用户名: 密码: 验证码:
核动力装置总体参数最优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核动力装置因其具有良好的续航力,较大的推进功率,以及高能量密度和核裂变不需要氧气等优点,被广泛应用在船舶及航天工业上。为了包容放射性,核动力装置一回路还有许多辅助系统;由于二回路使用饱和蒸汽,汽轮机组重量体积大,系统热效率低。综上原因,导致整个动力装置笨重且经济性差。因此利用优化技术降低核动力装置的重量和体积并提高其有效效率,无疑具有重要的理论和现实意义。本文以核动力装置系统为研究对象,建立系统主要设备的数学模型,开发高效的智能优化算法,开展了以减小核动力装置重量、体积和提高核动力装置有效效率为目标的优化设计工作,主要内容如下:
     1、建立了蒸汽发生器、稳压器、主汽轮机和主冷凝器这4个核动力设备的物理和数学模型以及核动力装置热平衡计算数学模型,采用C#语言编制了各模型的评价程序。在给定一些参数的条件下,通过评价计算得到的计算结果与母型参数相比误差较小,验证了各评价程序的可靠性。
     2、针对本课题研究对象的多变量、多约束和非线性的特点,综合分析局部搜索能力强的复合形算法、全局搜索能力强的遗传算法和粒子群算法,开发了一种新型混合粒子群算法。新型混合粒子群算法采用可行性规则进行约束处理并对群体排序,改进了遗传算法的交叉机制,提高了复合形算法跳出局部最优的能力。最后利用国际上广泛使用的8个无约束测试函数、13个约束测试函数和3个工程优化问题对算法进行了测试。
     3、以蒸汽发生器、稳压器、主汽轮机和主冷凝器为例,探讨核动力装置中单个设备的优化设计过程。在蒸汽发生器的优化设计实例中,选取了一回路工作压力、二回路饱和蒸汽压力和蒸汽发生器传热管外径等7个参数为优化变量,利用新型混合粒子群算法进行寻优,分别获得了蒸汽发生器重量、体积和双目标优化方案。在蒸汽发生器单一设备优化的基础上,考虑部分堆芯约束,对蒸汽发生器和堆芯进行了耦合优化。对其余三个设备,同样进行敏感性分析,并各自选取优化变量,给出了重量、体积和双目标优化方案。
     4、针对某核动力装置,选取冷凝器压力、高压缸排汽干度和低压缸排汽干度作为优化变量,以反应堆功率和蒸汽发生器总蒸汽产量在某一范围内变化作为约束条件,利用新型混合粒子群算法对核动力装置有效效率进行优化,优化后有效效率提高了3.1571%。
     5、通过简化核动力装置系统,并结合小组其他成员编制的反应堆堆芯和反应堆压力容器评价程序,编制了核动力装置全系统评价程序。探讨了全系统各设备之间耦合关键因素,基于系统全局性考虑,选取一回路工作压力、反应堆出口冷却剂温度、反应堆进口冷却剂温度、二回路饱和蒸汽压力和冷凝器压力这5个参数作为优化变量,对核动力装置系统重量和体积进行寻优,并对优化结果进行了分析。
     6、开发了核动力装置优化设计系统软件。该软件可进行核动力装置评价,优化算法测试,单一核动力设备优化和系统级核动力装置优化工作。在编程处理上,采用了最新的并行计算技术,加快计算速度。软件还为后续设备模块预留接口,具有可移植性强、界面友好和操作简单的特点。软件适用于现有系统的改进论证计算,以及新型核动力装置的初步设计计算。
     本文完成了核动力装置优化过程中的数学模型建立、评价程序开发、优化算法改进、优化模型完善、优化算例计算、优化结果分析和优化软件开发工作。论文研究初步形成了比较完整的核动力装置总体参数最优化设计方法,是优化技术在核动力装置设计中的有益尝试,也为进一步的优化设计理论及应用研究奠定了良好的基础。
Because of its good endurance, high propulsive power, large energy density and free ofoxygen, etc., nuclear power is widely used in ship and aerospace industry. In order to protectthe environment from radioactivity, there are many auxiliary systems in primary loop ofnuclear power plant; steam turbine unit has heavy weight, big volume and low thermalefficiency due to the saturated steam used in secondary loop. In general, the performance ofnuclear power plant is bad in terms of compactness and economics. Therefore, it is significantboth theoretically and practically to reduce the weight, volume and to increase effectiveefficiency of nuclear power plant through optimization technology. In this thesis, themathematic model of main equipments were established for typical nuclear power plantsystem, intelligent optimization algorithm was developed, and optimization case study wascarried out for the purpose of reducing nuclear power plant weight, volume and increasingeffective efficiency of nuclear power plant. The main contents are as follows:
     1、The physical and mathematical models were set up for steam generator, pressurizer,main steam turbine and main condenser, as well as the mathematical model for thermalequilibrium of nuclear power plant. Corresponding codes were developed with C#language.Given some known parameters, the verification of the codes was performed throughcomparision between the evaluating design and the prototype.
     2、In the light of multivariables, many constraints and nonlinearity for the optimizationof nuclear power plant, a novel hybrid particle swarm optimization (NHPSO) algorithm wasdeveloped by incorporating the complex shape method with strong ability in local search,genetic algorithm and particle swarm optimization algorithm with good ability in globalsearch. Furthermore, the feasibility-based rule was introduced into NHPSO for the constraintshandling and sorting of the group. The crossover operator was modified and the escape abilitywas improved from local optimal point for complex shape algorithm. The NHPSO algorithmwas tested with8unconstrained test functions,13constrained test functions and3engineeringoptimization problems which are widely benchmarked in the world.
     3、Case studies were carried out for such single equipment optimization as steamgenerator, pressurizer, main steam turbine and main condenser. In steam generator optimizing design,7optimization variables were selected as follows: operating pressure in primary loop,saturated steam pressure in secondary loop and tube outer diameter in steam generator, etc..Weight optimization, volume optimization and multi-object optimization were performed withNHPSO algorithm. Besides, the coupled optimization of steam generator and reactor core wascarried out by adding some reactor core constraints. For the other three equipments, weightoptimization, volume optimization and multi-object optimization design schemes were alsoachieved after sensitivity analysis and the selection of their respective optimization variables.
     4、For a certain nuclear power plant prototype, condenser pressure, steam dryness of bothhigh pressure turbine exhaust and low pressure turbine exhaust were selected as theoptimization variables. The reactor power and total steam generated in steam generator wereconstrained within certain ranges. The efficiency was optimized with NHPSO algorithm andthe efficiency was improved by about3.16%.
     5、In this thesis, proper simplification was made for the nuclear power plant. Theevaluation codes of nuclear power plant were developed by the combination of the codesprovided by other members of the group for the reactor core and reactor pressure vessel. Afterthe key coupling factors were investigated for the whole system, operating pressure inprimary loop, coolant temperature at both core inlet and outlet, saturated steam pressure insecondary loop, and condenser pressure were selected as optimization variables. The weightand volume optimization of nuclear power plant was carried out, and the optimization resultswere analyzed.
     6、The nuclear power plant optimization design system software has been developed. Thesoftware can serve for such work as follows: nuclear power equipment evaluation,optimization algorithm testing, single nuclear power equipment optimization and system-leveloptimization. In the software, the latest.NET4.0parallel computing technology was adopted,which can accelerate the calculation. The software also preserved interface for the follow-updevice modules. Furthermore, the software has good inheritance, friendly interface and simpleoperation. The software can be applied to the demonstration computation of the existingsystem, and the preliminary design of the new nuclear power plant.
     The mathematic model setups, evaluating codes development, optimization algorithmimprovement, optimization model consummation, optimization case study, optimizationresults analysis and optimization software development have been accomplished in this theis. To sum up, a relatively complete framework of design optimization of parameters for nuclearpower plant is formulated. All of these are beneficial attempt to the application ofoptimization technology in nulear power plant design and good foundations to furtherresearch on the theories and application of optimization technology.
引文
[1]贾宝山,俞冀阳,彭敏俊.核能动力装置设计与优化原理.哈尔滨:哈尔滨工程大学出版社,2010:1,180页.
    [2]王兆祥,刘国健,储嘉康.船舶核动力装置原理与设计.北京:国防工业出版社,1980:193页.
    [3]黄平,孟永刚.最优化理论与方法.北京:清华大学出版社,2009:3页.
    [4]郑大素,江允正.最优化方法及实用程序.哈尔滨:哈尔滨工程大学出版社,1997:2页.
    [5]罗中华.最优化方法及其在机械行业中的应用.北京:电子工业出版社,2008:91页.
    [6] Nelder, J.A., Mead, R. A simplex method for function minimization. The ComputerJournal,1965,7(4):308-313P.
    [7]王盟,王建军,贺士晶等.一种解决复合形局部最优及加速计算的方法.计算机应用及软件,2011,28(2):277-278页.
    [8]沈惠平.构造一种实用的优化方法—随机方向复合形混合法.江苏石油化工学院学报,1993,5(1):54-58页.
    [9]欧阳克诚.对优化设计复合形法的改进.武汉冶金科技大学学报,1997,20(4):445-448页.
    [10]裴锦华,孙思诚.约束复合形法在非凸可行域上的一种修正算法.南京理工大学学报,2000,24(1):16-19页.
    [11]韩致信,杜金霞,刘斌等.非线性最优化问题的复合形旋转方向搜索法.甘肃科学学报,2007,19(3):103-106页.
    [12] Holland, J.H. Adaptation in natural and artificial systems. Ann Arbor: University ofMichigan press,1975.
    [13] De Jong, K.A. An analysis of the behavior of a closs of Genetic adaptive Systems, Ph. DDissertation, University of Michigan,1975.
    [14] Goldberg, D. Genetic algorithms in Search, Optimization and Machine Learning. Boston:Addison Wesley Longman Publishing Co.,1989.
    [15] Davis, L. Handbook of Genetic Algorithm. New York: Van Nostrand Reinhold,1991:1-6P.
    [16] Michalewicz, Z. Genetic Algorithms+Data Structures=Evolution Programs. New York:Springer-Verlag,1996.
    [17] Yao, X. Review of evolutionary artificial neural network. International Journal ofIntelligent Systems,1993,8(4):539-567P.
    [18] Byungioo, Y. Efficient genetic algorithm for training layered feedforward neural network.Information Science,1994,76(1):67-85P.
    [19] David, J.J., James, F.F. Training product unit neural network with genetic algorithms,IEEE Expert,1993,8(5):26-33P.
    [20] Forrest, S. Genetic algorithm: principles of natural selection application to computation.Science,1993,261(5123):872-878P.
    [21] Jenkins, W.M. Towards structural optimization via the genetic algorithm. Computers&Structures,1991,40(5):1321-1327P.
    [22] Goldberg, D.E. Computer-aided gas pipeline operation using genetic algorithm and rulelearning. Doctoral dissertation, University of Michigan,1983.
    [23] Karr, C.L. Design of an adaptive fuzzy logic controller using genetic algorithm. InProceeding of Fourth International Conference on Genetic Algorithms, Los Altos, CA:Morgan Kaufmann Publishers,1991:450-457P.
    [24] Glover, F., Kelly, J.P., Laguna, M. Genetic algorithms and tabu search: hybrids foroptimization. Computer and Operation Research,1995,22(1):111-134P.
    [25] Michalewicz, Z., Janikow, C.Z., Kjrawczyk, J.B. A modified genetic algorithm foroptimal control problems. Computers and Mathematical Applications,1992,23(12):83-94P.
    [26] Van Bommel, P. Genetic algorithm for optimal logical database design. InternationalSoftware Technology,1994,36(12):725-732P.
    [27] Bauer, R.J. Genetic algorithms and investment strategies. New York: John Wiley&Sons,Inc.,1994.
    [28]黄隽,谢俊.最优子种群实数编码遗传算法的研究.徐州师范大学学报,2005,23(2):53-56页.
    [29]郑生荣,赖家美,刘国亮等.一种改进的实数编码混合遗传算法.计算机应用,2006,26(8):1959-1962页.
    [30]陈明杰,刘胜.改进自适应遗传算法在函数优化中的应用研究.哈尔滨工程大学学报,2007,28(8):875-879页.
    [31]曾孝平,陈燕飞,李勇明.实数自适应并行遗传算法的研究.计算机应用研究,2008,25(6):1687-1689页.
    [32]金芬,陈小平.函数全局优化的改进实数遗传算法.计算机工程与应用,2009,45(29):55-59页.
    [33]牟锦辉,苏三买.约束优化问题的混合遗传算法研究.计算机仿真,2009,26(8):184-187页.
    [34] Kennedy, J., Eberhart, R.C. Particle swarm optimization. IEEE International Conferenceon Neural Networks. Perth, Western Australia,1995:1942-1948P.
    [35] Liu, C.H., Hsu, Y.Y. Design of a self-tuning PI controller for a STATCOM using particleswarm optimization [J]. IEEE Transactions on Industrial Electronics,2010,57(2):702-715P.
    [36] Wai. R.J., Lee, J.D. Chuang, K.L. Real-Time PID control strategy for maglevtransportation system via particle swarm optimization. IEEE Transactions on IndustrialElectronics,2011,58(2):629-646P.
    [37] Voumvoulakis, E.M., Hatziargyriou, N.D. A particle swarm optimization method forpower system dynamic security control. IEEE Transactions on Power Systems,2010,25(2):1032-1041P.
    [38] Karanki, S.B., Mishra, M.K. Kumar B K. Particle swarm optimization-based feedbackcontroller for unified power-quality conditioner. IEEE Transactions on Power Delivery,2010,25(4):2814-2824P.
    [39] Biswal, B., Dash, P.K., Panigrahi, B.K. Power quality disturbance classification usingfuzzy c-means algorithm and adaptive particle swarm optimization. IEEE Transactions onIndustrial Electronics,2009,56(1):212-220P.
    [40] AlRashidi, M.R, El-Hawary, M.E. A survey of particle swarm optimization applicationsin electric power systems. IEEE Transactions on Evolutionary Computation,2009,13(4):913-918P.
    [41] Yang, S.X., Li, C.H. A clustering particle swarm optimizer for locating and trackingmultiple optima in dynamic environments. IEEE Transactions on EvolutionaryComputation,2010,14(6):959-974P.
    [42] Pourmousavi, S.A.P, et al. Real-time energy management of a stand-alone hybridwind-microturbine energy system using particle swarm optimization. IEEE Transactionson Sustainable Energy,2010,1(3):193-201P.
    [43] Sharma, K.D., Chatterjee, A., Rakshit, A. A hybrid approach for design of stable adaptivefuzzy controllers employing lyapunov theory and particle swarm optimization. FuzzySystems, IEEE Transactions on,2009,17(2):329-342P.
    [44] Li, Y., et al. ISAR imaging of multiple targets using particle imaging of multiple targetsusing particle swarm optimisation-adaptive joint time frequency approach. SignalProcessing, IET,2010,4(4):343-351P.
    [45] Li, Q., et al. Parameter identification for PEM fuel cell mechanism model based oneffective informed adaptive particle swarm optimization. Industrial Electronics, IEEETransactions on,2011,58(6):2410-2419P.
    [46] Broilo, M., De Natale, F.G.B. A stochastic approach to image retrieval using relevancefeedback and particle swarm optimization. Multimedia, IEEE Transactions on,2010,12(4):267-277P.
    [47] Hao, G., et al. Multilevel Thresholding for image segmentation through an improvedquantum-behaved particle swarm algorithm. Instrumentation and Measurement, IEEETransactions on,2010,59(4):934-946P.
    [48] Cura, T. Particle swarm optimization approach to portfolio optimization. NonlinearAnalysis-Real World Applications,2009,10(4):2396-2406P.
    [49] Chen, W., Zhang, W.G. The admissible portfolio selection problem with transaction costsand an improved PSO algorithm. Physica a-Statistical Mechanics and Its Applications,2010,389(10):2070-2076P.
    [50] Ho, S.Y., Lin, H.S. Liauh W H. OPSO: orthogonal particle swarm optimization and itsapplication to task assignment problems. IEEE Transactions on Systems, Man andCybernetics, Part A: Systems and Humans,2008,38(2):288-298P.
    [51] Fei, T., Dong, M., Hu, Y.F. Resource service composition and its optimal-selection basedon particle swarm optimization in manufacturing grid system. IEEE Transactions onIndustrial Informatics,2008,4(4):315-327P.
    [52] Park, J.B., Jeong, Y.W., Shin, J.R. An improved particle swarm optimization fornonconvex economic dispatch problems. IEEE Transactions on Power Systems,2010,25(1):156-166P.
    [53] Ke, M., Wang, H.G., Dong, Z.Y. Quantum-Inspired particle swarm optimization forvalve-point economic load dispatch. IEEE Transactions on Power Systems,2010,25(1):215-222P.
    [54] Juang, C.F., Chang, Y.C., Hsiao, C.M. Evolving gaits of a hexapod robot by recurrentneural networks with symbiotic species-based particle swarm optimization. IndustrialElectronics, IEEE Transactions on,2011,58(7):3110-3119P.
    [55] Yeh, W.C., Lin, Y.C., Chung, Y.Y. A particle swarm optimization approach based onMonte Carlo simulation for solving the complex network reliability problem. IEEETransactions on Reliability,2010,59(1):212-221P.
    [56] Kulkarni, R.V., Venayagamoorthy, G.K. Particle swarm optimization in wireless-sensornetworks: a brief survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C:Applications and Reviews,2011,41(2):262-267P.
    [57] Sheng, C., Xia, H., Harris, C.J. Particle swarm optimization aided orthogonal forwardregression for unified data modeling. IEEE Transactions on Evolutionary Computation,2010,14(4):477-499P.
    [58]苏守宝,汪继文,方杰.粒子群优化技术的研究与应用进展.计算机技术与发展,2007,17(5):249-252页.
    [59]董颖,唐加福,许宝栋等.一种求解非线性规划问题的混合粒子群优化算法.东北大学学报,2003,24(12):1141-1144页.
    [60] Pulido, G.T., Coello, C.A.C. A constraint-handling mechanism for particle swarmoptimization, in: Proceedings of the2004Congress on Evolutionary Computation.Portland, OR, United states,2004:1396–1403P.
    [61]李从信,马良乾,俞莲莲.求解非线性约束优化问题改进的粒子群算法.佳木斯大学学报,2006,24(3):340-342页.
    [62] Krohling, R.A., Coelho, L.D. Coevolutionary particle swarm optimization usingGaussian distribution for solving constrained optimization problems. IEEE Transactionson Systems Man and Cybernetics Part B-Cybernetics,2006,36(6):1407-1416P.
    [63]寇晓丽,刘三阳.一种随机微粒群混合算法求解约束优化问题.系统仿真学报,2007,19(10):2148-2150页.
    [64] Cabrera, J.C.F., Coello, C.A.C. Handling constraints in particle swarm optimizationusing a small population size. In6th Mexican International Conference on ArtificialIntelligence, Aguascalientes, Mexico,2007:41-51P.
    [65]焦巍,刘光斌,张艳红.求解约束优化的模拟退火PSO算法.系统工程与电子技术,2010,32(7):1532-1536页.
    [66]王志,胡小兵,何雪海.一种新的差分与粒子群算法的混合算法.计算机工程与应用,2012,48(6):46-48页.
    [67]张英杰,李亮,张英豪等.一种基于双子群的改进粒子群优化算法.湖南大学学报,2011,38(1):84-88页.
    [68]孙昌志,陈冬阳.进化算法在求解连续空间函数优化问题上的比较.沈阳工业大学学报,2007,29(1):65-69页.
    [69]唐文艳,顾元宪.遗传算法中约束的凝聚选择和复合形处理方法.工程力学,2002,19(6):58-62页.
    [70]钟登华,梅传书,韩圣章.基于复合形算子的基础支护桩优化设计智能算法研究.工程力学,2003,20(1):80-85页.
    [71]王蕾,陈义保.改进遗传复合形算法及其在并行公差优化设计中的应用.烟台大学学报,2006,19(2):130-135页.
    [72]王芳,邱玉辉.一种引入单纯形法算子的新颖粒子群算法.信息与控制,2005,34(5):517-522页.
    [73]符强.一种引入复合形算子的变异粒子群算法.计算机工程与应用,2008,44(31):47-50页.
    [74]孙超利,谭瑛,潘正祥等.一种求解约束优化问题的微粒群算法.太原科技大学学报,2010,31(6):453-457页.
    [75]吕振肃,侯志荣.自适应变异的粒子群优化算法.电子学报,2004,32(3):416-420页.
    [76]寇保华,杨涛,张晓今等.基于交叉变异的混合粒子群优化算法.计算机工程与应用,2007,43(17):85-88页.
    [77] Arumugam, M.S., Rao, M.V.C. On the improved performances of the particle swarmoptimization algorithm with adaptive parameters, cross-over operators and root meansquare (RMS) variants for computing optimal control of a class of hybrid systems.Applied Soft Computing,2008,8(1):324-336P.
    [78] Kao, Y.T., Zahara, E. A hybrid genetic algorithm and particle swarm optimization formultimodal functions. Applied Soft Computing,2008,8(2):849-857P.
    [79]王联国,洪毅.随机交叉粒子群优化算法.计算机工程与应用,2009,45(16):69-71页.
    [80] Pereira, C.M.N.A., Schirru, R., Martinez, A.S. Basic investigations related to geneticalgorithms in core designs. Annals of Nuclear Energy,1999,26(3):173-193P.
    [81] Pereira, C.M.N.A., Lapa, C.M.F. Coarse-grained parallel genetic algorithm applied to anuclear reactor core design optimization problem. Annals of Nuclear Energy,2003,30(5):555-565P.
    [82] Pereira, C.M.N.A. Evolutionary multicriteria optimization in core designs: basicinvestigations and case study. Annals of Nuclear Energy,2004,31(11):1251-1264P.
    [83] Sacco, W.F. The fuzzy clearing approach for a niching genetic algorithm applied to anuclear reactor core design optimization problem. Annals of Nuclear Energy,2004,31(1):55-69P.
    [84] Sacco, W.F., Oliveira, C.R.E., Pereira, C.M.N.A. Two stochastic optimization algorithmsapplied to nuclear reactor core design. Progress in Nuclear Energy,2006,48(6):525-539P.
    [85] Sacco, W.F. A Metropolis algorithm combined with Nelder–Mead Simplex applied tonuclear reactor core design. Annals of Nuclear Energy,2008,35(5):861-867P.
    [86] Sacco, W.F. Differential evolution algorithms applied to nuclear reactor core design.Annals of Nuclear Energy,2009,36(8):1093-1099P.
    [87] Lapa, C.M.F. Pereira, C.M.N.A. Maximization of nuclear system availability throughmaintenance scheduling optimization using a genetic algorithm. Nuclear Engineering andDesign,2000,196(2):219-231P.
    [88] Lapa, C.M.F. Pereira, C.M.N.A. A model for preventive maintenance planning bygenetic algorithms based in cost and reliability. Reliability Engineering and SystemSafety,2006,91(2):233-240P.
    [89] Pereira, C.M.N.A., Lapa, C.M.F. A Particle Swarm Optimization (PSO) approach fornon-periodic preventive maintenance scheduling programming. Progress in NuclearEnergy,2010,52(8):710-714P.
    [90] Sacco, W.F., Lapa, C.M.F. Pereira, C.M.N.A. A niching genetic algorithm applied to anuclear power plant auxiliary feedwater system surveillance tests policy optimization.Annals of Nuclear Energy,2006,33(9):753-759P.
    [91] Sacco, W.F., Lapa, C.M.F. Pereira, C.M.N.A. A metropolis algorithm applied to a nuclearpower plant auxiliary feedwater system surveillance tests policy optimization. Progress inNuclear Energy,2008,50(1):15-21P.
    [92] Sacco, W.F., Lapa, C.M.F. Pereira. Genetic algorithms applied to turbine extractionoptimization of a pressurized water reactor. Applied Energy,2002,73(3):217-222P.
    [93] Babazadeh, D., Boroushaki, M., Lucas, C. Optimization of fuel core loading patterndesign in a VVER nuclear power reactors using Particle Swarm Optimization (PSO).Annals of Nuclear Energy,2009,36(7):923-930P.
    [94] Hedayat, A., Davilu, H., Barfrosh, A.A., Sepanlooc, K. Optimization of the coreconfiguration design using a hybrid artificial intelligence algorithm for research reactors.Nuclear Engineering and Design,2009,239(12):2786-2799P.
    [95] Fitriyani, D., Su’ud, Z., Saepul, B.E., Marsongkohadi. Design and safety optimization ofship-based small nuclear power reactors. Progress in Nuclear Energy,2008,50(2):299-303P.
    [96]赵树屏,王兆祥,杜泽.核动力装置计算机辅助草图设计.船工科技,1984,(4):9-20页.
    [97]许小平.稳压器最优化设计.核动力工程,1987,8(3):15-23页.
    [98]王兆祥,李智广,李雅杰.核动力装置热工参数优化计算.应用科技,1990,(4):5-12页.
    [99]王兆祥,李智广.核动力装置总体热工参数最佳化.核科学与工程,1991,11(1):7-11页.
    [100]陈林根,施洪深,曾庆长.舰艇核动力装置蒸汽发生器的初步设计多目标优化方法.船舶工程,1992,(1):22-31页.
    [101]施洪深,陈林根.核动力装置蒸汽发生器初步设计优化研究.热能动力工程,1994,9(5):290-296页.
    [102]陈林根.舰船主冷凝器的初步设计优化方法.海军工程学院学报,1987,(3):20-25页.
    [103]胡德明,陈林根.舰船功率分半传动两级齿轮减速器初步设计的优化方法.舰船科学技术,1988,(2):8-15页.
    [104]陈林根,张俊迈.双列速度级的效率优化.海军工程学院学报.1986,(3):86-90页.
    [105]张俊迈,陈林根.舰用汽轮机装置主机经济性研究—以设计工况效率为目标的初步优化设计.舰船科学技术,1988,(3):36-39页.
    [106]杨自春,查长松,陈林根.舰用汽轮机装置主机综合性能优化研究.汽轮机技术,1992,34(6):54-57页.
    [107]张俊迈,胡德明,陈林根.舰船汽轮机组初步设计与通流部分设计及最优化程序库.汽轮机技术,1987,(4):19-23页.
    [108]陈林根,张俊迈,胡德明.汽轮齿轮机组分层设计最优化方法研究.热能动力工程,1990,5(2):1-5页.
    [109]陈林根,胡德明,张俊迈.舰船汽轮齿轮机组一体化的初步设计多目标优化.中国造船,1991,(2):66-71页.
    [110]刘定明,于俊崇.核动力装置总体参数优化设计程序研制.全国反应堆热工流体会议文集,1999,48-52页.
    [111]王涛,谢仲生.混合遗传算法在压水堆换料优化中的应用.西安交通大学学报,2005,39(5):522-525页.
    [112]刘志宏,胡永明,施工.特征统计算法(CSA)在堆芯装料方案优化中的应用.核动力工程,2007,28(2):1-4页.
    [113]石秀安,刘志宏,胡永明.含可燃毒物的压水堆堆芯装料优化.原子能科学技术,2008,42(9):804-809页.
    [114]秦慧敏,阎昌琪,王建军等.立式自然循环蒸汽发生器的重量优化设计.原子能科学技术,2011,45(1):66-72页.
    [115]王盟,王建军,孙中宁等.蒸汽发生器最优化设计.核动力工程,2011,32(1):29-33页.
    [116]贺士晶,阎昌琪,王建军等.稳压器容积的优化设计.原子能科学技术,2010,44(3):320-324页.
    [117]贺士晶.核动力装置参数优化设计.哈尔滨.2010:60-103页.
    [118]刘成洋,阎昌琪,王建军.基于混合遗传算法的稳压器优化设计.原子能科学技术,2012,46(3):316-320页.
    [119]李贵静,阎昌琪,王建军等.主循环泵重量和体积的优化设计.原子能科学技术,2011,45(9):1070-1074页.
    [120]郑静,阎昌琪,王建军.核动力装置冷凝器体积的优化设计.原子能科学技术,2011,45(1):60-65页.
    [121]郑静,阎昌琪,王建军.冷凝器重量优化设计.核动力工程,2011,32(3):134-138页.
    [122]刘成洋,阎昌琪,王建军.核电站冷凝器优化设计.动力工程学报,2011,31(12):944-948页.
    [123]刘成洋,阎昌琪,王建军.基于改进遗传算法的冷凝器优化设计.原子能科学技术,2012,46(4):457-462页.
    [124]郑静,阎昌琪,王建军.基于复合—遗传算法斜齿轮减速器优化设计.应用科技,2010,37(10):21-25页.
    [125]郑静,阎昌琪,王建军.功率双分支传动两级齿轮减速器的优化设计.哈尔滨工程大学学报,2011,32(7):884-889页.
    [126]郑静,阎昌琪,王建军.基于复合—遗传算法的汽轮机组初步优化设计.原子能科学技术,2011,45(7):835-841页.
    [127]刘成洋,阎昌琪,王建军.船舶汽轮机优化设计.原子能科学技术,2012,46(suppl):421-425页.
    [128]秦慧敏,阎昌琪,王建军.反应堆一回路装置的重量优化设计.原子能科学技术,2011,45(5):572-577页.
    [129]秦慧敏,阎昌琪,王建军.反应堆一回路装置的容积优化设计.核动力工程,2011,32(4):86-90页.
    [130]刘成洋,阎昌琪,王建军等.核动力二回路系统优化设计研究.原子能科学技术,2013,47(3):421-426页.
    [131]蒸汽发生器编写组.蒸汽发生器.北京:原子能出版社,1982:63-185页.
    [132]丁训慎,巴长喜.立式自然循环蒸汽发生器的传热特性及其计算.核动力工程,1982,3(6):37-46页.
    [133]姚彦贵,唐琦琳,王经.核电蒸汽发生器热工水力静态特性计算分析研究.能源技术,2007,28(2):63-69页.
    [134]孙中宁.核动力设备.哈尔滨:哈尔滨工程大学出版社,2004:44-76,126-135,185-199页.
    [135]彭敏俊,王兆祥.船舶核动力装置.北京:原子能出版社,2009:60-69,212-220页.
    [136]彭敏俊.核动力装置热力分析.哈尔滨:哈尔滨工程大学出版社,2003:95-118页.
    [137]张俊迈,胡德明.舰船汽轮机.北京:国防工业出版社,1992:253-279页.
    [138]张卓澄.大型电站凝汽器.北京:机械工业出版社,1993:30-64页.
    [139]黄兴华,沈坤全,史剑戟.电站凝汽器蒸汽流动和换热的数值模拟.动力工程,1998,18(3):79-86页.
    [140] Koziel, S., Michalewicz, Z. Evolutionary algorithm, homomorphous mappings, andconstrained parameter optimization. Evolutionary Computation,1999,7(1):19-44P.
    [141] Runarsson, T.P., Yao, X. Stochastic ranking for constrained evolutionary optimization.IEEE Transactions on Evolutionary Computation,2000,4(3):284-294P.
    [142] Hamida, S.B., Schoenauer, M. ASCHEA: new results using adaptive segregationalconstraint handling. In Proceedings of the Congress on Evolutionary Computation2002.Piscataway, New Jersey, IEEE Service Center,2002:884-889P.
    [143] Pulido, G.T., Coello, C.A.C. A constraint-handling mechanism for particle swarmoptimization. In: Proceedings of the2004Congress on Evolutionary Computation.Portland, OR, United States,2004:1396–1403P.
    [144]吴茜.基于约束优化和动态优化的粒子群算法研究.湘潭大学.2007:29-37页.
    [145] Zahara, E., Hu, C.H. Solving constrained optimization problems with hybrid particleswarm optimization. Engineering Optimization,2008,40(11):1031-1049P.
    [146] Karaboga, D., Akay, B. A modified artificial bee colony algorithm for constrainedoptimization problems. Applied Soft Computing,2011,11(3):3021-3031P.
    [147] Sun, C.L., Zeng, J.C., Pan, J.S. An improved vector particle swarm optimization forconstrained optimization problems. Information Science,2011,181(6):1153-1163P.
    [148] Coello, C.A.C. Becerra, R.L. Efficient evolutionary optimization through the use of acultural algorithm. Engineering Optimization,2004,36(2):219-236P.
    [149] He, Q. Wang, L. An effective co-evolutionary particle swarm optimization forconstrained engineering design problems. Engineering Applications of ArtificialIntelligence,2007,20(1):89-99P.
    [150] Mahdavi, M., Fesanghary, M., Damangir, E. An improved harmony search algorithmfor solving optimization problems. Applied Mathematics and Computation,2007,188(2):1567-1579P.
    [151] Huang, F.Z., Wang, L., He, Q. An effective co-evolutionary differential evolution forconstrained optimization. Applied Mathematics and Computation,2007,186(1):340-356P.
    [152] Coelho, L.D.S. Gaussian quantum-behaved particle swarm optimization approaches forconstrained engineering design problems. Expert Systems with Applications,2010,37(2):1676-1683P.
    [153] Zou, D., Liu, H., Gao, L., Li, S. Directed searching optimization algorithm forconstrained optimization problems. Expert Systems with Applications,2011,38(7):8716-8723P.
    [154] Lee, K.S., Geem, Z.W. A new meta-heuristic algorithm for continuous engineeringoptimization: harmony search theory and practice. Computer Methods in AppliedMechanics and Engineering,2005,194(36-38):3902-3933P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700