polymers[J]. Reviews of Modern Physics,2009,81(3):1287-1300
    [8]金日光,华幼卿.高分子物理[M].北京:化学工业出版社,2006:34-48
    [9]K.Chrissopoulou, S.Anastasiadis. Polyolefin/layered silicate nanocomposites with functional compatibilizers[J]. European Polymer Journal,2011,47(4):600-613
    [10]H.Eslami, M.Grmela, M.Bousmina. Linear and nonlinear rheology of polymer/layered silicate nanocomposites[J]. Journal of Rheology,2010, 54(3):539-563
    [11]S.Marras, A.Tsimpliaraki, I.Zuburtikudis, et al. Morphological, thermal, and mechanical characteristics of polymer/layered silicate nanocomposites:the role of filler modification level[J]. Polymer Engineering & Science,2009,49(6):1206-1217
    [12]H.Namazi, M.Mosadegh, A.Dadkhah. New intercalated layer silicate nanocomposites based on synthesized starch-g-PCL prepared via solution intercalation and in situ polymerization methods:As a comparative study[J]. Carbohydrate Polymers,2009,75(4):665-669
    [13]D. F. Schmidt, E. P. Giannelis. Silicate dispersion and mechanical reinforcement in polysiloxane/layered silicate nanocomposites[J]. Chemistry of Materials,2009, 22(1):167-174
    [14]L.Xu, H. Nakajima, E. Manias, et al. Tailored nanocomposites of polypropylene with layered silicates[J]. Macromolecules,2009,42(11):3795-3803
    [15]X.Zhang, L.S.Loo. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites[J]. Macromolecules,2009,42(14): 5196-5207
    [16]谢江波,张弘胤,李迎春,等.尼龙6/高岭土纳米复合材料的结晶行为[J].塑料,2010,(2):80-82.
    [17]S.M.Huang, J.J.Hwang, H.J.Liu, et al. Crystallization behavior of poly (L-lactic acid)/montmorillonite nanocomposites[J], Journal of Applied Polymer Science,2010, 117(1):434-442
    [18]吴德峰,周持兴,谢凡,等.聚对苯二甲酸丁二醇酯/蒙脱土纳米复合材料的结晶结构与流变行为[J].高分子材料科学与工程,2005,21(5):133-136
    [19]宋玉明,赵竹第,于文学,等.聚偏氟乙烯/蒙脱土纳米复合材料的形态结构[J].中国科学:B辑,2007,37(4):380-385
    [20]J.N.Coleman, U.Khan, W.J.Blau, et al. Small but strong:a review of the mechanical properties of carbon nanotube-polymer composites [J]. Carbon,2006, 44(9):1624-1652
    [21]O.Breuer, U.Sundararaj. Big returns from small fibers:a review of polymer/carbon nanotube composites[J]. Polymer composites,2004,25(6):630-645.
    [22]M. Meyyappan, L.Delzeit, A.Cassell, et al. Carbon nanotube growth by PECVD: a review[J]. Plasma Sources Science and Technology,2003,12(2):205-216.
    [23]J.P.Salvetat, GA.D.Briggs, J.M.Bonard, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J], Physical Review Letters,1999, 82(5):944-947
    [24]L.Bokobza. Multiwall carbon nanotube elastomeric composites:A review[J]. Polymer,2007,48(17):4907-4920
    [25]D.Qian, E.C.Dickey, R.Andrews, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J]. Applied Physics Letters, 2000,76(20):2868-2870
    [26]M.S.P.Shaffer, A.H.Windle. Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites[J]. Advanced Materials,1999, 11(11):937-941
    [27]W.Bauhofer, J.Z.Kovacs. A review and analysis of electrical percolation in carbon nanotube polymer composites[J]. Composites Science and Technology,2009, 69(10):1486-1498
    [28]Z.Spitalsky, D.Tasis, K.Papagelis, et al. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties[J]. Progress in Polymer Science,2010,35(3):357-401
    [29]J.Yan, T.Wei, Z.Fan, et al. Preparation of graphene nanosheet/carbon nanotube/poly aniline composite as electrode material for supercapacitors[J]. Journal of Power Sources,2010,195(9):3041-3045
    [30]H.E.Miltner, N.Grossiord, K.Lu, et al. Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation[J]. Macromolecules,2008,41(15):5753-5762
    [31]D.Xu, Z.Wang. Role of multi-wall carbon nanotube network in composites to crystallization of isotactic polypropylene matrix[J]. Polymer,2008,49(1):330-338
    [32]李文华,陈小华,张刚,等.溶液法制备聚丙烯/碳纳米管复合材料的结晶行为[J].高分子材料科学与工程,2007,23(2):194-197
    [33]张玲,陶涛,李春忠,等.溶液结晶制备聚乙烯/碳纳米管串晶结构[J].高分子学报,2009,(7):660-666
    [34]吴亮,吴德峰,张明.聚乳酸催纳米管复合材料的冷结晶及热稳定性[J].高分子材料科学与工程,2009,25(6):85-87
    [35]孟祥胜,王鹏,毛桂洁.聚乙烯醇/纳米二氧化硅复合薄膜的制备及性能[J].高分子材料科学与工程,2007,(1):133-136
    [36]K.Zhang, W.Wu, H.Meng, et al. Pickering emulsion polymerization:preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure[J]. Powder Technology,2009,190(3):393-400
    [37]V. Karpakam, K.KamarajS. Sathiyanarayanan. Electro synthesis of PANI-nano TiO2 composite coating on steel and its anti-corrosion performance[J]. Journal of the Electrochemical Society,2011,158(12):C416-C423
    [38]Y.Li, X.Feng, K.Qiang, et al. Effect of silicon dioxide on non-isothermal crystallization rate coefficient and nucleation activity of PA 12 coating[J]. Polymer, 2011,27(3):58-61
    [39]钱家盛,杨海洋,何平笙.纳米SiO2颗粒对HDPE和PP非等温结晶行为的影响[J].高分子材料科学与工程,2004,(6):161-164
    [40]伍玉娇,何辉,蒙日亮,等.PP/纳米TiO2复合材料的晶体形貌和非等温结晶行为[J].中国塑料,2010,(5):51-58
    [41]张玉庆,钟明强,蔡伟乐,等.纳米Al2O3对尼龙6结晶性能的影响[J].高分子材料科学与工程,2009,(2):89-92
    [42]周红军,李维达,邝维,等.纳米Al2O3改性聚丙烯的非等温结晶动力学[J].合成纤维工业,2010,(6):15-20
    [43]杨光福,柯扬船,刘维康.PET/SiO2纳米复合材料的光学性能和结晶成核行为[J].高分子材料科学与工程,2007,23(4):94-97
    [44]于润泽,刘正英,尹波,等.纳米粒子的分散状态对聚丙烯结晶行为的影响[J].高分子材料科学与工程,2006,22(5):147-150
    [45]K.H.Nitta, K.Asuka, B.Liu, et al. The effect of the addition of silica particles on linear spherulite growth rate of isotactic polypropylene and its explanation by lamellar cluster model [J]. Polymer,2006,47(18):6457-6463.
    [46]任敏巧,张志英,莫志深,等.高聚物结晶后期动力学过程的研究进展[J].高分子通报,2003,(3):15-22
    [47]贺江平,黎华明,王霞瑜,等.PET/SiO2纳米复合材料的非等温结晶动力学[J].高分子材料科学与工程,2009,(1):83-86
    [48]毛桂洁,王鹏.聚乙烯醇/纳米氧化锌复合材料的非等温结晶动力学[J].材料科学与工艺,2009,(3):422-426
    [49]尹华,余鼎声,张师军.纳米粒子改性PET的非等温结晶动力学[J].合成树脂及塑料,2009,(5):51-55
    [50]于翔,朱诚身,何素琴,等.聚己内酯等温结晶的Avrami动力学研究[J].材料导报,2010,(20):108-1]2
    [51]张晓黎,陈静波,邱碧薇,等.聚合物流动诱导结晶研究进展[J].高分子通报,2009,(3):42-49
    [52]张苏,钱家盛,章于川.三元共聚物对纳米SJ3N4粉体表面改性的研究[J].安徽大学学报:自然科学版,2009,33(1):75-79
    [53]铁生年,李星.硅烷偶联剂对碳化硅粉体的表面改性[J].硅酸盐学报,2011,39(3):409-413
    [54]佘利娟,韩静香,刘宝春.硅烷偶联剂对纳米氧化锌的表面改性研究[J].化工时刊,2010,24(6):15-20
    [55]殷榕灿,张文保.硅烷偶联剂的研究进展[J].中国科技信息,2010,(10):44-46
    [1]方征平,徐钰珍.纳米粒子对聚合物的改性机理[J].材料科学与工程学报,2003,21(002):279-282
    [2]武艳,钱家盛,苗继斌,等.低分子量氯磺化聚乙烯对纳米Si3N4粉体表面处理[J].应用化学,2009,26(006):629-632
    [3]E.V.Skorb, D.Fix, D.V.Andreeva, et al. Surface-Modified Mesoporous SiO2 Containers for Corrosion Protection[J]. Advanced Functional Materials,2009, 19(15):2373-2379
    [4]X.Xu, B. Li, H.Lu, et al. The effect of the interface structure of different surface-modified nano-SiO2 on the mechanical properties of nylon 66 composites[J]. Journal of Applied Polymer Science,2008,107(3):2007-2014
    [5]Y.Luo, X.Yu, X.Dong, et al. Effect of nano-Si3N4 surface treatment on the tribological performance of epoxy composite[J].2010,4(3):131-140
    [6]F.Shengyang, Y.Shouhua, Z.Yuchuan, et al. Properties of surface modified nano-Si3N4/acrylic rubber composites[J]. China Synthetic Rubber Industry,2009,32 (5):409-411
    [7]汪海燕,章于川.纳米SiaN4陶瓷粉末的表面改性与应用[J].中国粉体工业,2009,(005):30-34
    [8]J. P. Matinlinna,L. V. J. LassilaP. K. Vallittu. The effect of five silane coupling agents on the bond strength of a luting cement to a silica-coated titanium [J]. dental materials,2007,23(9):1173-1180
    [9]G. H. Z. Hui. Surface Modification of Nano-silicon Nitride Powder[J]. Chemical Industry Times,2009,23(12):24-27.
    [10]桂君,钱家盛,魏强,等.HSi-g-A151的制备及其对纳米Si3N4的表面改性[J].安徽大学学报:自然科学版,2011,35(1):79-84
    [1]T.Higa, H.Nagakura, T.Sakurai, et al. Crystal orientation of poly(s-caprolactone) blocks confined in crystallized polyethylene lamellar morphology of poly(ε-caprolactone)-block-polyethylene copolymers[J]. Polymer,2010,51(23): 5576-5584
    [2]R.-M.Ho, Y.-W.Chiang, C.-C.Lin, et al. Crystallization and Melting Behavior of Poly(s-caprolactone) under Physical Confinement[J]. Macromolecules,2005,38(11): 4769-4779
    [3]R.V.Castillo, A. J.Muller. Crystallization and morphology of biodegradable or biostable single and double crystalline block copolymers[J]. Progress in Polymer Science,2009,34(6):516-560
    [4]S.Jiang, X.Ji, L.An, et al. Crystallization behavior of PCL in hybrid confined environment[J]. Polymer,2001,42(8):3901-3907
    [5]L.I.Atanase, O.Glaied, GRiess. Crystallization kinetics of PCL tagged with well-defined positional triazole defects generated by click chemistry [J]. Polymer, 2011,52(14):3074-3081
    [6]C.He, J.Sun, C.Deng, et al. Study of the Synthesis, Crystallization, and Morphology of Poly (ethylene glycol)-Poly (ε-caprolactone) Diblock Copolymers[J]. Biomacromolecules,2004,5(5):2042-2047
    [7]於秋霞,朱光明,梁国正,等.聚ε-己内酯的合成,性能及应用进展[J].高分子材料科学与工程,2004,20(5):37-40
    [8]苏健裕,陈玲,杨连生,等.聚己内酯/淀粉共混材料的非等温结晶动力学[J].华南理工大学学报(自然科学版),2008,(11):79-84
    [9]C.A.Mitchell, R,Krishnamoorti. Non-isothermal crystallization of in situ polymerized poly(ε-caprolactone) functionalized-SWNT nanocomposites[J]. Polymer,2005,46(20):8796-8804
    [10]W.Zhu, W.Xie, X.Tong, et al. Amphiphilic biodegradable poly (CL-b-PEG-b-CL) triblock copolymers prepared by novel rare earth complex: Synthesis and crystallization properties[J]. European Polymer Journal,2007, 43(8):3522-3530
    [11]聂康明,庞文民,王雨松,等.PCL/SiO2杂化纳米相微结构与晶态成核生长特性[J].化学物理学报,2006,18(6):1023-1028
    [1]X.Peng, J. Zhao. Synthesis and application of polyoxyethylene-grafted cationic polyamidoamine dendrimers as retention aids[J]. Journal of Applied Polymer Science,2007,106(5):3468-3473
    [2]J.Deitzel, J.Kleinmeyer, J.Hirvonen, et al. Controlled deposition of electrospun poly (ethylene oxide) fibers[J]. Polymer,2001,42(19):8163-8170
    [3]R.A.Vaia, B.B.Sauer, O.K.Tse, et al. Relaxations of confined chains in polymer nanocomposites:Glass transition properties of poly (ethylene oxide) intercalated in montmorillonite[J]. Journal of Polymer Science Part B:Polymer Physics,1997, 35(1):59-67
    [4]崔风霞,郭春梅.聚氧化乙烯(PEO)的合成及应用[J].精细石油化工,1999,(6):41-44
    [5]陈理文,李志明,郑震,等.一种新型聚氧化乙烯基凝胶型聚合物电解质的制备及其性能[J].中国学术期刊文摘,2008,14(20):221-221
    [6]A.M.Stephan, T.P.Kumar, S.Thomas, et al. Calcium phosphate incorporated poly (ethylene oxide)-based nanocomposite electrolytes for lithium batteries. I. Ionic conductivity and positron annihilation lifetime spectroscopy studies[J]. Journal of Applied Polymer Science,2012,124 (4):3245-3254
    [7]T.Chatterjee, A.T.Lorenzo, R.Krishnamoorti. Poly (ethylene oxide) crystallization in single walled carbon nanotube based nanocomposites:Kinetics and structural consequences[J]. Polymer,2011,52 (21);4938-4946
    [8]C.Tonhauser, M.Mazurowski, M.Rehahn, et al. Water-Soluble Poly (vinylferrocene)-b-Poly (ethylene oxide) Diblock and Miktoarm Star Polymers[J]. 2012,45(8):3409-3418.
    [9]H. Wang,J. K. Keum,A. Hiltner, et al. Confined crystallization of polyethylene oxide in nanolayer assemblies[J]. Science,2009,323(5915):757-760
    [10]J.Jin, M.Song, F.Pan. A DSC study of effect of carbon nanotubes on crystallisation behaviour of poly (ethylene oxide)[J]. Thermochimica acta,2007, 456(1):25-31
    [11]何勇.不同分子量与构型结构的聚乳酸均聚物与立体共聚物的凝聚态,热力学及结晶动力学研究[D].上海:复旦大学,2008.
    [12]郭振福.CuCl2对聚乙二醇(PEG)构象和结晶行为的影响[J].化学学报,2009,67(23):2755-2758

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700