用户名: 密码: 验证码:
伊宁凹陷构造沉积演化与有利油气区分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊宁凹陷为伊犁盆地勘探和研究程度最高的构造单元,周缘露头及钻井资料显示凹陷二叠系-侏罗系育具有多套烃源岩。凹陷钻探的宁4井、宁1井分别在侏罗系八道湾组和三叠系仓房沟群发现低产工业油、气流,但截止目前伊宁凹陷并未获得高产油流。原因可能是古构造运动对原生油藏起了破坏作用,或是圈闭与油气运聚时间不匹配,也可能是储集条件太差。因此,系统研究伊宁凹陷二叠系以来古构造演化、烃源岩、储集层沉积特征,以及油气运聚对油气勘探具有理论指导意义。
     作者以石油地质学、储层地质学、构造地质学基本原理为理论指导,利用沉积相综合分析技术、地震正演、反演技术对中二叠统—侏罗系的烃源岩特征、展布范围、有利储集体的分布等进行研究;利用剥蚀厚度恢复技术、古构造分析技术等对伊宁凹陷二叠系以来古构造面貌、构造演化、油气运聚进行了系统分析研究。取得了以下主要认识:
     伊宁凹陷现今构造单元可划分为东北深陷带、西北次凹带、中部次凹带、中央次凸带、东部次凸带、南部斜坡带六个构造单元;伊宁凹陷发育近直立的NNE向、NWW向,以及近SN向和近EW向几组断裂,断裂相互截切关系反映凹陷二叠纪早期处于左旋拉张应力场环境。凹陷存在3个显著的剥蚀面,分别为上二叠统顶(T50)不整合面、上侏罗统顶(T40)不整合面及古近系顶(T20)不整合面。整体上,大剥蚀量的次凸带与小剥蚀量的次洼带NE—NNE向相间展布,构成复式向斜古构造格局。晚侏罗世剥蚀厚度最大,次凸带最大剥蚀量近2000m;晚二叠世剥蚀厚度最小,次凸带剥蚀厚度一般100-380m。伊宁凹陷二叠系—侏罗系具有继承性的北深南浅古构造面貌。凹陷经历了两次由断陷转为坳陷构造演化,沉降中心由二叠纪、三叠纪时的北部地区转移至侏罗纪时的工区东北部。
     伊宁凹陷中二叠统—侏罗系发育湖泊相、冲积扇相、扇三角洲相、沼泽相、河流相、火山岩相等沉积类型,整体经历了湖泊—三角洲、冲积平原、湖泊沼泽—河流沉积的纵向演化。主要的储集砂体包括曲流河河道砂、冲积扇河道砂、三角洲分流河道砂、滨湖浅滩砂等类型。二叠系铁木里克组(P2t)砂体主要发育在伊宁凹陷北部伊宁县—伊宁市,以及东部伊2井一带主河道带上,累积砂岩厚度100-200m;三叠系小泉沟群(T2-3xq)砂体沿四条近南北向主河道展布,累积砂厚可达120m以上;下侏罗统(J1)砂岩整体上北厚南薄,累积砂岩厚度120-200m。伊宁凹陷储层物性受到沉积微相类型、成岩作用的共同影响,铁木里克组有利高孔隙度带呈NE—SW向展布,分布于宁1井—回民庄—宁6井加格斯台—坎乡—英塔木所围区域;小泉沟群高孔隙度带分布于察布查尔—回民庄连线所在的NE—SW向展布区域。下侏罗统(J1)孔隙度>12%的高孔带呈NE向展布于凹陷中部。
     伊宁凹陷发育三套含油气系统,分别为铁木里克组含油气系统、小泉沟群上段含油气系统、八道湾组含油气系统,其中前两者为较有利含油气系统。利用成因法计算出伊宁凹陷小泉沟群、铁木里克组总生烃量为(3.81-49.29)×108t,资源量分布于(0.15-1.97)×108t,生烃量以及资源量的最大、最小值差异较大的原因是的计算参数之一的生烃潜量数值分布范围大。
     伊宁凹陷中央次凸形成于三叠纪末,之后长期稳定隆升,中央次凸带、南部斜坡带为铁木里克组、小泉沟群烃源岩多期油气运聚指向区,且距离油源较近,储层条件、圈闭条件良好,为有利油气区;凹陷南部斜坡二叠纪以来长期继承性发育,斜坡宁6井—加格斯台连线处为多期油气运聚共同指向区,距离油源稍远、储集条件、圈闭条件良好,为较有利油气区。
     伊宁凹陷钻于中部次凹带上的宁4井、宁3井断块圈闭形成时间早,圈闭规模大,圈闭顶部发育的小断裂对油气保存较为不利,可能导致原生油藏的破坏。凹陷北部地区地震测线的构造控制程度低,钻于北部次凹带的伊宁断背斜上宁1井并未落在构造高点上。钻于南部斜坡带加格斯台断鼻圈闭的宁2井、宁6井距离油源相对较远,同时构造未落实,导致其钻探的失利。通过分析目的层顶面在几个关键成藏期的构造面貌、油气运移路径后,认为伊宁凹陷中央次凸带、东部次凸带、南部斜坡带发育有利油气区,下一步有利勘探目标包括:凹陷中央次凸带上发育的回民庄断鼻圈闭、南部斜坡带上的断鼻圈闭、伊2井西断鼻圈闭,以及宁1井西断背斜圈闭。
Yi Ning depression has high degree of prospecting and research in Yi Li basin. Research of field outcrops and well drillings show that there are several sets of hydrocarbon source rock in Yi Ning depression. Well Ning1 and Ning4 had separately achieved low industry oil flow and gas flow in Badaowan formation, Jussiac and Cangfanggou formation, Triassic. While it has not get high industry oil flow by now, it possibly due to tectonic movement destroyed the primary reservoir, or possibly due to the trap forming time had mismatched migration and accumulation time, or possibly due to the reservoir has poor quality. for all, It is worthness to carry out the reseach of the tectonic evolution of Yi Ning depression after Permian, the research of the depositional characteristic of hydrocarbon source rock and reservoir. and the research of the prepecting of favorable oil and gas accumuliation place.
     Based on the theory of petroleum geology, reservoir geology, tectonic geology, using the technique of comprehensive analysis of sediments, forword model analysis technique and seismic inversion technique, made a systerm research of the hydrocarbon oil source and reservoir of Permian to Jurrassic. Using the technical means of erosion thickness restoration, the author carried out systerm research of the tectonic features and evolution of Yi Ning depression since Permian, and then predict the favervorable oil-gas accumulation belts and traps. The main point is as follow:
     Yining depression can be divided into six current tectonic structural units, that is the northeast sub-depression belt, northwest sub-depression belt, central sub-depression belt, eastern sub-uplift belt, and south slope belt. Yining depression developed nearly vertical fault, and fault strike are mainly NNE direct, NWW direct, nearly EW direct and SN direct. The relationship of different strike fractures reflects Yining depression had been in tensile tectonic condition. There are three significant erosion surfaces, and they respectively correspond with the Permian eroding events, the upper Jurassic eroding events and paleogene eroding events. the Permian denudation mainly took place around Yining depression. Upper Jurassic denudation and paleogene denudation nearly developed in western part and middle part near Huimingzhuang district in Yining depression. The Jurassic erosion amount reachs to more than one thousand meters in the middle part of Yining depression. Yingning depression has inheritance paleostructure during Permian to Jurassic period, the northern part is low and the southern part is high. The whole sedimentary center migrated from north to northeastern part.
     Yining depression developments lacustrine facies, alluvial fan facies, fan delta facies, swamp facies, fluvial sediments, and volcanic facies, From Permian to Jurassic, the environment experienced longitudinal evolution from lacustrine to delta environment, alluvial plain environment, lacustrine and swamp to fluvial environment of Yining depression. The main sandbody types are including channel sand of meandering river, channel sand of alluvial fan, distributary channel sand of delta, shoals sand of shallow lacustrine, et al. The sand body of Tiemulike formation of Permian mainly developed in line from Yining country to Yining city in north Yining depression, and the district near Well Ning2 in east Yingning depression. The accumulated sandstone thickness is 100 to 200 meters. The sand body of Xiaoquangou formation of Triassic distributed along the four river way in nearly north to south trend, the accumulated sandstone thickness can reach more than 120m. The sand body of Shuixigou formation of lower-middle Jurassic is thick in north and thin in south overall, the accumulated sandstone thickness reaches 120 to 200 meters. The reservoir characteristics of Yining depression is influenced by sedimentary micro-facies and diagenesis together. The reservoir with high porosity of Tiemulike formation extent in northeast to southwest direct, distribute in the eare closed by Well Ningl, Huiminzhuang, Well Ning6, Jagesitai, Yingtamu. The reservoir with high porosity of Xiaoquangou formation extent in northeast to southwest direct, distribute in the line form Chabuchaer to Huiminzhuang.
     Yining depression developed three sets of petroleum systems, they are respectively Tiemulike formation petroleum system, Xiaoquangou formation petroleum system, and Badaowan formation petroleum systerm. The former two are better. Using the method of hydrocarbon yield rato curves, the hydrocarbon generation quantity and resources quantity of Tiemulike formation and Xiaoquangou formation has been calculated. The total hydrocarbon generation amount to (3.81~49.29)×108t, resources amount to (0.15~1.97)×108t. hydrocarbon resouces quantity is 0.64×108 t in fifty pecent probability.
     The sub-uplift belt in the middle of Yining depression is uplifting in long term since its forming in early Trissic. The area along the line from Huiminzhuang to Well Ning6 is hydrocarbon migration common orientation zone of Tiemulike formation and Xiaoquangouqun formation, meanwhile this eare is closed to the hydrocarbon source rock, the reservoir and trap are also favorable, it is the most advanagous district for oil and gas exploration. The southern slope of Yining depression inheritancely developed since Permian. The area alone the line from Well Ning6 to Jiagesitai in southern slope is in the direction for several period of oil and gas migration. This area is farther to hydrocarbon souce rock, It has favorable reservoir and trap, can be divided into better district for oil and gas exploration. The favorable reservoir of Shuixigou formation extends in the middle part of Yining depression in northeastern direction.
     Well Ning4 and Ning3 drilled in the broken blocks traps in middle sub-depression. Both traps formed early, and trap scale are large. While the top of those trap developed small faults, that may destroy oil migration.2-D seismic network density in northeastern sub-depression can not accurately identify the description of traps. Well Ningl dosen't locate in the structural pitfalls. Well Ning6 and Ning2 drilled in the south slope belt in Yining depression failed, that may owing to the traps are far away from the hydrocarbon source rocks, or they are drilled in uncertain structure locations. By making structural maps of main target strata and analysis of oil migration, it can be conclude that Hui mingzhuang fault nose trap is the most favoralble target for oil and gas exploration. This trap located in the middle sub-luplift belts in Yining depression. It formed in later Permian, since then it ineritencely developed. It has favorable reservoir and cap rock, it is also the common area for the oil and gas's migration and gathering. The fault nose trap on the west of Well Yi2 and the Jigesitai fault nose trap are in the effective distance for oil migration, meanwhile it is in the range of favorable reservoir. They can be treated as the better trap for oil and gas exploration.
引文
1.白国平,殷进根.中亚卡拉库姆盆地油气分布特征与成藏模式[J].古地理学报,2007,9(3):293-301.
    2.毕素萍,张庆龙,王良书,等.松辽盆地宾县凹陷平衡剖面恢复及构造演化分析[J].石油实验地质,2008,30(2):203-206.
    3.曹辉.关于地震属性应用的几点认识[J].勘探地球物理进展,2002,25(5):18-22.
    4.陈清棠,张云献,王海宏,等.伊犁盆地伊宁坳陷非地震综合物化探研究报告(内部研究报告)1994.
    5.陈波,黄发木,夏永涛,等.松辽盆地深层断陷发育特征与油气富集[J].石油与天然气地质,2008,29(4):428-432.
    6.陈中红,查明,宋国奇.利用古成熟度方程初步恢复济阳坳陷晚三叠世印支运动剥蚀量[J].地质学报,2008,82(8):1036-1045.
    7.陈瑞银,罗晓容,陈占坤,等.鄂尔多斯盆地中生代地层剥蚀量估算及其地质意义[J].地质学报,2006,80(5):685-693.
    8.陈增智,柳广弟,郝石生.修正的镜质体反射率剥蚀厚度恢复方法[J].沉积学报,1999,17(1):141-144.
    9.程方道.神经网络在地球物理反演中的应用[J].地球物理学进展,1994,9(3):51-59.
    10.崔智林,梅志超.伊犁含油气盆地地层研究(内部研究报告).1996.
    11.党青宁,赵宽志,孙雄伟,等.阿瓦提凹陷三叠系地震相特征及有利区预测[J].新疆石油地质,2009,30(2):208-210.
    12.邓昆.鄂尔多斯盆地中央古隆起形成演化与天然气聚集关系[D].西安:西北大学,2008.
    13.邸世详.中国碎屑岩储集层的孔隙结构[M].西安:西北大学出版社,1991
    14.董秀芳,熊永旭.伊宁盆地类型及其石油地质意义[J].石油实验地质,1995,17(1):17-25.
    15.段玉顺,李芳.地震相的自动识别方法及应用[J].石油地球物理勘探,2004,39(2):158-162.
    16.方少仙,侯方浩.石油天然气储层地质学[M].东营:中国石油大学出版社,2006.
    17.冯建伟.准噶尔盆地乌夏断裂带构造演化及控油作用研究[D].东营:中国石油大学(华东),2008.
    18.傅家谟,盛国英,朱家蔚,等.伊犁盆地伊宁凹陷地球化学特征及成烃潜力评价(内部研究报告).1997.
    19.郭永强,刘洛夫,朱胜利,等.阿姆达林盆地含油气系统划分与评价[J].石油勘探与开发,2006,33(4):515-520.
    20.郝继鹏,杨志勇,史建宏,等.伊犁盆地石炭系-二叠系含油气系统评价[J].沉积与特提斯地质,2003,23(1):75-83.
    21.何登发,陈新发,况军,等.准噶尔盆地石炭系油气成藏组合特征及勘探前景[J].石油学报,2010,31(1):1-11.
    22.何登发,周路,唐勇,等.准噶尔盆地中侏罗统西山窑组与头屯河组间不整合面特征及其油气勘探意义[J].古地理学报,2007,9(4):387-396.
    23.何登发,李德生,童晓光,等.多期叠加盆地古隆起控油规律[J].石油学报,2008,29(4):475-488.
    24.黄兴汉,姚峰,杨明生,等.伊犁盆地伊宁凹陷综合地球物理研究(内部研究报告).1997.
    25.纪友亮,周勇,况军,等.准噶尔盆地车-莫古隆起形成演化及对沉积相的控制作用[J].中国科学,2010,40(10):1342-1355.
    26.贾建亮,刘招军,陈永成,等.测井—地震多属性分层重构特征曲线技术[J].石油地球物理勘探,2010,45(3):436-442.
    27.焦大庆,熊利平,汪忘泉,等.伊宁凹陷侏罗系成烃成藏条件评价及其与周围侏罗系盆地类比(内部研究告).1996.
    28.敬荣中,鲍光淑,陈绍裘,等.地球物理联合反演研究综述[J].地球物理学进展,2003,18(3):535-540.
    29.蒋凌志,顾家裕,郭彬程,等.中国含油气盆地碎屑岩低渗透储层的特征及形成机理[J].沉积学报,2004,22(1):13-19.
    30.蒋飞虎,巫礼玉,刘晓丽.伊犁盆地伊宁凹陷地层划分与对比(内部研究报告).1996.
    31.姜在兴,朱家蔚.伊犁盆地层序地层学研究(内部研究报告).1996.
    32.康玉柱.新疆两大盆地石炭—二叠系火山岩特征与油气[J].石油实验地质,2008,30(4):321-327.
    33.匡立春,齐雪峰,王绪龙,等.新疆西准噶尔布龙果儿古油藏的发现及其石油地质意义[J].地质学报,2011,85(2):224-233.
    34.李光云.伊犁盆地油气地质特征及勘探前景[J].新疆地质,2002,20(1):72-76.
    35.李汉林,赵永军.用体积单元有机碳生烃率法预测油气资源量[J].大庆石油学院学报,1999,23(3):5-7.
    36.李洪玺,程绪彬,刘合年,等.麦捷让气田古构造对油气成藏的控制作用[J].西南石油大学学报,2010,32(4):44-49.
    37.李继东.东濮凹陷构造特征与断块群成藏条件分析[D].北京:中国地质大学(北京),2008.
    38.李家强.层拉平方法在沉积前古地貌恢复中的应用—以济阳凹陷东营三角洲发育区为例[J].油气地球物理,2008,(2):46-49.
    39.李平平,邹华耀,郝芳,等.准噶尔盆地腹部白垩系/侏罗系不整合地层剥蚀厚度恢复的恢复方法[J].石油学报,2006,27(6):34-38.
    40.李明杰.酒泉盆地构造特征与油气勘探[D].北京:中国地质大学(北京),2006.
    41.李坤.塔里木盆地三大控油古隆起形成演化与油气成藏关系研究[D].成都:成都理工大学,2009.
    42.李坤,林畅松,丁文龙,等.地层结构外延法在塔中隆起古生界多期剥蚀量估算中的应用[J].西安石油大学学报,2008,23(2):6-11.
    43.李伟.恢复地层剥蚀厚度方法综述[J].中国海上油气(地质),1996,15(4):167-171.
    44.李维新,秦楠,吴媚,等.岩性-物性高分辨率非线性联合反演技术及其应用[J].石油物探,2009,48(4):359-367.
    45.李永林,陈文学,赵德力,等.焉耆盆地含油气系统的演化[J].石油与天然气地质,2000,21(4):357-359.
    46.李志奎,黄福喜,张云杰.剥蚀厚度恢复法在鄯善弧形带中的应用[J].吐哈油气,2004,9(2):130-134.
    47.廖世南.伊犁盆地生成发展概述[J].新疆石油地质,1992,13(2):108-114.
    48.梁全胜,刘震,何小胡,等.根据地震资料恢复勘探新区地层剥蚀量[J].新疆石油地质2009,30(1):103-105.
    49.刘成斋,冉建斌.稀疏脉冲和基于模型反演在王家岗沙四段砂岩油藏精细勘探中的应用[J].石油地球物理勘探,2002,37(4):401-406.
    50.刘和甫,含油气盆地的地球动力学环境分析[M].北京:科学出版社,1983.
    51.刘景彦,林畅松,喻岳钰,等.用声波测井资料计算剥蚀量的方法改进[J].石油实验地质,2000,22(4):302-306.
    52.刘小平,杨立干,徐健.苏北盆地高邮凹陷始新统剥蚀厚度恢复[J].新疆石油地质,2004,25(2):128-130.
    53.刘震.储层地震地层学[M].地质出版社.1997.
    54.柳广弟.石油地质学[M].北京:石油工业出版社,2009.
    55.柳益群,周立发.关于地层剥蚀厚度求取方法的讨论—以吐哈盆地为例[J].西北大学学报,1997,27(4):337-339.
    56.罗开平,周凌方.伊宁凹陷二叠系油气系统与勘探目标[J].成都理工大学学报,2005,32(1):46-49.
    57.马立祥.利用砂岩孔隙度演化趋势估计古地层剥蚀量的简易方法[J].石油实验地质,1991,13(1):53-55.
    58.马维民,常振恒,刘忠立.伊犁盆地伊宁凹陷二叠系原型盆地恢复与评价(内部研究报告).1997.
    59.马维民,吴宇宁,徐俊杰.伊犁盆地伊宁凹陷油气资源评价(内部研究报告).1999.
    60.马维民,焦存礼,雷德军,等.伊犁盆地油气勘探综合研究(内部研究报告).1996.
    61.马晓鸣.高邮凹陷构造特征研究[D].东营:中国石油大学(华东),2009.
    62.梅志超,崔智林,屈红军.伊宁凹陷侏罗系的沉积环境与沉积相(内部研究报告).1996.
    63.梅志超,张国伟.伊犁盆地与北疆类似含油气盆地演化与构造对比研究报告(内部研究报告)1995.
    64.梅志超,屈红军,崔智林.伊宁凹陷二叠-侏罗系储集层研究报告(内部研究报告).1996.
    65.孟恩,徐刚,沈财余,等.标准化及储层的精细标定[J].石油地球物理勘探,2005,40(2):226-232.
    66.苗建宇,周立发,马维民,等.伊犁盆地二叠系烃源岩特征[J].西北大学学报,2001,31(5):412-414.
    67.苗建宇,周立发,邓昆,等.伊犁盆地中二叠统烃源岩有机质地球化学特征[J].西北大学学报.2004,34(5):596-600.
    68.牟中海,陈志勇,陆延清,等.柴达木盆地北缘中生界剥蚀厚度恢复[J].石油勘探与开发,2000,27(1):35-37.
    69.母国妍,钟宁宁,刘宝,等.湖相泥质烃源岩的定量评价方法及其应用[J].石油学报,2010,31(2):218-230.
    70.庞雄奇,高建波,吕修详,等.塔里木盆地“多元复合-过程叠加”成藏模式及其应用[J].石油学报,2008,29(2):159-166.
    71.庞雄奇.油气田勘探[M].北京:石油工业出版社,2006.
    72.蒲仁海,梅志超,唐中华.准噶尔盆地东部侏罗系地震相[J].石油与天然气地质,1994,15(3):241-247.
    73.蒲仁海,钟红利,范春花.呼和湖凹陷地震相[J].西北大学学报,2004,34(5):601-602.
    74.蒲仁海.几个湖相退积反射的例子[J].石油地球物理勘探,2003,38(1):67-71
    75.蒲仁海,翟晓先,严华.塔河油田典型地震相[J].石油地球物理勘探,2007,42(3):308-314.
    76.蒲仁海,郭向东,钟红利.古代富泥弯度河的识别与特征[J].西北大学学报,2009,39(4):624-630.
    77.齐雪峰,吴晓智,刘得光,等.准噶尔盆地腹部深层构造特征与油气前景[J].新疆石油地质,2010,31(2):111-114.
    78.沈向存,杨江峰.声波曲线重构技术在地震反演中的应用[J].中国西部油气地质,2006,2(4):437-439.
    79.时秀朋,李理,龚道好,等.构造模拟实验方法的发展与应用[J].地球物理学进展,2007,22(6):1728-1735.
    80.施泽进,田亚铭,韩小俊,等.川东南地区下古生界地震相特征及意义[J].石油实验地质,2009,31(1):30-39.
    81.孙东胜,金之均,吕修详,等.库车前陆盆地古隆起及双超压体系对天然气成藏的控制作用[J].石油与天然气地质,2007,28(6):821-827.
    82.宋维琪.应用地震属性与测井数据反演储层参数[J].勘探地球物理进展,2003,26(3):216-219.
    83.佟彦明,宋立军,曾少军,等.利用镜质体反射率恢复地层蚀厚度的新方法[J].古地理学报,2005,7(3):417-424.
    84.谭思哲,王振奇,马志亮,等.准噶尔盆地白家海凸起侏罗系顶部剥蚀厚度恢复[J].新疆石油地质,2010,31(1):20-32.
    85.汤良杰,余一欣,杨文静,等.库车坳陷古隆起与盐构造特征及控油气作用[J].地质学报,2007,81(2):145-150.
    86.王俊,刘家铎,田景春,侯志江.伊宁凹陷古地温恢复与热演化史研究[J].成都理工大学学报,2006,33(6):576-580.
    87.王绍忠,周红科.测井曲线重构技术在埕岛油田东斜坡储层预测中的应用[J].勘探地球物理进展,2009,32(5):376-379.
    88.王敏芳,焦养泉,任建业,等.沉积盆地中古地貌恢复的方法与思路—以准噶尔盆地西山窑组沉积期为例[J].新疆地质,2006,24(3):326-330.
    89.王素华,钱祥麟.中亚与中国西北盆地构造演化及含油气性[J].石油与天然气地质,1999,27(3):460-462.
    90.王毅,金之均.沉积盆地中恢复地层剥蚀量的新方法[J].地球科学展,1999,14(5):482-486.
    91.王屿涛,杨新峰,王晓钦,等.哈萨克斯坦东南含油气盆地石油地质条件及投资环境分析[J].中国石油勘探,2010,1:67-73.
    92.王屿涛.准噶尔盆地南缘油气资源潜力和富集规律[J].勘探家,2000,5(1):49-51.
    93.王延光.储层地震反演方法以及应用中的关键问题与对策[J].石油物探,2002,41(3):292-303.
    94.吴光大.柴达木盆地构造特征及其对油气分布的控制[D].吉林:吉林大学,2007.
    95.吴文奎,谢广成,姜常义.伊犁地块构造及成矿区划刍议[J].西安地质学院学报,1994,16(4):1-9.
    96.邬立言,顾信章,盛志伟,等.生油岩热解快速定量评价[M].北京:石油工业出版社,1986.
    97.肖阳.测井约束反演技术在油藏描述中的应用[J].石油地球物理勘探,2001,36(5):633-639.
    98.向树安,郁飞,刘群星.潜江凹陷复杂断块油藏构造精细描述技术[J].断块油气田,2006,13(3):10-12.
    99.谢爱国,张庆龙,郭令智.鄂尔多斯盆地西缘和南缘古生代前陆盆地及中央古隆起成因与油气分布[J].石油学报,2003,24(2):18-29.
    100.辛也,王伟峰,李宝刚,等.准噶尔盆地西北缘乌夏断裂带二叠系油气成藏组合[J].大庆石油学院学报,2009,33(4):13-18.
    101.熊利平.伊犁含油气盆地综合分析[D].西安:西北大学,2003,144-149.
    102.熊利平,伊犁盆地二叠系生烃潜力分析与评价(内部研究报告).1996.
    103.熊利平,徐振强.伊宁凹陷南部斜坡带二叠系区带评价(内部研究报报告).1997.
    104.徐会永,蒋有录,张立强,等.地层厚度系数法研究查干凹陷构造演化[J].西南石油大学学报,2009,31(2):45-48.
    105.杨桥,漆家福.碎屑岩的分层去压实校正方法[J].石油实验地质,2003,25(2):206-210.
    106.杨少虎,黄玉生,彭文绪,等.声波重构技术在储层反演中的应用[J].石油地球物理勘探,2006,41(2):171-176.
    107.杨文采.地球物理反演的遗传算法[J].石油物探,1995,34(1):116-122.
    108.姚卫江,党玉芳,张顺存,等.准噶尔盆地西北缘红车断裂带石炭系成藏控制因素浅析[J].天然气地球科学,2010,21(6):917-923.
    109.余鹏,彭勇民,宋传春.准噶尔盆地侏罗系隐蔽圈闭的识别效果[J].石油地球物理勘探,2006,41(3):337-340.
    110.余一欣,汤良杰,殷进垠,等.应用平衡剖面技术分析库车凹陷盐构造运动学特征[J].石油学报,2008,29(3):378-382.
    111.袁玉松,郑和荣,涂伟.沉积盆地剥蚀量恢复方法[J].石油实验地质,2008,30(6):636-642.
    112.朱传庆,徐明,单竞男,等.利用古文标恢复四川盆地主要构造运动时期的剥蚀量[J].中国地质,2009,36(6):1268-1277.
    113.周杰,庞雄奇.一种生、排烃量计算方法探讨与应用[J].石油勘探与开发,2002,29(1):24-27.
    114.周进高,邓红婴,冯加良.湖南涟源凹陷构造演化与油气成藏研究[J].地质科学,2003,38(1):44-51.
    115.周路,郑金云,雷德文,等.准噶尔盆地车莫古隆起侏罗系剥蚀厚度恢复[J].古地理学报,2007,9(3):243-252.
    116.周小军,赵锡奎,沈忠民,等.“趋势厚度法”在塔里木盆地阿克库勒凸起地层剥蚀厚度恢复中的应用[J].物探化探计算技术,2007,31(3):223-226.
    117.周小进,段铁军,江兴歌.伊犁盆地伊宁凹陷油气勘探潜力分析[J].中南大学学报,2006,27(增刊):28-35.
    118.曾文冲,欧阳健.测井地层分析与油气评价[M].石油工业出版社,1987.
    119.赵澄林,胡爱梅,陈碧珏,等,中华人民共和国石油天然气行业标准,油气储层评价方法(SY/T6285-1997)[S].北京:石油工业出版社,1998:16
    120.战双庆,顾锦才,徐善修,等.新疆伊犁盆地大地电磁测深成果报告(内部研究报告).1995.
    121.张道勇,张风华.油气资源量预测3种方法的比较[J].西北大学学报,2006,36(3):453-456.
    122.张帆.海拉尔盆地构造特征与构造演化[D].吉林:吉林大学,2007.
    123.张国伟,滕志宏.伊犁盆地的构造特征、区划与形成发展研究报告(内部研究报告).1996.
    124.张国伟,李三忠,刘俊霞,等.新疆伊犁盆地的构造特征与形成演化[J].地学前缘,1999,6(4):203-214.
    125.张军民.伊犁河流域地质构造及其地形地貌特点的研究[J].石河子大学学报,2006,24(4):442-445.
    126.张庆春,米石云.伊宁凹陷盆地分析模拟(内部研究报告).1997.
    127.张志伟,何永垚,王春生.中亚地区阿姆河盆地查尔朱、布哈拉阶地构造特征及演化[J].海相油气地质,2010,15(4):48-56.
    128.祝厚勤,刘平兰,庞雄奇.生烃潜力法研究烃源岩排烃特征的原理及应用[J].中国石油勘探,2008,13(3):45-53.
    129.朱剑兵,赵培坤.国外地震相划分技术研究新进展[J].勘探地球物理进展,2009,32(3):167-171.
    130.朱毅秀,刘洛夫,林畅松.中亚地区费尔干纳盆地油气地质特征[J].兰州大学学报,2005,41(1):25-31.
    131.朱志新.新疆南天山地质组成和构造演化[D].北京:中国地质科学院,2007.
    132. Alejandro E, Paul M. Sequence-stratigraphic analysis of Eocene clastic foreland basin deposits in central Lake Maracaibo using high-resolution well correlation and 3-D seismic data[J]. AAPG Bulletin,2006,90(4):581-623.
    133. Babonneau N., Savoye B., Cremer M., et al. Sedimentary Architecture in Meanders of a Submarine Channel:Detailed Study of the Present Congo Turbidite Channel (Zaiango Project)[J]. Journal of Sedimentary Research,2010,80:852-866.
    134. Brown A R. Seismic attributes and their classification[J]. The Leading Edge,1996,15(10):1090.
    135. Chamyal L. S., Khadkikar A. S., Malik J. N., et al. Sedimentology of the Narmada alluvial fan, western India[J]. Sedimentary Geology,1997,107(3-4):263-279.
    136. David J. W. Piper, Ryan Noftall, Georgia Pe-Piper, et al. Allochthonous prodeltaic sediment facies in the Lower Cretaceous at the Tantallon M-41 well:Implications for the deep-water Scotian Basin[J]. AAPG Bulletin,2010,94(1):87-104.
    137. Enrico K, Christoph B, Hubert K, et al. Issues associated with the distinction between climatic and tectonic controls on Permian alluvial fan deposits from the Kotzen and Barnim Basins (North German Basin) [J]. Sedimentary Geology,2010,223(1-2):15-34.
    138. Ebertha D. A., Miall A. D. Stratigraphy, sedimentology and evolution of a vertebrate-bearing, braided to anastomosed fluvial system, Cutler Formation (Permian-Pennsylvanian), north-central NewMexico[J]. Sedimentary Geology,1991,72(3-4):225-252.
    139. Galloway W. E, Hobday D. K. Terrigenous Clastic Depostional Systems-application to Petrolium, Coal and Uranium Exploration [M]. New York:Springer-Verlag Inc,1983:45-68.
    140. Guidish T. M. Basin Evaluation Using Burial History Calcuations:An Overview[J]. AAPG Bulletin, 1985,69(1):92-105.
    141. Henry P. H. Analysis of sonic well logs ap-plied to erosion estimates in the Bighorn Basin, Wyomin[J]. AAPG Bulletin,1996,80:630-647.
    142. Karen E. H, Horst Z, Agnes G. R, Rob H. F, et al. Diagenesis, Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand[J]. Journal of Sedimentary Research,2007,77:1003-1025.
    143. Knighton A. D, Nanson G C.Anastomosis and the continuum of channel pattern[J]. Earth Surf Procs Landforms,1993,18:613-625.
    144. Magara K. Thickness of removal sediments, paleo-porepressure and paleo-temperature, southwestern part of Western Canada basin[J]. AAPG Bulletin,1976,60(4):554-565.
    145. Magaldi M.G., Ozgokmen T.M., Griffa A., et al. Turbulent flow regimes behind a coastal cape in a stratified and rotating environment[J]. Ocean Modelling,2008,25(1-2):65-82.
    146. S.Pochat, S. Ct, J. Van D. D, K. B, et al. A simple method of determining sand/shale ratios from seismic analysis of growth faults:An example from upper Oligocene to lower Miocene Niger Delta deposits[J]. AAPG Bulletin,2004,88(10):1357-1367.
    147. Satinder C, Kurt T M著.赵剑敏译.地震属性的历史回顾[J].油气地球物理,2006,4(3-4).
    148. Sylvie B, Christophe R, Philippe B, et al. High-resolution sequence stratigraphy of an alluvial fan-fan delta environment:stratigraphic and geodynamic implications-An example from the Keuper Chaunoy Sandstones, Paris Basin[J]. Sedimentary Geology,1998,121(3-4):207-237.
    149. Jo H. R., Rhee C. W., Chough S. K. Distinctive characteristics of a streamflow-dominated alluvial fan deposit:Sanghori area, Kyongsang Basin (Early Cretaceous), southeastern Korea[J]. Sedimentary Geology,1997,110(1-2):51-59.
    150. Maill A. D. Architectural elements and bounding surfaces in fluvial deposits:Anatomy of the Kayenta Formation (lower Jurassic),SouthwestColorado[J]. Sedimentary Geology,1988.55(3-4):233-240, 247-262.
    151. Miall A. D. A review of the braided-river depositional environment[J].Earth Science Review,1977, 13(1):1-62.
    152. Roar H. Definition of geohazards in exploration 3-D seismic data using attributes and neural-network analysis[J]. AAPG Bulletin,2004,88(6):857-868.
    153. Rust B. R. Sedimentation in an arid-zone anastomosing fluvial system:Cooper's Creek,central Australia[J]. Journal of Sedimentary Petrology,1981,51:745-755.
    154. Smith D. G., Pntnam P. E. Anastomosed river deposites, mod-ern and ancient examples in Alberta[J]. Canada Can J Earth Sci,1980,17:1396-1406.
    155. Thomas R.. T, Melvyn R. G, Lori A. H, et al. Braunsdorf, Gino V. Birbiglia, Mark G. Kittridge, Calum I. Macaulay, and Irene S. Espejo. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality[J]. AAPG Bulletin,2010,94:1093-1132.
    156. Tissot, W. Ptroleum formation and occurrence-a new approach to oil exploration[M]. London:Elsevier Aplied Scinence Publishers Ltd,1978.
    157. Wright V. P., Marriott S. B. The sequence stratigraphy of fluvi-al depositional systems the role of Ajdukiewicz J. M., Nicholson P. H., Esch W. L, et al. Prediction of deep reservoir quality using early diagenetic process models in the Jurassic Norphlet Formation, Gulf of Mexico[J]. AAPG Bulletin, 2010,94:1189-1227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700