用户名: 密码: 验证码:
LMPB-g-KH570的制备及其在ACM复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橡胶基纳米复合材料是以橡胶为基体,复合材料体系中至少有一种组分其一维尺寸要在100nm以下的新型纳米复合材料,在当前材料领域,橡胶基纳米复合材料将是研究的热点之一。纳米氮化硅(Si3N4)粉体是一种性能优异的结构陶瓷材料。由于它具有热膨胀系数小、密度适中、硬度大、弹性模量高及热稳定性、自润滑性、化学稳定性和电绝缘性好等特点因而被广泛应用。纳米Si3N4陶瓷粉体在使用时非常容易团聚,这是因为纳米Si3N4陶瓷粉体的比表面积非常大,同时具有高表面自由能,这些都使得其在橡胶等聚合物体系中难于分散,从而导致橡胶纳米复合材料优异性能不能完全发挥。大分子表面改性剂能有效改善橡胶基体和纳米颗粒之间的相容性、促进纳米颗粒有效分散。本工作针对大分子表面改性剂的合成、纳米Si3N4的表面改性、在橡胶基体中的分散以及纳米复合材料的综合性能等方面进行了研究。
     1.采用溶液接枝聚合法制备了低分子量液体聚丁二烯-γ-甲基丙烯酰氧基丙基三甲氧基硅烷(LMPB-g-KH570)接枝共聚物,使用红外(FTIR)、核磁(1H-NMR)、热分析(TGA, DSC)等表征手段对接枝共聚物的结构进行分析;结果表明,LMPB-g-KH570是接枝共聚物;LMPB-g-KH570的接枝率为27.13%-35.07%(质量分数wt%),接枝共聚物的热稳定性良好。VPO结果表明LMPB-g-KH570的数均分子量Mn=4025,符合大分子表面改性剂的数均分子量在3000-10000之间的要求。
     2.使用合成的大分子表面处理剂LMPB-g-KH570对纳米Si3N4进行表面修饰,采用FTIR、TGA、沉降试验、透射电镜(TEM)、接触角和表面能等测定手段对改性后的粉体进行分析;结果表明LMPB-g-KH570与纳米Si3N4发生化学键合,纳米Si3N4颗粒表面包覆一层有机层,LMPB-g-KH570的利用率为63.67%,且其化学修饰利用率可以达到30.66%;纳米Si3N4经表面修饰后,纳米Si3N4颗粒的表面能降低,在乙酸乙酯中分散均匀,有效阻止了纳米Si3N4的团聚;纳米Si3N4经表面改性后,表面亲水性减弱,亲油性增加,表面自由能由未改性的112.32J/M2降低到70.12J/M2。
     3.将大分子表面处理剂]LMPB-g-KH570改性后的纳米Si3N4粉体填充丙烯酸酯橡胶(ACM),制备了纳米Si3N4/ACM复合材料。利用RPA-8000、SEM、TEM等手段对纳米复合材料的微观结构和性能进行了分析和评价。结果表明,改性纳米Si3N4能有效改善复合材料的微观界面相互作用并提高橡胶的硫化和力学性能。在RPA动态力学性能扫描测试生胶及混炼胶性能的试验中,弹性模量G'和损耗因子tanδ均随频率和应变的升高,分别显示出降低和增大的规律,频率和应变的适当提高可以改善其加工性。与纯ACM相比,添加2.0份改性后纳米Si3N4/ACM复合材料正硫化时间降低38秒,拉伸强度提高24.8%,撕裂强度提高3.39%。
Rubber Nanocomposites is new type of polymeric composite in which one component has the dimension less than 100nm at least, and it is one of the focuses on which intensively studies in the field of materials. Silicon nitride (Si3N4) is a high-performance engineering ceramic material. Recently, silicon nitride ceramics has been applied widely because it has moderate density, high hardness and elastic modulus. In addition, it has high thermal stability, chemical resistance and good electrical insulation. But nano-Si3N4 is easily agglomerate; the reason is that nano-Si3N4 has much surface area and high surface activity. All of these will cause the nano-Si3N4 powder to be dispersed difficultly. So the excellent properties of nano-powder/rubber composite materials can not exhibit adequately. This work focused on synthesization of macromolecule surface coupling agent, surface modification of nano-Si3N4 powder, dispersion of nano-Si3N4 powder in the rubber matrix, and the complex properties of rubber nanocomposites.
     1. Low molecular weight liquid polybutadiene-y-methacryloxypropyl trimethoxy silane (LMPB-g-KH570) were synthesized by solution polymerization. The structure of LMPB-g-KH570 was investigated by FT-IR,1H-NMR, TGA, DSC et al. The results indicated that the KH570 were respectively grafted onto LMPB. The graft ratio of LMPB-g-KH570 was from 27.13% to 35.07%(wt%). The results of TGA and DSC show that LMPB-g-KH570 graft copolymer had good thermal stability. Its average molecular weight was measured by VPO. The Mn value of LMPB-g-KH570 was calculated as 4025, meeting the requirement that optimum number-averaged molecular weight should be in the range of 3000-10000.
     2. Nano-Si3N4 was modified macromolecular coupling agents LMPB-g-KH570. The properities of modified nano-Si3N4 and raw nano-Si3N4 were characterized by FT-IR, TGA, TEM et al. FT-IR, TGA and DSC indicated that LMPB-g-KH570 bonded covalently on the surface of Si3N4 nanoparticles, and an organic coating layer was formed. The reaction condition was optimized by the dispersion stabilization. TEM revealed that modified nano-Si3N4 possessed good dispersibility in ethyl acetate and the diameter was about 100nm. TGA also indicated that the using efficiency of LMPB-g-KH570 was 63.67%, and chemical using efficiency reach 30.66%. Contact angle and surface free energy investigated that the hydrophile was weakened and the hydrophobicity was enhanced. After modification with graft copolymer (LMPB-g-KH570), the surface free energy of nano-Si3N4 decreased sharply from 112.32 to 70.12 J/M2.
     3. Nano-Si3N4/acrylate rubber (ACM) composite were prepared by blending techniques, the microstructure of nanocomposites were analyzed and discussed by RPA-8000, SEM and TEM. The results showed that modified nano-Si3N4 effectively improved the micro-interface interaction of nanocomposite and the performance of vulcanized and mechanical properties of the ACM. The results show that in the RPA dynamic mechanics performance scanning test on the raw rubber andmixed performance test, modulus of elasticity G' and loss fact or tanδalong with frequency and strain elevating, separately demonstrated reduces and increases, enhance the frequency and strain suitable may improve its workability. Compared with pure ACM, the curing time of ACM nanocomposites reduced 38 seconds, the tensile strength increased 24.8%, tear strength increased 3.39%.
引文
[1]Strauss U P. Polymers in aqueous media:Performance through association[J]. Polymer Science,1951,6(5):473.
    [2]Strauss U P. Viscosity of sodium salt of polyuronide hemicellulose from Jute[J]. Polymer Science,1952,7(6):509-511.
    [3]钱浩,林志勇,张莹雪.大分子表面改性剂的设计合成研究进展[J].华侨大学学报(自然科学版),2006,27(4):337-341.
    [4]Xu M, Shi X H, Chen H J, et al. Synthesis and enrichment of a macromolecular surface modifier PP-b-PVP for polypropylene[J]. Applied Surface Science,2010, 256(10):3240-3244.
    [5]Chen H J, Shi X H, Zhu Y F, et al. Enrichment of poly(methyl methacrylate) and its graft copolymer of polybutadiene on the surface of polypropylene blends[J]. Applied Surface Science,2008,254(6):1763-1770.
    [6]Chen H J, Shi X H, Zhu Y F, et al. Polypropylene surface modification by entrapment of polypropylene-graft-poly(butyl methacrylate)[J]. Applied Surface Science,2008,254(8):2521-2527.
    [7]Lasckewsky A. Polymerizable and polymeric zwitterionic surfactants (1): Synthesis and bulk properties [J]. Polymer,1991,32 (1):2070-2072.
    [8]Xia R, Li M H, Zhang Y Z, et al. Synthesis of tercopolymer BA-MMA-VTES and surface modification of nano-size Si3N4 with this macromo lecular coupling agent[J]. Journal of Applied Polymer Science,2008,107:1100-1107.
    [9]Lee H, Lynden A A. Functionalizing polymer surfaces by surface migration of copolymer additives:Role of additive molecular weight [J]. Polymer,2002,43:20-21.
    [10]杨云峰,高保娇,郁士奎,徐立.水溶性AM-St两亲嵌段共聚物自乳化微乳液法合成[J].应用化学,2004,21(7):696-700.
    [11]徐祖顺,袁建军,程时远.大分子表面活性剂制备的新方法研究原子转移自由基聚合方法[J].湖北化工,1998,(6):5-6.
    [12]De Paz Ba Iez M V, Robins on K L, Vamvakaki M, et al. Synthesis of novel cationic polymeric surfactants[J]. Polymer,2000,41 (24):8501-8511.
    [13]Yilmaz O, Cheaburu C N, Durraccio D, et al. Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization:Effect of clay types[J]. Applied Clay Science,2010,49(3):288-297.
    [14]Agarwal K, Prasad M, Sharma R B, et al. Studies on Microstructural and Thermophysical properties of polymer nanocomposite based on polyphenylene oxide and Ferrimagnetic iron oxide[J]. Polymer Testing,2011,30(1):155-160.
    [15]Nenkova R, Ivanova D, Vladimirova J, et al. New amperometric glucose biosensor based on cross-linking of glucose oxidase on silica gel/multiwalled carbon nanotubes/polyacrylonitrile nanocomposite film[J]. Sensors and Actuators B: Chemical,2010,148(1):59-65.
    [16]Avella M., Errico M E, Gentile G PMMA Based Nanocomposites Filled with Modified CaCO3 Nanoparticles[J]. Macromolecular Symposia,2007, 247(1):140-146.
    [17]Lux F. Poly(2-hydroxyethylmethacrylate-Co-styrene-4-sulfonic acid sodium salt) a versatile hyperdispersant system for controlling the size of conducting polymer particles[J]. Synthetic Metals,1999,102(1-3):1190.
    [18]Li Y J, Oono Y K, Nakayama K, et al. Thermoplastic Acrylic Rubber Physically Crosslinked by Tiny Poly(vinylidene fluoride) Crystals[J]. Macromolecular Materials and Engineering,2006,291(10):1201-1207.
    [19]Angellier H, Boisseau S M, Dole P, et al.Thermoplastic Starch Waxy Maize Starch Nanocrystals Nanocomposites[J]. Biomacromolecules,2006,7(2):531-539.
    [20]Dasari A, Zhang Q X, Yu Z Z, et al. Toughening Polypropylene and Its Nanocomposites with Submicrometer Voids[J]. Macromolecules,2010, 43(13):5734-5739.
    [21]Kelnar I, Rotrekl J, Kotek J, et al. Effect of montmorillonite on structure and properties of nanocomposite with PA6/PS/elastomer matrix[J]. European Polymer Journal,2009,45(10):2760-2766.
    [22]Alexandre B, Langevin D, Mederic P, et al. Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes:Structure and volume fraction effects [J]. Journal of Membrane Science,2009,328(1-2):186-204.
    [23]Zhou X W, Zhu Y F, Liang J, et al. New Fabrication and Mechanical Properties of Styrene-Butadiene Rubber/Carbon Nanotubes Nanocomposite[J]. Journal of Materials Science & Technology,2010,26(12):1127-1132.
    [24]Schmidt D F, Giannelis E P. Silicate Dispersion and Mechanical Reinforcement in Polysiloxane/Layered Silicate Nanocomposites[J]. Chemistry of Materials,2010, 22(1):167-174.
    [25]曾令可,李秀艳.纳米陶瓷技术[M].华南理工大学出版社,2006.
    [26]Di M W, He S Y, Li R Q, et al. Resistance to proton radiation of nano-TiO2 modified silicone rubber[J]. Nuclear Instruments and Methods in Physics Research B, 2006,252(2):212-218.
    [27]Xia R, Li M H, Zhang Y C, et al. Synthesis of Tercopolymer BA-MMA-VTES and Surface Modification of Nano-Size Si3N4 with this Macromolecular Coupling Agent[J]. Journal of Applied Polymer Science,2008,107(1):1100-1107.
    [28]夏茹,朱清仁,章于川,等.纳米氮化硅/丁腈橡胶复合材料的制备与性能研究[J].纳米科技.2006,3(5):36-41.
    [29]Kueseng K, Jacob K I. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes[J]. European Polymer Journal,2006,42(1):220-227.
    [30]Sim L C, Ramanan S R, Ismail H, et al. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes[J]. Thermochimica Acta,2005,430(1-2):155-165.
    [31]Pietrasik J, Gaca M, Zaborski M, et al. Studies of molecular dynamics of carboxylated acrylonitrile-butadiene rubber composites containing in situ synthesized silica particles[J]. European Polymer Journal,2009,45(12):3317-3325.
    [32]李毕忠.粘土/塑料纳米复合材料的新发展[J].化工新型材料,2010,38(14):19-22.
    [33]Dong W F, Liu Y Q, Zhang X H, et al. Preparation of High Barrier and Exfoliated-Type Nylon-6/Ultrafine Full-Vulcanized Powdered Rubber/Clay Nanocomposites [J]. Macromolecules,2005,38(11):4551-4553.
    [34]Jia Q X, Wu Y P, Wang Y Q, et al. Enhanced interfacial interaction of rubber/clay nanocomposites by a novel two-step method[J]. Composites Science and Technology, 2008,68(3-4):1050-1056.
    [35]Lagazzoa A, Lenzi S, Bottera R, et al. A rheological method for selecting nano-kaolin powder as filler in SBR rubber. Particuology,2010,8(3):245-250.
    [36]Pojanavaraphan T, Magaraphan R. Prevulcanized natural rubber latex/clay aerogel nanocomposites[J]. European Polymer Journal,2008,44(7):1968-1977.
    [37]Samadi A, Kashani M R. Effects of organo-clay modifier on physical-mechanical properties of butyl-based rubber nano-composites[J]. Journal of Applied Polymer Science,2010,116(4):2101-2109.
    [38]Yahaya L E, Adebowale K O, Menon A R R. Mechanical properties of organomodified kaolin/natural rubber vulcanizates[J]. Applied Clay Science,2009, 46(3):283-288.
    [39]Mathew G, Rhee J M, Lee Y S, et al. Cure kinetics of ethylene acrylate rubber/clay nanocomposites Original Research Article[J]. Journal of Industrial and Engineering Chemistry,2008,14(1):60-65.
    [40]Essawy H, El-Nashar D. The use of montmorillonite as a reinforcing and compatibilizing filler for NBR/SBR rubber blend Original Research Article[J]. Polymer Testing,2004,23(7):803-807.
    [41]Dhoke S K, Bhandari R, Khanna A S. Effect of nano-ZnO addition on the silicone-modified alkyd-based waterborne coatings on its mechanical and heat-resistance properties [J]. Progress in Organic Coatings,2009,64(1):39-46.
    [42]Li Y S, Jiao Z H, Yang N, et al. Regeneration of nano-ZnO photocatalyst by the means of soft-mechanochemical ion exchange method[J]. Journal of Environmental Sciences,2009,21(1)69-72.
    [43]Otroj S, Daghighi A. Microstructure and phase evolution of alumina-spinel self-flowing refractory castables containing nano-alumina particles[J]. Ceramics International,2011,37(3):1003-1009.
    [44]Shi X L, Dong Y L, Xu F M, et al. Preparation and properties of nano-SiC strengthening Al2O3 composite ceramics[J]. Materials Science and Engineering:A, 2011,528(6):2246-2249.
    [45]魏爱龙,魏延贤,杨风伟,等.纳米氧化锌对橡胶性能的研究[J].橡胶工业. 2001,48(9):534-537.
    [46]Owczarek M, Zaborski M, Przybyszewska M. The use of aluminum oxide as a filler for elastomers[J]. Przemysl Chemiczny,2006,85(1):965-967.
    [47]Zhou X W, Zhu Y F, Liang J, et al. New Fabrication and Mechanical Properties of Styrene-Butadiene Rubber/Carbon Nanotubes Nanocomposite[J]. Journal of Materials Science & Technology,2010,26(12):1127-1132.
    [48]Jiang M J, Dang Z M, Yao S H, et al. Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites[J]. Chemical Physics Letters.2008,457(4-6):352-356.
    [49]Jiang M J, Dang Z M, Xu H P. Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite[J]. European Polymer Journal.2007,43(12):4924-4930.
    [50]Leblanc J L. Rubber-filler interactions and rheological properties in filled compounds [J]. Progress Polymer Science,2002,27(4):627-687.
    [51]邰艳龙,吴可量,苗继斌,等.纳米A1N润滑材料的制备研究[J].润滑油,2008,23(4):38-42.
    [52]Tai Y L, Qian J S, Zhang Y C, et al. Study of surface modification of nano-SiO2 with macromolecular coupling agent (LMPB-g-MAH). Chemical Engineering Journal, 2008,141(1-3):354-361.
    [53]黄永炎.聚丙烯酸橡胶的特性和应用[J].原材料,1999,2:2-4.
    [54]梁诚.丙烯酸酯橡胶的生产、应用与市场[J].中国橡胶,2007,6(23):34-36.
    [55]Kader M A, Bhowmick A K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability,2003,79(2):283-295.
    [56]张苏,钱家盛,章于川.改性纳米Si3N4/ACM复合材料的制备与性能研究[J].橡胶工业,2008,12(55):74-76.
    [57]方胜阳,殷守华,章于川,等.表面改性纳米氮化硅/丙烯酸酯橡胶复合材料的性能[J].合成橡胶工业,2009,32(5):409-411.
    [1]张勇,张虹.关于橡胶用硅烷偶联剂[J].世界橡胶工业,2011,38(2):1-5.
    [2]殷榕灿,张文保.硅烷偶联剂的研究进展[J].中国科技信息,2010,10:44-46.
    [3]顾红艳,何春霞.偶联剂处理SiC纤维增强PTFE复合材料的性能[J].材料科学与工程学报,2010,28(1):114-117.
    [4]赵贞,张文龙,陈宇.偶联剂的研究进展和应用[J].塑料助剂,2007,3:4-10.
    [5]Jukka P M, Lippo V J L, Pekka K V. The effect of five silane coupling agents on the bond strength of a luting cement to a silica-coated titanium[J]. Dental Materials, 2007,23(9):1173-1180.
    [6]郭云亮,张涑戎,李立平.偶联剂的种类和特点及应用[J].橡胶工业,2003,11(50):692-696.
    [7]Tsai M H, Lin Y K, Chang C J, et al. Polyimide modified with metal coupling agent for adhesion application [J]. Thin Solid Films,2009,517(17):5333-5337.
    [8]Shi H W, Liu F C, Yang L H, et al. Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2[J]. Progress in Organic Coatings,2008,62(4):359-368.
    [9]Rooj S, Das A, Thakur V, Mahaling R N, et al. Preparation and properties of natural nanocomposites based on natural rubber and naturally occurring halloysite nanotubes [J]. Materials and Design,2010,31(4):2151-2156.
    [10]Xia R, Li M H, Zhang Y C, et al. Synthesis of tercopolymer BA-MMA-VTES and surface modification of nano-size Si3N4 with this macromolecular coupling agent [J]. Journal of Applied Polymer Science,2008,107(2):1100-1107.
    [11]Nachtigall S M B, Miotto M, Schneider E E, et al. Macromolecular coupling agents for flame retardant materials[J]. European Polymer Journal,2006, 42(5):990-999.
    [12]Yamamoto M, Ohata M. New macromolecular silane coupling agents synthesized by living anionic polymerization; grafting of these polymers onto inorganic particles and metals[J].Progress in Organic Coatings,1996,27(1-4):277-285.
    [13]Aliofkhazraei M, Sabour Rouhaghdam A, Shahrabi T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation [J]. Surface and Coatings Technology,2010,205:41-46.
    [14]Tai Y L, Miao J B, Qian J S, et al. An effective way to stabilize silicon nitride nanoparticles dispersed in rubber matrix by a one-step process[J]. Materials Chemistry and Physics,2008,112(2):659-667.
    [15]王勇,仲含芳,韦平,等.大分子偶联剂对PE/氢氧化铝阻燃复合材料性能的影响[J],中国塑料,2004,18(1):67-70.
    [16]袁秀梅,王昭德,宋风华.马来酸酐接枝聚丙烯胶粘剂的合成研究[J].中国胶粘剂,2000,10(3):7-9.
    [17]沈澄英.水性聚氨酯的合成研究[J].天津化工,2006,20(6):22-23.
    [18]Robin J J, Boyer C, Boutevin B, et al. Synthesis and properties of polyolefin graft copolymers by a grafting "onto" reactive process, Polymer,2008, 49(21):4519-4528.
    [1]朵英贤,张玉龙.纳米塑料技术[M].浙江科学技术出版社,2006,27-58.
    [2]Tai Y L, Miao J B, Qian J S, et al. An effective way to stabilize silicon nitride nanoparticles dispersed in rubber matrix by a one-step process[J]. Materials Chemistry and Physics,2008,112(2):659-667.
    [3]Kakati M, Bora B, Sarma S, et al. Synthesis of titanium oxide and titanium nitride nano-particles with narrow size distribution by supersonic thermal plasma expansion[J].Vacuum,2008,82(8):833-841.
    [4]Borah S M, Pal A R, Bailung H, et al. Optimization of plasma parameters for high rate deposition of titanium nitride films as protective coating on bell-metal by reactive sputtering in cylindrical magnetron device[J]. Applied Surface Science,2008, 254(18):5760-5765.
    [5]Zhang H Y, Shan G B, Liu H Z, et al. Surface modification of γ-Al2O3 nano-particles with gum arabic and its applications in adsorption and biodesulfurization[J]. Surface and Coatings Technology,2007, 201(16-17):6917-6921.
    [6]Khadem S A, Nategh S, Yoozbashizadeh H. Structural and morphological evaluation of Al-5 vol.% SiC nanocomposite powder produced by mechanical milling[J]. Journal of Alloys and Compounds,2011,509(5):2221-2226.
    [7]Nakamura H, Tanaka M, Shinohara S, et al. Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose[J]. Biosensors and Bioelectronics,2007,22(9-10):1920-1925.
    [8]Louis W, Peter J D V, Shen R, et al. Blank Synthesis and characteristics of nanocrystalline 3Y-TZP and CuO powders for ceramic composites[J]. Ceramics International,2010,36(3):847-853.
    [9]Yang Y, Wang Y, Tian W, et al. Reinforcing and toughening alumina/titania ceramic composites with nano-dopants from nanostructured composite powders[J]. Materials Science and Engineering:A,2009,508(1-2):161-166.
    [10]Yin Y, Hang L, Zhang S, et al. Thermal oxidation properties of titanium nitride and titanium-aluminum nitride materials—A perspective for high temperature air-stable solar selective absorber applications[J]. Thin Solid Films,2007, 515(5):2829-2832.
    [11]Karagkiozaki V, Logothetidis S, Kalfagiannis N, et al. Atomic force microscopy probing platelet activation behavior on titanium nitride nanocoatings for biomedical applications [J]. Nanomedicine:Nanotechnology, Biology and Medicine,2009, 5(1):64-72.
    [12]颜鲁婷,司文捷,熊滔.表面改性剂对Si3N4注射成型的影响[J].稀有金属材料与工程,2004,33(5):534-538.
    [13]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能[J].合成材料老化与应用,2002,1:1-3.
    [14]余钢,王志贤.用接触角法估算复合材料的表(界)面特性[J].分析与测试,2000,21(5):29-32.
    [15]藏红霞.接触角的测量方法与发展[J].福建分析测试,2006,15(2):47-48.
    [1]Kader M A, Bhowmick A K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability,2003,79(2):283-295.
    [2]王作龄.丙烯酸橡胶及其配方技术[J].世界橡胶工业,1999,26(5):60-60.
    [3]文涛.特种橡胶[J].现代橡胶技术,2008,34(3):30-34.
    [4]梁诚.丙烯酸酯橡胶的生产、改性与应用[J].化工新型材料,2004,32(4):18-20.
    [5]谢红.丙烯酸酯橡胶生产应用与市场[J].橡胶科技市场,2007,9:9-12.
    [6]吕咏梅.丙烯酸酯橡胶加工配合助剂[J].橡胶科技市场,2004,20:8-11.
    [7]江镇海.丙烯酸酯橡胶在汽车领域的应用[J].橡胶参考资料,2010,40(3):53-54.
    [8]谢长雄.丙烯酸醋橡胶的性能和应用[J].合成材料老化与应用,2000,3:28-30.
    [9]孙树林,刘忠强,谭志勇,等.丙烯酸酯橡胶的合成及性能研究[J].弹性体,2010,20(6):26-29.
    [10]Gao D L, Zhan M S. Fabrication and electrical properties of metal-coated acrylate rubber microspheres by electroless plating[J]. Applied Surface Science,2009, 255(7):4185-4191.
    [11]夏宇正,刘文利,石淑先,等.活性氯型丙烯酸酯橡胶的热可逆共价交联及力学性能[J].合成橡胶工业,2004,27(2):73-77.
    [12]胡钊,黄承亚ACM/FKM并用胶的性能研究[J].特种橡胶工业,2008,29(3):22-24.
    [13]蒋利军,符新,李光,等.纳米SiO2/NR复合材料微观结构的分析和探讨[J].弹性体,2009,19(4):52-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700