用户名: 密码: 验证码:
基于微多普勒效应的运动车辆目标分类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微多普勒效应的概念最初在相干激光雷达系统的研究领域中被提出,这种现象可以提供关于运动目标自身特性的描述,可以视为运动目标的独特特征。微多普勒效应自引入雷达领域以来,为雷达目标识别研究提供了新的途径,同时也是现有雷达目标识别方法的有力补充。轮式车辆和履带式车辆在战场中通常承担不同的任务,决定了其威胁程度不同,对轮式和履带式车辆的分类在现代战争中具有重要意义。由于车辆具有典型的微运动结构,在行驶时这些微运动部件会对雷达发射波产生微多普勒调制,因而可以利用微多普勒信息对运动车辆进行分类。此外,对于窄带短驻留时间条件下运动车辆目标分类的研究,有利于解决雷达时间资源分配问题,提升窄带雷达的目标分类能力。
     本文主要围绕国防预研等相关项目,紧密结合窄带短驻留时间条件下地面运动目标分类的工程应用背景,从信号预处理、微多普勒信号分析以及目标特征提取、车辆目标分类等方面展开相关理论和技术的研究。论文的主要工作概括如下:
     1.对于旋转微运动形式的单散射点以及简单形式目标,介绍了其运动规律和微多普勒信号的数学表达式。在此基础上,针对车辆目标的特点进一步给出了车轮和履带的微多普勒回波信号的数学表达式。并利用车辆回波信号模型分析了实测数据中轮式车辆和履带式车辆的多普勒谱的差异性。分析结果表明,利用车辆目标回波中包含的微多普勒信息可以实现轮式车辆和履带式车辆的分类。
     2.针对车辆目标分类的预处理问题,对一些通用的信号预处理方法进行了研究。在杂波抑制方面,指出分类问题中的杂波抑制处理要求对杂波进行消除的同时还需保留信号中微多普勒分量的结构。由此介绍了基于带限CLEAN算法的杂波抑制方法,该方法具有计算量较小,利用单帧回波即能实现的优点。同时,在目标周围杂波性质稳定的假设下,将杂波视为色噪声。由此介绍了基于广义匹配滤波器的杂波抑制方法,该方法对于杂波成分具有自适应性。这两种方法均能在有效抑制杂波成分的同时保留信号多普勒谱的结构,有利于分类信息的保留。在车身速度归一化方面,指出由车身速度变化带来的目标多普勒谱主峰平移和多普勒谱展宽会对分类性能产生影响,由此提出了目标回波信号的车身速度归一化方法,用以消除车身速度的变化对分类结果产生的影响。在微多普勒信息提取方面,分析了车辆回波信号特点的基础上,介绍了目标多普勒谱的非线性变换预处理,用以增强微多普勒成分在分类中的作用。
     3.分析了轮式车辆和履带式车辆在多普勒谱形状上的差异性,提出基于目标多普勒谱的车辆分类方法。提取了波形熵,主副峰值比等5种描述多普勒谱形状的特征,并利用这些特征对车辆进行了分类。实验结果表明了方法的有效性。
     4.研究了基于能量分布特征的车辆目标分类方法。在分析轮式和履带式车辆回波结构的基础上,指出车辆目标的回波可视为谐波和的形式。提出了基于CLEAN算法谐波分析和信号特征谱的车辆分类方法。这两种方法本质上均利用了轮式和履带式车辆回波中各次谐波成分在能量分布上的差异性。实验结果表明,能量分布特征能够有效区分轮式车辆和履带式车辆。
     5.研究了车辆目标分类中,一些能够反映目标结构信息的重要微多普勒分量的利用问题。分析了目标回波中多普勒频率分量之间的相互关系,指出多普勒频率分量之间的相对位置信息反映了目标的结构特点。提出了一种基于经验模态分解(EMD)的车辆目标分层分类结构,该结构在第一层中根据2v分量的存在性初步判别履带式车辆,第二层中则对不存在2v分量的信号进行进一步的分类。该方法提取了目标多普勒谱中反映出的车辆微运动部件的结构信息,并利用这些信息对车辆目标进行分类。此外,由于算法的自适应性,杂波抑制过程也自然的包含于处理过程中。实验结果验证了方法的有效性,说明多普勒分量之间相对位置信息的引入有利于提高分类性能。
     6.研究了车辆目标分类方法中的稳健分类问题。指出在窄带短驻留时间条件下,车辆目标分类面临杂波、噪声和低分辨率三个问题。利用压缩感知(CS)的思想,提出了基于回波信号稀疏重构的车辆分类方法,该方法能在抑制杂波和噪声的同时,提高目标多普勒谱的分辨率。在提取微多普勒信息更加准确的基础上,使得分类性能对于信噪比变化具有稳健性。
Micro-Doppler effect was firstly introduced in coherent laser radar system. It containsinformation about the characteristics of interested moving target, and can be seen as a uniquesignature of the target. The research on micro-Doppler provides a new prospect for radarautomatic target recognition (ATR) and it is also a complementary to existing methods.Wheeled and tracked vehicles often undertake different tasks in battle, which determines theyhave different threat degrees, thus the discrimination of the two types of vehicles is importantto a successful tactic. Since vehicles have typical micro motion structures which will inducemicro-doppler modulation on radar signal, micro-Doppler information contained in theirreturned signals can be utilized to discriminant different moving vehicles. Furthermore, fornarrow band radar system, the research of micro-Doppler effect is beneficial to improve theclassification function. In addition, the research in short dwell time condition could help tosolve the contradiction of time resource distribution between various modern radar functions.
     This dissertation is supported by Advanced Defense Research Programs of China.Considering the engineering background of the narrow band radar target classification withinshort dwell time, the dissertation studies micro-Doppler signal pre-processing, micro-Dopplersignal analysis and micro-Doppler feature extraction for classification of moving vehicles.The main work can be summarized as follows:
     1. The principle of micro-Doppler effect and micro motion of rotation are introduced fora single scattering point and a target. Accordingly, the signal models of wheeled and trackedvehicles are established. Based on the signal model, measured data are analyzed todemonstrate distinctions between vehicles. The analysis results show the possibility of vehicleclassification using micro-Doppler signatures.
     2. Some effective pre-preprocessing techniques for micro-Doppler signals of movingvehicles are studied. Firstly, clutter suppression is analyzed to show the purpose of clutterpre-preprocessing, which is simultaneously clutter suppression and signal preservation forclassification task. A band-limited CLEAN algorithm is introduced to realize the purpose, thismethod has low computation burden and requires only one frame of signal. Another techniqueis based on the assumption that clutter around target is stable. In this case, generalizedmatched filter (GMF) can be employed to suppress clutter. It is adaptive to the clutter due tothe utilization of priori information. Then the normalization of main bulk velocity is discussed.Since the change of bulk velocity usually affects the location of corresponding component andthe width of target spectrum in Doppler domain, which is undesired for classification, a velocity normalization method is proposed to eliminate the influence of the change of bulkvelocity. Finally, a nonlinear transform is introduced to enhance the function ofmicro-Doppler component in classification.
     3. After analyzing the distinction between wheeled and tracked vehicles, a Dopplerspectrum based classification method is proposed. In this method,5features which isdescribed the figure of Doppler spectrum is extracted, and further classification process isimplemented. The classification results verify the effectiveness of the proposed method.
     4. Information about energy distribution is used to discriminate wheeled and trackedvehicles. By the analysis of micro-Doppler signals, the returned signal of vehicles can beconsidered as the summation of harmonic components. Accordingly, the harmonic analysisbased method and eigenvalue spectrum based method are proposed. Although use differentapproaches to process micro-Doppler signals, these two methods essentially utilize the similarenergy distribution information to distinguish wheeled and tracked vehicles. The experimentresults show that energy distribution features well depict the distinction between wheeled andtracked vehicles.
     5. Information associated with target structure is used to discriminate different types ofvehicles. In the returned signals of moving vehicles, the relation between differentmicro-Doppler frequency components reflects the structure information of micro motion parts.A hierarchical classification method based on empirical mode decomposition (EMD) ofmicro-Doppler signatures is proposed for moving vehicles, in which EMD is utilized fordecomposing the more detailed motion components of moving vehicles. Since the velocity ofthe upper track is always twice as large as the bulk velocity, which is determined by thespecial structure of track, this unique feature of tracked vehicle is utilized in the first stage ofour hierarchical structure to elementarily identify the tracked vehicle data. Then, if thefrequency induced by the upper track does not exist from some observation aspect-sectors, themicro-Doppler components are further characterized as the discriminative feature for the twokinds of vehicles in the second classification stage. In addition, clutter suppression can beachieved without extra pre-processing due to the adaptive decomposition characteristic ofEMD. Experiment results verify the effectiveness of the method and show the introduction ofstructure information is beneficial to improve classification performance.
     6. The robust classification of moving vehicles is discussed. For moving vehicleclassification within short dwell time, how to handle ground clutter and receiver white noiseto obtain robust classification performance, and how to extract discriminative informationfrom micro-Doppler signatures as much as possible should be considered. According to theprinciple of compressive sensing (CS), classification method based on sparse representation is proposed. The method can not only adaptively remove ground clutter while preserve originalsignal as much as possible but also improve the classification performance especially underlow SNR conditions.
引文
[1] Skolnik M. Introduction to Radar Systems. Second Edition. New York:McGraw-Hill,1980.
    [2] Barton D K. Sputnik II as observed by C band radar. IRE National Conference.1959, Vol.7(5).67-73.
    [3]杜兰.雷达高分辨距离像目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [4] Mott H著,林昌禄等译.天线和雷达中的极化,成都:电子科技大学出版社,1989.
    [5]庄钊文,肖顺平,王雪松.雷达极化信息处理及其应用.北京:国防工业出版社,1999.
    [6] Mitchell R A, Dewall R. Overview of high range resolution radar targetidentification. In Proceedings of Automayic Target Recognition Working Group.1994.
    [7]袁莉.基于高分辨距离像的雷达目标识别方法研究.博士研究生学位论文.西安电子科技大学.2007.
    [8]陈渤.基于核方法的雷达高分辨目标识别技术研究.博士研究生学位论文.西安电子科技大学.2008.
    [9]刘敬.雷达一维距离像特征提取与识别方法研究.博士研究生学位论文.西安电子科技大学.2008
    [10]高贵. SAR图像目标ROI获取技术研究.博士研究生学位论文.国防科技大学.2007.
    [11]韩萍. SAR图像自动目标识别及相关技术研究.博士研究生学位论文.天津民航学院.2001.
    [12]胡利平.合成孔径雷达图像目标识别技术研究.博士研究生学位论文.西安电子科技大学.2009.
    [13]尹奎英. SAR图像处理及地面目标识别技术研究.博士研究生学位论文.西安电子科技大学.2011.
    [14] Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [15]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究.博士研究生学位论文,西安电子科技大学,2009.
    [16]侯庆禹.基于高分辨距离像的雷达自动目标识别方法研究.博士研究生学位论文,西安电子科技大学,2009.
    [17] Chen F, Liu H, Du L, et al. Target classification with low-resolution radar basedon dispersion situations of eigenvalue spectra. Science China(InformationSciences),2010,53(7):1446-1460.
    [18] Pouliquen P, Lucas L, Muller F, et al. Calculation and analysis of electromagneticscattering by helicopter rotating blades. IEEE Transactions on Antennas andPropagation,2002,50(10):1193-1408.
    [19]付琨.高分辨率单视单极化SAR图像地物分类方法研究.国防科学技术大学.博士研究生学位论文.2002.
    [20] Stove A G, Sykes S R. A Doppler-based automatic target classifier for a battlefieldsurveillance radar. IEEE International Conference on Radar, Edinburgh,UK,2002:419-423.
    [21] Zhang Z, Pouliquen P O, A. Waxman, et al. Acoustic micro-Doppler radar forhuman gait imaging. Journal of the Acoustical Society of America,2007,121(3):110-113.
    [22]关永胜.空间锥体目标微运动特性与识别方法研究.博士研究生学位论文.西安电子科技大学.2011.
    [23]高红卫,谢良贵,文树梁.基于微多普勒特征的真假目标雷达识别研究.电波科学学报,2008,23(4):16-20.
    [24]陈行勇,黎湘,郭桂蓉.微进动弹道导弹目标雷达特征提取.电子与信息学报,2006,28(4):643-646.
    [25] Zediker M S, Rice R R, Hollister J H. Method for extending range and sensitivityof a fiber optic micro-Doppler ladar system and apparatus therefore. U.S. Patent6847817, Dec.8,1998.
    [26] Bell M R, Grubbs R A. JEM modeling and measurement for radar targetidentification. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):73~87.
    [27] Piazza E. Radar signals analysis and modellization in the presence of JEMapplication to civilian ATC radars. IEEE AES Systems Magazine,1999,14(1):35-40.
    [28] Martin J, Mulgrew B. Analysis of the theoretical radar return signal from aircraftpropeller blades. The record of the IEEE International Conference Radar-90, NY,USA,1990:569~572.
    [29]童创明,王光明,张晨新等.喷气发动机的JEM效应调制谱分析.电波科学学报,1999,14(2):136-143.
    [30] Chen V C, Li F, Ho S S, et al. Analysis of Micro-Doppler signatures. IEEEProceedings Radar, Sonar&Navigation,2003,150(4):271-276.
    [31] Tahmoush D, Silvious J. Radar micro-doppler for long range front-view gaitrecognition. In IEEE3rd International Conference on Biometrics: Theory,Applications, and Systems,2009. BTAS '09.2009:1-6.
    [32] Molchanov P, Astola J, Egiazarian K, et al. Classification of ground moving radartargets by using joint time-frequency analysis. In2012IEEE Radar Conference(RADAR),2012:0366-0371.
    [33] Molchanov P, Astola J, Egiazarian K, Totsky A: Ground moving targetclassification by using DCT coefficients extracted from micro-Doppler radarsignatures and artificial neuron network. In Microwaves, Radar and RemoteSensing Symposium (MRRS),20112011:173-176.
    [34] Molchanov P, Astola J, Egiazarian K, et al. Object recognition in groundsurveillance doppler radar by using bispectrum-based time-frequency distributions.In11th International Radar Symposium (IRS),2010:1-4.
    [35] Molchanov P, Astola J, Egiazarian K, et al. Moving target classification in groundsurveillance radar ATR system by using novel bicepstral-based informationfeatures. In2011European Radar Conference (EuRAD),2011:194-197.
    [36] Bjorklund S, Johansson T, Petersson H. Evaluation of a micro-Dopplerclassification method on mm-wave data. In2012IEEE Radar Conference(RADAR),2012:0934-0939.
    [37] Smith G E, Woodbridge K, Baker C J. Template Based Micro-Doppler SignatureClassification. In The Institution of Engineering and Technology Seminar on HighResolution Imaging and Target Classification,2006:127-144.
    [38] Smith G E, Woodbridge K, Baker C, et al. Multistatic micro-Doppler radarsignatures of personnel targets. IET Signal Processing,2010,4(3):224-233.
    [39] Smith G E, Woodbridge K, Baker C J. Radar Micro-Doppler SignatureClassification using Dynamic Time Warping. IEEE Transactions on Aerospaceand Electronic Systems,2010,46(3):1078-1096.
    [40] Cai C, Liu W, Fu J S, et al. Empirical Mode Decomposition of Micro-DopplerSignature. IEEE International Radar Conference Record, VA, USA,2005:895-899.
    [41]陈行勇,刘永祥,姜卫东等.微运动目标合成距离像数学分析.电子学报,2007,35(3):585-589.
    [42]陈行勇,刘永祥,黎湘等.微多普勒分析和参数估计.红外与毫米波学报,2006,25(5):360-363.
    [43]孙照强,鲁耀兵,李宝柱等.宽带信号及其特征的微多普勒提取技术研究.系统工程与电子技术,2008,30(11):2040-2044.
    [44] Smith G, Woodbridge K, Baker C. Multistatic Micro-Doppler Signature ofpersonnel. In2008IEEE Radar Conference,2008:1-6.
    [45] Ruegg M, Meier E, Nuesch D. Vibration and Rotation in Millimeter-Wave SAR.IEEE Transactions on Geoscience and Remote Sensing,2007,45(2):293-304.
    [46] Sparr T, Krane B. Micro-Doppler analysis of vibrating targets in SAR. IEEProceedings-Radar, Sonar and Navigation,2003,150(4):277-83.
    [47] Silverstein S, Hawkins C. Synthetic aperture radar image signatures of rotatingobjects. In Conference Record of the Thirty-Eighth Asilomar Conference onSignals, Systems and Computers,2004:1663-1667Vol.2.
    [48] Sparr T. Moving target motion estimation and focusing in SAR images. In2005IEEE International Radar Conference,2005:290-294.
    [49] Li X, Deng B, Qin Y, et al. The Inuence of Target Micromotion on SAR andGMTI. IEEE Transactions on Geoscience and Remote Sensing,2011,49(7):2738-2751.
    [50] Clemente C, Soraghan J J. Vibrating Target Micro-Doppler Signature in BistaticSAR With a Fixed Receiver. IEEE Transactions on Geoscience and RemoteSensing,2012, PP(99):1-9.
    [51] Ghaleb A, Vignaud L, Nicolas J. Micro-Doppler analysis of wheels andpedestrians in ISAR imaging. IET Signal Processing,2008,2(3):301-311.
    [52] Chen V, Miceli W, Himed B. Micro-Doppler analysis in ISAR-review andperspectives. In International Radar Conference-Surveillance for a Safer World,2009:1-6.
    [53] Li B, Wan J, Yao K, et al. ISAR based on micro-doppler analysis and Chirpletparameter separation. In1st Asian and Pacific Conference on Synthetic ApertureRadar,2007:379-384.
    [54] Fulin S, Mingyuan J. ISAR Imaging of Target with Micro-motion Parts Based onSSA.20108th European Conference on Synthetic Aperture Radar (EUSAR),2010:1-4.
    [55] Zhu F, Luo Y, Zhang Q, et al. ISAR Imaging for Avian Species Identification WithFrequency-Stepped Chirp Signals. IEEE Geoscience and Remote Sensing Letters,2010,7:151-155.
    [56] Bai X, Xing M, Zhou F, et al. Imaging of Micromotion Targets with Rotating PartsBased on Empirical-Mode Decomposition. IEEE Transactions on Geoscience andRemote Sensing,2008,46(11):3514-3523.
    [57] Bai X, Zhou F, Xing M, et al. High Resolution ISAR Imaging of Targets withRotating Parts. IEEE Transactions on Aerospace and Electronic Systems,2011,47(4):2530-2543.
    [58] Zhang Z, Pouliquen P, Waxman A, et al. Acoustic Micro-Doppler Gait Signaturesof Humans and Animals. In CISS '07.41st Annual Conference on InformationSciences and Systems,2007:627-630.
    [59] Mehmood A, Sabatier J M, Bradley M, et al. Extraction of the velocity of walkinghuman's body segments using ultrasonic Doppler. The Journal of the AcousticalSociety of America2010,128(5):EL316-EL322.
    [60] Liu X, Leung H, Lampropoulos G. Effiects of Non-Uniform Motion inThrough-the-Wall SAR Imaging. IEEE Transactions on Antennas and Propagation,2009,57(11):3539-3548.
    [61] Ram S, Christianson C, Kim Y, et al. Simulation and Analysis of HumanMicro-Dopplers in Through-Wall Environments. IEEE Transactions onGeoscience and Remote Sensing,2010,48(4):2015-2023.
    [62] Sume A, Gustafsson M, Herberthson M, et al. Radar Detection of Moving TargetsBehind Corners. IEEE Transactions on Geoscience and Remote Sensing,2011,49(6):2259-2267.
    [63] Bugaev A S, Vasil'ev I A, Ivashov SI, et al. Radar Methods of Detection of HumanBreathing and Heartbeat. Journal of Communications Technology and Electronics,2006,51(10):1154-1168.
    [64] Lubecke V M, Boric-Lubecke O, Host-Madsen A, et al., Through-the-Wall RadarLife Detection and Monitoring. Proceedings of the2007IEEE Microwave Theoryand Techniques Symposium, Honolulu, HI,2007:769-772.
    [65] Chia M Y W, Leong S W, Sim C K, et al. Through-Wall UWB Radar OperatingWithin FCC’s Mask for Sensing Heart Beat and Breathing Rate. Proceedings ofthe2005European Radar Conference, Paris, France,2005:267-270.
    [66] Bugaev A S, Chapursky V V, Ivashov S I, et al.,“Through Wall Sensing of HumanBreathing and Heart Beating by Monochromatic Radar,” Proceedings of the10thInternational Conference on Ground Penetrating Radar, Delft, the Netherlands,2004:291–294.
    [67]高红卫,谢良贵,文树梁等.摆动锥体目标微多普勒分析和提取.电子学报,2008,36(12):2498-2502.
    [68]孙慧霞,刘峥,薛宁.自旋进动目标的微多普勒特征分析.系统工程与电子技术,2009,31(2):67-70.
    [69]高红卫,谢良贵,文树梁等.基于微多普勒分析的弹道导弹目标进动特性研究.系统工程与电子技术,2008,30(1):50-52.
    [70]苏婷婷,孔令讲,杨建宇.基于多谐波微多普勒信号分析的目标摄动参数提取方法.电子与信息学报,2008,30(11):2646-2649.
    [71]罗迎,池龙,张群等.用慢时间域积分法实现雷达目标微多普勒信息的提取.电子与信息学报,2008,30(9):2055-2059.
    [72] Chen V C, Doppler Signatures of Radar Backscattering from Objects withMicro-Motions. IET Signal Processing,2008,2(3):291-300.
    [73] Luo Y, Zhou L, Lin Y, et al. Micro-Doppler Extraction of Frequency-SteppedChirp Signal Based on the Hough Transform. Proceedings of the8th InternationalSymposium on Antenna, Propagation and EM Theory,2008:408-411.
    [74] Li K, Luo Y, Chi L, et al. A New Separation Method for Micro-DopplerInformation of a Target with Rotating Parts. Proceedings of InternationalConference on Communications, Circuits and Systems (ICCCAS),2008:1365-1369.
    [75] Sun H X, Liu Z, Micro-Doppler Feature Extraction for Ballistic Missile Warhead.Proceedings of the2008IEEE International Conference on Information andAutomation (ICIA),2008:1333-1336.
    [76] He S, Zhou J X, Zhao H Z, et al. Analysis and Extraction of Stepped FrequencyRadar Signature for Micro-Motion Structure. IET Radar, Sonar and Navigation,2009,3(5):484-492.
    [77] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of Radar Micro-DopplerSignatures from Experimental Helicopter and Human Data. IET Radar, Sonar andNavigation,2007,1(4):289-299.
    [78] Ning C, Xiao Z, Wang C, et al. Modeling and Simulation of Micro-Motion in theComplex Warhead Target. Proceedings of SPIE: Second International Conferenceon Space Information Technology,2007:679551, Vol.6795.
    [79] Anderson M G, Rogers R L. Micro-Doppler Analysis of Multiple FrequencyContinuous Wave Radar Signatures. Proceedings of SPIE: Through-the-Wall andHuman Detection Radar,2007:65470A, Vol.6547.
    [80] Liu Y, Chen H, Li X, et al. Radar Micro-motion Target Resolution. Proceedings ofthe CIE International Conference of Radar,2006:1-4.
    [81] Setlur P, Amin M, Thayaparan T. Micro-Doppler Signal Estimation for Vibratingand Rotating Targets. Proceedings of the8th International Symposium on SignalProcessing and its Applications (ISSPA),2005:639-642.
    [82]陈行勇,黎湘,郭桂蓉等.基于旋翼微运动雷达特征的空中目标识别.系统工程与电子技术,2006,25(5):372-375.
    [83] Lei J, Lu C. Target classification based on micro-Doppler signatures. IEEEInternational Radar Conference Record, VA, USA,2005:179-183.
    [84] Thayaparan T, Stankovic L, Djurovic I. Micro-Doppler-based target detection andfeature extraction in indoor and outdoor environments. Journal of the FranklinInstitute,2008,345(6):700-722.
    [85] Thayaparan T, Abrol S, Riseborough E. Micro-Doppler Radar Signatures forIntelligent Target Recognition, CANADA D R D. Ottawa.2004.
    [86] Kalgaonkar K, Raj B. Acoustic Doppler sonar for gait recognition. In IEEEConference on Advanced Video and Signal Based Surveillance,2007:27-32.
    [87] Zhang Z, Andreou A. Human identification experiments using acousticmicro-Doppler signatures. In Argentine School of Micro-Nanoelectronics,Technology and Applications,2008:81-86.
    [88] Dura-Bernal S, Garreau G, Andreou C, et al. Human action categorization usingultrasound micro-doppler signatures. In Proceedings of the Second internationalconference on Human Behavior Unterstanding, HBU'11, Berlin, Heidelberg,2011:18-28.
    [89] Garreau G, Andreou C, Andreou A, et al. Gait-based person and genderrecognition using micro-doppler signatures. In Biomedical Circuits and SystemsConference (BioCAS),2011:444-447.
    [90] Balleri A, Chetty K, Woodbridge K. Classification of personnel targets by acousticmicro-doppler signatures. IET Radar, Sonar Navigation,2011,5(9):943-951.
    [91] Smith G E. Radar Target Micro-Doppler Signature Classification. Ph.D.Dissertation, Department of Electronic and Electrical Engineering, UniversityCollege London,2008.
    [92] Stove A G, Sykes S R. A Doppler-Based Target Classifier Using LinearDiscriminants and Principal Components. Proceedings of the2003InternationalRadar Conference, Adelaide, Australia, September2003:171-176.
    [93] Bilik I, Tabrikian J, and Cohen A. MM-Based Target Classification for GroundSurveillance Doppler Radar. IEEE Transactions on Aerospace and ElectronicSystems,2006,42(1):267-278.
    [94] Hines P C, and Ward C M. Classification of Marine Mammal Vocalizations Usingan Automatic Aural Classifier. Journal of the Acoustical Society of America,2010,127(3):1970-1970.
    [95] Kim Y, Ling H. Human Activity Classification Based on Micro-DopplerSignatures Using an Artificial Neural Network. IEEE International Symposium onAntennas and Propagation and USNC/URSI National Radio Science Meeting,2008.
    [96] Kim Y, Ling H. Human Activity Classification Based on Micro-DopplerSignatures Using a Support Vector Machine. IEEE Transactions on Geoscienceand Remote Sensing,2009,47(5):1328-1337.
    [97] Smith G E, Woodbridge K, Baker C J. Na ve Bayesian Radar Micro-DopplerRecognition. Proceedings of the2008International Conference on Radar,2008:111-116.
    [98] Setlur P, Amin M, Ahmad F. Urban Target Classifications Using Time-FrequencyMicro-Doppler Signatures. Proceedings of the9th International Symposium onSignal Processing and Its Applications (ISSPA),2007.
    [99] Nanzer J A, Rogers R L. Bayesian Classification of Humans and Vehicles UsingMicro-Doppler Signals from a Scanning-Beam Radar. IEEE Microwave andWireless Components Letters,2009,19(5):338-340.
    [100] Yang Y, Lu C. Human Identifications Using Micro-Doppler Signatures.Proceedings of the5th IASTED International Conference on Antennas, Radar, andWave Propagation,2008:69-73.
    [101] Yang Y, Lei J, Zhang W, et al. Target Classification and Pattern RecognitionUsing Micro-Doppler Radar Signatures. Proceedings of the7th InternationalConference on Software Engineering, Artificial Intelligence, Networking, andParallel/Distributed Computing,2006:213-217.
    [102] Chen V C. The Micro-Doppler Effect in Radar. Norwood, MA: Artech House,2011.
    [103]贾涛,张禹田.地面雷达动目标自动识别分类研究.电讯技术,1998,38(2):35-40.
    [104]冀振元,孟宪德.战场侦察雷达目标的自动识别.哈尔滨工业大学学报,2001,33(6):107-110.
    [105]黄健,李欣等.基于微多普勒特征的坦克目标参数估计与身份识别.电子与信息学报,2010,32(5):1050-1055.
    [106] Wu H, Siegel M, Khosla P. Vehicle sound signature recognition by frequencyvector principal component analysis. IEEE Transactions on Instrumentation andMeasurement,199948(5):1005-1009.
    [107] Bilik I, Tabrikaian J, Cohen A. Gmm-based target classification for groundsurveillance Doppler radar. IEEE Transactions on Aerospace and ElectronicSystems,2006,42(1):267-278.
    [108] Lauberts A, Karlsson M, N sstr m F, et al. Ground target classification usingcombined radar and IR with simulated data. In Proceedings of the7thInternational Conference on Information Fusion (FUSION '04), Stockholm,Sweden,2004:1088-1095.
    [109] Guo B, Nixon M, Damarla R. Acoustic Information Fusion for Ground VehicleClassification.11th International Conference on Information Fusion, London,(2008):1-7.
    [110] Urazghildiiev I, Ragnarsson R. Vehicle classification based on the radarmeasurement of height profiles. IEEE Transactions on Intelligent TransportationSystems,2007,8(2):245-253.
    [1] Skolnik M. Introduction to Radar Systems. Second Edition. New York:McGraw-Hill,1980.
    [2] Chen V C. The Micro-Doppler Effect in Radar. Norwood, MA: Artech House,2011.
    [3] Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [4] Chen V C, Li F, Ho S S, et al. Analysis of Micro-Doppler signatures. IEEEProceedings Radar, Sonar&Navigation,2003,150(4):271-276.
    [5] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of Radar Micro-DopplerSignatures from Experimental Helicopter and Human Data. IET Radar, Sonar andNavigation,2007,1(4):289-299.
    [6] Stove A G, Sykes S R. A Doppler-Based Target Classifier Using LinearDiscriminants and Principal Components. Proceedings of the2003InternationalRadar Conference, Adelaide, Australia, September2003:171-176.
    [1] Meikle H. Modern radar systems. Second edition, Bostion: Artech House,2001:309-325.
    [2] Tsao J, Steinberg B D. Reduction of Sidelobe and Speckle Artifacts in MicrowaveImaging: The CLEAN Technique. IEEE Transactions on Antennas and Propagation,1988,36(4):1688-1697.
    [3] Bose R, Freeman A, Steinberg B D. Sequence CLEAN: A Modified DeconvolutionTechnique for Microwave Images of Contiguous Targets. IEEE Transactions onAerospace and Electronic Systems,2002,38(1):89-96.
    [4] Kay S. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.Prentice Hall,1998.
    [5]冀振元,孟宪德.战场侦察雷达目标的自动识别.哈尔滨工业大学学报.2001,33(6):107-110.
    [6] Stove A G, Sykes S R. A Doppler-Based Target Classifier Using LinearDiscriminants and Principal Components. Proceedings of the2003InternationalRadar Conference, Adelaide, Australia, September2003:171-176.
    [7]陶然,王越.多抽样率数字信号处理理论及其应用.北京:清华大学出版社,2007.
    [8] Oppenheim A V, Schafer R W. Discrete-Time Signal Processing.2nd Edition.Prentice-Hall,1999.
    [9]刘宏伟,马建华,保铮. BOX-COX变换提高雷达高分辨距离像识别性能的物理机理分析.第九届全国雷达学术年会论文集.2004,354-357.
    [10]Wu R, Gao Q, Liu J, et al. ATR scheme based on1-D HRR progiles. ElectronicsLetter,2002,38(2):1586-1588.
    [11]Heiden R, Groen F. The BOX-COX metric for nearest neighbor classificationimprovement. Pattern Recognition,1997,30(2):273-279
    [1] Chen V C, Li F, Ho S S, et al. Analysis of Micro-Doppler signatures. IEEEProceedings Radar, Sonar&Navigation,2003,150(4):271-276.
    [2] Chen V C, Li F, Ho S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [3]冀振元,孟宪德.战场侦察雷达目标的自动识别.哈尔滨工业大学学报.2001,33(6):107-110.
    [4] Stove A G, Sykes S R. A Doppler-Based Target Classifier Using LinearDiscriminants and Principal Components. Proceedings of the2003InternationalRadar Conference, Adelaide, Australia, September2003:171-176.
    [5]陈凤,刘宏伟,杜兰等.基于特征谱散布特征的低分辨雷达目标分类方法.中国科学:信息科学,2010,40:624-636.
    [6] Tsao J, Steinberg B D. Reduction of Sidelobe and Speckle Artifacts in MicrowaveImaging: The CLEAN Technique. IEEE Transactions on Antennas and Propagation,1988,36(4):1688-1697.
    [7] Bose R, Freeman A, Steinberg B D. Sequence CLEAN: A Modified DeconvolutionTechnique for Microwave Images of Contiguous Targets. IEEE Transactions onAerospace and Electronic Systems,2002,38(1):89-96.
    [8] Fukunaga K. Introduction to statistical pattern recognition.2nd edition. San Diego:Academic Press Professional, Inc.,1990.
    [9] Park C, Park H. A relationship between LDA and the generalized minimum squarederror solution. SIAM Journal on Matrix Analysis and Applications,2005,27(2):474-492.
    [10]Yang J, Yang J. Why can LDA be performed in PCA transformed space? PatternRecognition,2003,36(2):563-566.
    [11]Ye J. Least squares linear discriminant analysis. In Proceedings of the24thInternational Conference on Machine Learning,2007:1087-1093.
    [12]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. DataMining and Knowledge Discovery,1998,2(2):121-167.
    [13]Drucker H, Burges C J C, Kaufman L, et al. Support vector regression machines.Advancesin Neural Information Processing Systems,1997,9:155–161.
    [14]Sch lkopf B, Sung K, Burges C, et al. Comparing support vector machines withgaussian kernels to radial basis function classifiers. IEEE Trans. Sign. Processing,1997,45:2758-2765.
    [15]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [16]Vapnik V, Golowich S, Smola A. Support vector method for function approximation,regression estimation, and signal processing. Advances in Neural InformationProcessing Systems,1996,9:281-287.
    [17]边肇祺,张学工.模式识别.北京:清华大学出版社,1999.
    [1] Carrara W G, Goodman R S, Majewski R M. Spotlight synthetic aperture radar-signal processing algorithms, Norwood, MA: Arthech House,1995.
    [2] Thayaparan T, Abrol S, Riseborough E, et al. Analysis of radar micro-Dopplersignatures from experimental helicopter and human data. IET Radar SonarNavigation,2007,1(4):289-299.
    [3] Carrier, Krook, Pearson. Functions of a Complex Variable: Theory and Technique.Hod Books,1983
    [4] Amos D E. A Subroutine Package for Bessel Functions of a Complex Argument andNonnegative Order. Sandia National Laboratory Report, SAND85-1018, May,1985.
    [5] Amos D E. A Portable Package for Bessel Functions of a Complex Argument andNonnegative Order. Trans. Math. Software,1986.
    [6] Tsao J, Steinberg B D. Reduction of Sidelobe and Speckle Artifacts in MicrowaveImaging: The CLEAN Technique. IEEE Transactions on Antennas and Propagation,1988,36(4):1688-1697.
    [7] Bose R, Freeman A, Steinberg B D. Sequence CLEAN: A Modified DeconvolutionTechnique for Microwave Images of Contiguous Targets. IEEE Transactions onAerospace and Electronic Systems,2002,38(1):89-96.
    [8] Choi I, Kim H. Two-dimensional evolutionary programming-based CLEAN. IEEETransactions on Aerospace and Electronic Systems,2003,39(1):373-382.
    [9] Martorella, M., Acito, N., Berizzi, F. Statistical CLEAN Technique for ISARImaging. IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3552-3560.
    [10]何云涛,江月松,钟宇. CLEAN算法在机载毫米波综合孔径成像中的应用.电子与信息学报,2007,29(7):1757-1760.
    [11]Kay S. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.Prentice Hall,1998.
    [12]Fukunaga K. Introduction to statistical pattern recognition.2nd edition. San Diego:Academic Press Professional, Inc.,1990.
    [13]Yang J, Yang J. Why can LDA be performed in PCA transformed space? PatternRecognition,2003,36(2):563-566.
    [14]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. DataMining and Knowledge Discovery,1998,2(2):121-167.
    [15]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [16]陈凤.基于HRRP和JEM信号的雷达目标识别技术研究.博士研究生学位论文,西安电子科技大学,2009.
    [17]陈凤,刘宏伟,杜兰等.基于特征谱散布特征的低分辨雷达目标分类方法.中国科学:信息科学,2010,40:624-636.
    [18]Chen F, Liu H, Du L, et al. Target classification with low-resolution radar based ondispersion situations of eigenvalue spectra. Science China (Information Sciences),2010,53(7):1446-1460.
    [19]徐仲,张凯院,陆金. Toeplitz矩阵类矩阵的快速算法.西安:西北工业大学出版社,2006,212-255.
    [1] Huang N E, Shen Z, Long S R, et.al. The empirical mode decomposition and theHilbert spectrum for non-linear and non stationary time series analysis. Proc. RoyalSoc. London A,1998,454:903-995.
    [2] Huang N E, Wu M C, Long S R, et.al. A confidence limit for the empirical modedecomposition and Hilbert spectral analysis. Proc. Royal Soc. London A2003,459:2317-2345.
    [3] Deering R, Kaiser J F. The use of a masking signal to improve empirical modedecomposition. In Proc. IEEE Int. Radar Conf. ICASSP'05. Philadelphia,Pennsylvania, USA, Mar.2005,4:485-488.
    [4] Xu Z, Huang B, Zhang F. Improvement of empirical mode decomposition underlow sampling rate. Signal Processing,2009,89(11):2296–2303.
    [5] Zhang H, Gai Q. Research on properties of empirical mode decomposition method.In Proc. of the6th World Congress on Intelligent Control and Automation. Dalian,China,2006:10001-10004.
    [6] Delechelle E, Lemoine J, Niang O. Empirical mode decomposition: An analyticalapproach for sifting process. IEEE Signal Processing Lett.,2005,12:764-767.
    [7] Chen Q, Huang N, Riemenschneider S, et al. A b-spline approach for empiricalmode decompositions. Advances in Computational Mathematics,2006,24:171-195.
    [8] Rilling G, Flandrin P, and Goncalves P. On empirical mode decomposition and itsalgorithms. In IEEE Workshop on Nonlinear Signal and Image Processing,2003.
    [9] Rilling G, Flandrin P. On the influence of sampling on the empirical modedecomposition. In IEEE International Conference on Acoustics, Speech and SignalProcessing,2006,3:444-447.
    [10]Liang H, Lin Q H, Chen J D Z. Application of the empirical mode decomposition tothe analysis of esophageal manometric data in gastroesophageal reflux disease.IEEE Trans. Biomed. Eng.,2005,10:1692-1701.
    [11]Liu B, Riemenschneider S, Xu Y. Gearbox fault diagnosis using empirical modedecomposition and Hilbert spectrum. Mechanical systems and signal processing,2006,20:718-734.
    [12]Coughlin K T, Tung K K.11-Year solar cycle in the stratosphere extracted by theempirical mode decomposition method. Adv. Space. Res.,2004,34:323-329.
    [13]Bai X, Xing M, Zhou F, et.al. Imaging of micromotion targets with rotating partsbased on empirical-mode decomposition. IEEE Trans. Geosci. Remote Sens.2008,46(11):3514-3523.
    [14]Cai C J, Liu W X, Fu J S, et al. Empirical mode decomposition of micro-Dopplersignature. In Proc. IEEE Int. Radar Conf., May2005, pp.895–899.
    [15]Cai C J, Liu W X, Fu J S, et al. A new approach for ground moving target indicationin foliage environment. Signal Processing,2006,86(1):84–97.
    [16]Flandrin P, Rilling G, Goncalvés P. Empirical mode decomposition as a filter bank.IEEE signal processing letters.2004,11(2):112-114.
    [17]Tanaka T, Mandic D P. Complex empirical mode decomposition. IEEE signalprocessing letters.2007,14(2):101-104.
    [18]Rilling G, Flandrin P, Goncolves P, et al. Bivariate empirical mode decomposition.IEEE Signal Processing Letters.2007,14(12):936-939.
    [19]Kay S. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.Prentice Hall,1998.
    [20]Fukunaga K. Introduction to statistical pattern recognition.2nd edition. San Diego:Academic Press Professional, Inc.,1990.
    [21]Yang J, Yang J. Why can LDA be performed in PCA transformed space? PatternRecognition,2003,36(2):563-566.
    [22]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. DataMining and Knowledge Discovery,1998,2(2):121-167.
    [23]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [24]Oppenheim A V, Schafer R W. Discrete-Time Signal Processing, Prentice-Hall,1989.
    [25]Jain A K. Fundamentals of Digital Image Processing, Prentice-Hall,1989.
    [26]Mallat S. A theory for multiresolution signal decomposition: the waveletrepresentation. IEEE Pattern Anal. and Machine Intell.,1989,11(7):674-693,.
    [27]Jolliffe I T. Principal Component Analysis,2nd edition, New York: Springer,2002.
    [28]Stove A G, Sykes S R. A Doppler-Based Target Classifier Using LinearDiscriminants and Principal Components. Proceedings of the2003InternationalRadar Conference, Adelaide, Australia, September2003:171-176.
    [1] Candes E, Romberg J, Tao T. Robust Uncertainty Principles: Exact SignalReconstruction From Highly Incomplete Frequency Information. IEEE Trans on IT,2006,52(2):489–509.
    [2] Candes E, Romberg J, Tao T. Near-Optimal Signal Recovery From RandomProjections: Universal Encoding Strategies? IEEE Trans on IT,2006,52(2):489-509.
    [3] Donoho D. Compressed Sensing. IEEE Trans on IT,2006,52(4):5406–5425.
    [4] Candès E, Romberg J, Tao T. Stable Signal Recovery From Incomplete andInaccurate Measurements. Comm. Pure Appl. Math,2006,59(8):1027-1223.
    [5] Zweig G. Super-Resolution Fourier Transforms by Optimization and ISAR Imaging.IEE Proc-RSN,2003,150(4):247-252.
    [6] Zhang L, Xing M, Qiu C W, et al. Resolution Enhancement for Inversed SyntheticAperture Radar Imaging under Low SNR via Improved Compressive Sensing.IEEE Trans on GRS,2010,48(10):3824-3838.
    [7] Zhu C W. Stable Recovery of Sparse Signals Via Regularized Minimization, IEEETrans on IT,2008,54(7):3364-3367.
    [8] Joachim H G. On Compressive Sensing Applied to Radar. Signal Processing,2010,90(5):1402-1414.
    [9] Herman M A, Strohmer T. High-Resolution Radar via Compressed Sensing. IEEETrans on SP,2009,57(6):2275-2284.
    [10]Zhu X X, Bamler R. Tomographic SAR Inversion By l1-norm Regularization-TheCompressive Sensing Approach, IEEE Trans on GRS,2009,48(10):3839-3846.
    [11]Budillon A, Evangelista A, Schirinzi G. Three-Dimensional SAR Focusing FromMultipass Signals Using Compressive Sampling. IEEE. Trans on GRS,2011,49(1):488–499.
    [12]Applebaum L, Howard S, Searle S, et al. Chirp Sensing Codes: DeterministicCompressed Sensing Measurements for Fast Recovery. Appl. Comput. HarmonicAnal.,2008, Vol.26(2),283-290.
    [13]Donoho D L, Tsaig Y, Extensions of compressed sensing. Signal Processing,2006,86(3):533-548.
    [14]Kay S. Fundamentals of Statistical Signal Processing, Volume II: Detection Theory.Prentice Hall,1998.
    [15]Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. DataMining and Knowledge Discovery,1998,2(2):121-167.
    [16]Vapnik V. The Nature of Statistical Learning Theory. New York: Springer-Verlag,1995.
    [17]Fukunaga K. Introduction to statistical pattern recognition.2nd edition. San Diego:Academic Press Professional, Inc.,1990.
    [18]Yang J, Yang J. Why can LDA be performed in PCA transformed space? PatternRecognition,2003,36(2):563-566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700