用户名: 密码: 验证码:
氧化硅薄膜的电辅助自组装及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜自组装技术是近几年十分受关注的研究领域。本文采用电辅助自组装技术,选取FTO导电玻璃和高定向裂解石墨(HOPG)作为薄膜组装基底材料,以十六烷基三甲基溴化铵(CTAB)为模板、正硅酸乙酯(TEOS)为硅源、硝酸钠为支持盐合成出(介孔)氧化硅薄膜。借助于循环伏安曲线(CV)、差热-热重分析(TG-DTA)、傅立叶变换红外光谱、扫描电镜(SEM)观察、高分辨透射电镜(HRTEM)观察及电子衍射图谱、紫外-可见光谱、荧光光谱等数据信息和技术对氧化硅薄膜样品进行了研究表征。研究了不同沉积电压、溶液组成、沉积时间及TEOS/CTAB配比等参数对氧化硅薄膜组装、热处理前后的氧化硅薄膜的形貌和可见光区的光学特性的影响,对Co元素掺杂氧化硅薄膜的制备进行了尝试,并对氧化硅薄膜的电辅助自组装生长机理以及表面活性剂(CTAB)、盐酸与硅源的作用机理进行了分析。
     结果表明:在-3.5 V电压下,采用阳离子表面活性剂(CTAB)为模板可制备出氧化硅纳米薄膜;在酸性条件下,可得到多种形貌特征的无定形二氧化硅薄膜;随着沉积电压和时间的增加,氧化硅薄膜在可见光光区的吸光度增强,透过率降低;只有当溶液中CTAB的浓度大于其临界胶束浓度(C.M.C),且TEOS的量一定时,才可能得到介孔结构的氧化硅薄膜,经热处理后具有MCM-41结构特征;薄膜样品经500℃热处理后,由于非桥键氧空穴中心(NBOHC)的出现,在3.5 eV光的激发下有2.5 eV的光致荧光现象发生;随着钴掺杂量的增大,Co/氧化硅组装膜在可见光光区的吸光度逐渐增强,透光率降低,并略有红移现象发生;电辅助组装成膜过程中,表面活性剂CTAB与TEOS的硅酸根离子通过静电力相互作用,形成SiO_2预聚体,当pH值降低时,形成SiO_2-表面活性剂杂化胶束聚集体。在运动电荷的诱导下,杂化胶束聚集体在导电基底上组装生长,从而制备出介孔二氧化硅薄膜。
In recent years, the self-assembly technology of films has attracted much attention. In this thesis, by electro-assisted self-assembly technique, mesoporous silica films were preformed by using cationic surfactant cetyltrimethyl ammonium bromide (CTAB) as template, tetraethyl orthosilicate (TEOS) with sodium nitrate as precursor, fluorine doped tin oxide films coated glass (FTO glass) or highly oriented pyrolytic graphite (HOPG) as substrates. The silica films were respectively characterized by cyclic voltammograms (CV), DTA-TG, infrared spectrometer, scanning electron microscopy (SEM), transmission electron microscopy (HRTEM), electron diffraction patterns, UV-visible spectrophotometer and fluorescence spectroscopy. The effects of voltages, solution composition, induced times and TEOS/CTAB ratio on the assembly process, morphology and optical properties of silica films were investigated. The preparation of the Co doped silica films was attempt. And the growth mechanism of the silica films and the action mechanisms of the surfactant and hydrochloric acid were explained reasonably.
     Results showed that the silica thin films could be prepared with cationic surfactant (CTAB) as template at -3.5 V. A variety of morphologies of silica thin films could be obtained in acidic condition. With the increasing of the potential and induced time, the intensity of silica film’s absorbance increased, and the transmittance of silica film decreased in the visible light region. Mesoporous silica films could be formed only if the concentration of CTAB solution was equal to or greater than its critical micelle concentration (CMC) or the concentration of TEOS reached a definite extent. After calcination at 500℃, the mesoporous silica films had MCM-41 structures, because of the addition of surfactant CTAB. Besides, after calcination, due to non-bridged oxygen holes centers (NBOHC) exist, which led to the emission of 2.5 eV light under the excitation of 3.5 eV incident light. With the increasing of Co doping, the absorption of Co/silica film gradually increased, and the transmittance decreased. In the process of electro-assisted self-assembly, the SiO_2 pre-polymers were formed of surfactant CTAB and silicate ions of TEOS by electrostatic interactions. When the pH value decreased, SiO_2-hybrid surfactant micelles aggregates were synthesized. Under the moving charges induced, mesoporous silica thin films were formed of self-assembly of the hybrid micelles aggregates in the conductive substrate.
引文
[1]肖强.介孔二氧化硅的温和条件合成:[博士学位论文].天津:南开大学,2007.
    [2] Santamaria J, Idorra E, Quesada F S, et al. Sputtering of SiO2 in O2-Ar atmospheres. Thin Solid Films, 1986, 139 (2):201-208.
    [3] Shabalov A L, Feldman M S. Atomic defects and stresses in r.f.-sputtered SiO2 thin films. Thin Solid Films, 1986, 143 (1):83-90.
    [4]许生,侯晓波,范垂祯,等.硅靶中频反应磁控溅射二氧化硅薄膜的特性研究.真空, 2001,(5): 1-6.
    [5]郑祥钦,郭新立,廖良生,等.脉冲激光沉积硅基二氧化硅薄膜的蓝光发射.半导体学报, 1998,19: 21-24.
    [6] Alayom I, Pereyra I, Pcarreno M N. Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures. Thin Solid Films, 1998, 332 (1-2): 40-45.
    [7]张劲松,任兆杏,梁荣庆,等. ECR-PECVD制备SiO2薄膜中衬底射频偏压的作用.核聚变与等离子体物理, 2001,21(1): 59-64.
    [8] Kresge C T, Leonowicz M E, Roth W J,et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature.1992, 359: 710-712.
    [9]丁子上,翁文剑.溶胶凝胶制备材料的进展.硅酸盐学报,1993, 21: 443-449.
    [10] Huang C J, Houngm P, Wang Y H, et al. Effect of a chemical modification on grow the silicon dioxide films on gallium arsenide prepared by the liquid phase deposition method J. Appl. Phys, 1999, 86 (12): 7151-7155.
    [11] Yang H, Coombs N, Sokolov I, et al. Free-standing and oriented mesoporous silica films grown at the air-water interface. Nature, 1996, 381: 589-592
    [12]许磊,王公慰,魏迎旭等. MCM-41介孔分子筛合成研究Ⅱ:微波辐射合成法.催化学报, 1999, 20(3): 247-255
    [13] Yang H, Kuperman Coombs A N, Mamiche-Afara S, et al. Synthesis of oriented films of mesoporous silica on mica. Nature.1996, 379: 703-705.
    [14] Inagaki S, Fukushima Y, Kuroda K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun., 1993: 680-682
    [15] Huo Q S,Leon R,Pertoff P M,et al. Mesostructure design with Gemini surfactants-supercageformation in a 3-dimensional hexagonal array. Science, 1995, 268:1324-1327
    [16] Li G, Tong Y and Liu G. Electrochemical investigation on the preparation of Lu–Co thin films in dimethylsulfoxide. Journal of Electroanalytical Chemistry, 2004, 562(2): 223~229.
    [17] Walcarius A., Sibottier E, Etienne M, et al. Electrochemically assisted self-assembly of mesoporous silica thin films. J. Nature Mater. 2007, 6: 602.
    [18] Goux A, Etienne M, Aubert E, et al. Oriented mesoporous silica films obtained by electro-assisted self-assembly (EASA). Chem. Mater. 2009, 21: 731–741.
    [19] Kanungo M, Isaacs H S, Wong S S. Quantitative control over electrodeposition of silica films onto single-walled carbon nanotube surfaces J. Phys. Chem. C. 2007, 111:17730-17742.
    [20] Everett D H. IUPAC manual of symbols and terminology. J. Pure. Appl. Chem, 1972,31: 578-638
    [21]田高.有序介孔材料合成、结构及其功能化研究:[博士学位论文].武汉:武汉理工大学,2005
    [22] Beck J S, Kresge C T. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 1992, 14: 10834-10843
    [23] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves Synthesized by a liquid-crystal template mechanism. Nature, 1992, 359: 710-712
    [24] Tanev P T, Pinnavaia T J. A neutral templating to mesoporous molecular-sieves. Science, 1995, 267: 865-867
    [25] Lu Y F, Ganguli R, Drewien C A, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating. Nature, 1997, 389: 364-368
    [26] Schacht S, Huo Q, Voigt-Martin I G, et al. Oil-water interface templating of mesoporous macroscale structures. Science, 1996, 273: 768-771
    [27] Feng X, Fryxell G, Wang L-Q, et al. Functionalized monolayers on ordered mesoporous supports, Science, 1997, 276, 923-926
    [28] Fryxell G E, Liu J, Hauser T A, et al. Design and synthesis of selective mesoporous anion traps, Chem, Mater., 1999, 11(8): 2148-2154
    [29] Holland B T, Isberster P K, Blanford C F, et al. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors, J. Am. Chem. Soc., 1997, 119(29): 6796-6803.
    [30] Lim M H, Stein A, Comparative studies of grafting and direct synthesis of inorganic-organichybrid mesoporous materials, Chem. Mater., 1999, 11: 3285-3295
    [31] Feng X, Rao L, Mohs T R, et al. Self-assembled monolayers on mesorporous silica, a super sponge for actinides, American Ceramic Society, Westerville, OH, 1999: 35-42
    [32] Huo Q, Zhao D, Feng J, et al. Room temperature growth of mesoporous silica fibers: a new high-surface-area optical waveguide, Adv. Mater., 1997, 9: 974-978
    [33] Ganschow M, Work M, Wohrle D, et al. Anchoring of functional dye moecules in MCM-41 by microwave-assisted hydrothermal cocondensation, Angew. Chem. Int. Ed., 2000,39(1): 160-163
    [34] Kinski I, Gies H, Merlow F, Ordered and disordered pNA molecules in mesoporous MCM-41, Zeolite, 1997, 19: 375-381
    [35]高世忠,赵耀,赵莉,等.气相法二氧化硅生产过程及应用特性研究.现代商贸工业,2009,14: 303-304
    [36]王惠玲.有机硅橡胶专用沉淀法二氧化硅的制备和性能研究:[硕士学位论文].天津:天津大学,2005
    [37]朱燕娟,邓淑华,易双萍,等.水热法合成氧化镍-二氧化硅催化剂及其用于碳纳米管的制备.无机材料学报,2003,18(6): 1267-1272
    [38] St ?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1): 62-69
    [39] Shimura N, Ogava M. Growth of nanoporous silica spherical particles by the St?ber method combined with supermolecular templating approach. Bull. Chem. Soc. Jpn, 2005, 78(6): 1154~1159
    [40]毋伟,陈建峰,李永生,等.溶胶-凝胶法纳米二氧化硅原位改性研究.材料科学与工艺,2005, 01: 299-231
    [41]张秀芹.导电高分子-二氧化钛纳米自组装杂化膜的制备、表征及光电转换性能:[博士学位论文].上海:华东师范大学,2006
    [42]王新.空气-水界面自组装二氧化硅纳米薄膜的研究:[硕士学位论文].南京:南京理工大学,2007
    [43] Kim F, Kwan S, Akana J, et al. Langmuir-Blodgett nanorod assembly. J. Am. Chem. Soc. 2001, 123: 4360-4361
    [44]李湘洲.自组装材料.材料天地. 2006. 146
    [45] Decher G, Hong J D, Bunsenges B. Build up of ultrathin multilayer films by a self-assemblyprocess:Ⅱ. Consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. J. Phys. Chem. 1991, 95: 1430-1434
    [46] Ziegler A, Stumpe J, Toutianoush A, et al. Photo orientation of azobenzene moisties in self-assembled polyelectrolyte multilayers. Colloids and Surfaces A-Physicochemical and Engineering Aapects. 2002, 198: 777-784
    [47] Zhang L, Zhang F, Wang Y, et al. Linear electro-optic tensor ratio determination and quadratic electro-optic modulation of electrostatically self-assembled CdSe quantum dot films. J. Chem. Phys. 2002, 116: 6297-6304
    [48] Arregui F J,Claus R O,Matias I R,et al. Optical fiber devices based on nanoscale self-assembly. Science and Engineering of Composite Materials. 2002 ,10: 19-27.
    [49] Dai J H,Balachandra A M,Lee J I,et al. Controlling ion transport through multilayer polyelectrolyte membranes by derivatization with photolabile functional groups. Macromoecules. 2002, 35: 3164-3170
    [50] Todd O Y,Jennifer E P. Designing supramolecular protein assemblies. Current Opinion in Structural Biology. 2002, 12 (4): 464-470
    [51]何静,冯桃,段雪等.原位自组装形成二氧化硅/十六烷基三甲基溴化铵纳米网络子.高分子学报. 2001, 10 (5): 639-644
    [52] Netzer L,Sagiv J. A new approach to construction of artificial monolayer assemblies J. Am. Chem. Soc. 1983, 105 (3): 674-676
    [53] Calvo E J,Forzani E S,Otero M. Study of layer-by-layer self-assembled viscoelastic films on thickness-shear mode resonator surfaces. Anal. Chem. 2002 (74): 3281-3289
    [54]赵效洪.以新型表面活性剂为模板,有序多孔氧化硅的制备及表征:[硕士学位论文].济南:山东大学,2008
    [55] Kim S S, Zhang W, Pinnavaia T J. Ultrastable mesostructured silica vesicles. Science, 1998, 282: 1302-1305
    [56] Huo Q, et al. Generalized synthesis of Periodic surfactant/inorganic composite materials. Nature. 1994, 368: 317-321
    [57] Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature. 1994, 368: 321-323
    [58] Soler-Lllia G J A A, Sanchez C, Lebeau B, Patarin J. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102: 4093-4138
    [59] Chen C. Y., Burkett S. L., Li H. X., et al. Studies on mesoporous materialsⅡ. Synthesis mechanism of MCM-41. Microporous Mater. 1993, 2(1): 27-34
    [60] Firouzi A, Kumar D, Bull L. M, et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995, 267: 1138-1143
    [61] Firouzi A, Atef F, Oertli A. G., et al. Alkaline lyotropic silicate-surfactant liquid crystals. J. Am. Chem. Soc. 1997, 119: 3596-3610
    [62] Yang H, Coombs N, Sokoloc I et al. Registered growth of mesoporous silica films on graphite. J. Mater. Chem.1997, 7: 1285-1290
    [63] Jose M, Teshima K, Hozumi A, et al. Mesoporous silica thin films produced by calcination in oxygen plasma. Surf. Coat. Tech. 2003, 169-170: 504-507
    [64] Hua Zile, Shi Jianlin, Wang Lin, et al. Preparation of mesoporous silica films on a glass slide surfactant template removal by solvent extraction. J. Non-Cryst. Sol. 2001, 292: 177-183
    [65] Besson S, Ricolleau C, Gacoin T. Highly ordered orthorhombic mesoporous silica films. Micro. Meso. Mater. 2003, 60: 43-49
    [66]苗小郁.有序介孔氧化硅的制备、表征及应用研究:[硕士学位论文].南京:南京理工大学,2006
    [67]王娟,张长瑞,冯坚,等.纳米多孔SiO2薄膜的制备与红外光谱研究.光谱学与光谱分析,2005, 25(7): 1045-1048
    [68]范杰,屠波,赵东元.介孔材料的形貌控制及其应用.上海化工,2001, 17: 19-21
    [69]苗继斌,钱家盛,章于川.十八烷基三甲基溴化铵为模板合成有序介孔氧化硅及其表征.中国粉体技术. 2008, 14(3): 24-27
    [70] Davis M. E, Lobo R. F. Zeolite and molecular sieve synthesis, Chem. Mater., 1992, 4, 756-768
    [71]方芳.纳晶硅镶嵌二氧化硅薄膜及其发光性能研究:[硕士学位论文].上海:复旦大学,2009.
    [72] Prikes S M, Glemboeki O. Pole of interfacial oxide-related defects in the red-light emission in porous silicon. J. Phys. Rev. 1994, B49: 2238
    [73] Qin G, Qin G. G. Theory on the quantum confinement luminescence center model for nanocrystalline and porous Si. J. Appl. Phys.1997, 82: 2572
    [74]肖淑娟.富硅二氧化硅薄膜的光致荧光特性研究:[硕士学位论文].济南:山东师范大学,2001
    [75]王连洲,禹剑,施剑林,等.合成条件对介孔氧化硅材料孔径尺寸的影响.硅酸盐学报,1999, 27(6):685-691

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700