用户名: 密码: 验证码:
中国陆域地壳应力场分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地壳应力场研究是工程地质学研究的重要内容,是考查岩土工程力学环境的基本依据,是探索地震、滑坡等地质灾害预测、预防方法的重要途径,是推动板块学说从运动学研究向动力学研究转化的关键。地壳应力场研究工作也愈来愈受到工程地质、地球物理、岩石力学、地震等方面专家的重视,在近百年的时间里,在地应力测量技术、分析方法、研究理论方面均取得长足进步,取得许多有价值的成果,同时也积累了大量的观测数据资料。在前人工作的基础上,本文以实测地应力数据为依据,通过数理统计与数值模拟的方法,研究中国陆域地壳现今原地应力场状态及强震对应力场扰动影响。
     首先是收集整理了中国陆域1474个测点上的水压致裂法与应力解除法实测地应力数据3586条。采用等深度段分组归纳的方法解决了实测地应力数据样本数量沿深度分布的不均匀问题,给出了中国陆域与各研究区地壳浅层测量深度范围内应力量值、方位特征。并通过将研究区内实测地应力扣除重力影响的方法,分析构造应力场的作用,给出了中国陆域及各个活动地块上水平构造应力的方位特征与量值范围。
     其次是建立了包括现今主要活动断层以及岩石圈实际分层结构(地面、莫霍面、岩石圈)的3D球壳模型,使数值模型与地质模型更加吻合。在此基础上以重力和板块构造作用为主要影响因素,以地壳浅表的实测原地应力研究成果为目标约束,演算分析中国陆域现今地应力场,给出了中国陆域现今原地应力场的绝对量值估计。
     再次是用降低发震断层单元组模量来模拟强震时断层失稳破坏丧失承载能力的方法,对中国陆域地区强震引起的应力场调整规律进行了数值模拟研究。进而对我国年度时间尺度大范围应力场变化和相应的强震活动迁移机理进行了探索。
     本文取得如下主要研究结果:
     一、浅层地应力实测数据统计分析方面
     (1)中国陆域地壳浅层最大水平应力σH、最小水平应力σh、垂直应力σv随深度D呈线性增加:σH=0.0229D+4.738、σh=0.0171D+1.829、σV=0.0272D;中国陆域最大水平构造应力σT、最小水平构造应力σt的量值估算范围分别为:4.738<σT<0.0139D+4.738.1.829<σt<0.0081D+1.829;中国陆域水平构造差应力σT—σt=0.0058D+2.912。
     (2)在测量深度范围内,中国陆域各研究区σT、σt、σT—σt随埋深均呈线性增大;σT1,中间值(D=2000m时的统计回归值)最大为45.6MPa,最小为26.8MPa,由大到小依次为:青藏地块、南北带北段、华南地块、南北带中段、华北地块、南北带南段、西域地块和东北地块;σT-σt中间值(D=2000m时的统计回归值)最大为25.3MPa,最小为13.0MPa,由大到小依次为:青藏地块、西域地块、南北带北段、华南地块、南北带南段、华北地块、南北带中段和东北地块。总体表现为西强东弱的基本特征,反映了印度板块与欧亚板块的强烈碰撞是中国陆域构造应力场强度总体特征的主要来源。
     (3)与其他研究区相比较,青藏地块地壳在从南向北的挤压作用下呈现出明显的“浅弱深强”特点。
     二、在原地应力场数值模拟分析方面
     (1)建立了中国陆域岩石圈三维球壳模型。提出了以地壳浅表的实测原地应力研究成果为目标约束,用数值模拟演算分析方法,估计中国陆域现今原地应力场的绝对量值的途径。
     (2)模拟结果表明,最大水平应力σH基本以青藏高原为中心,呈辐射状展布,由西向东,从近NS方向逐步顺时针旋转至NNE、NE、NEE、SE方向,与深部的震源机制解研究结果有一致性。
     (3)中国陆域最大、最小水平应力σH、σh总体表现为压性,随着深度的增加而升高,水平应力—深度关系表现为多段折线,中、下壳应力增长的速度较之上地壳缓慢。表层2000m深度,最大、最小水平应力σH、σh量值范围:14.5MPa<σH<58.0MPa、3.8MPa<σh<26.7MPa。在地壳深部的莫霍面上,水平应力量值分布特征主要受莫霍面地形控制,量值范围:600MPa<σH<1200MPa、560MPa<σh<1140MPa。
     (4)各活动地块、南北地震带各段应力状态有明显差异,青藏地块呈现出明显的“中部弱周边强”特点。
     三、在中国陆域地区强震引起的应力场调整研究方面
     (1)弱化一个单元组将引起大范围的应力场的调整,55%以上的单元等效应力增加在0.1MPa以上,个别断层端部主应力方向变化达60。以上。
     (2)初始应力场、边界位移加载的方式、被弱化单元组的弹性模量均对扰动应力场有明显影响。
     (3)弱化2001年11月14日昆仑山8.0级强震区单元组引起的扰动应力场,与实际观测到的绝对应力测量值及钻孔体应变观测的应变阶具有一致性。
The research of crustal stress field is an important part of the study of the engineering geology, a basic foundation of testing large geotechnical engineering construction on mechanical environment, an important way to study the prediction and prevention method of geological hazards such as earthquake and landslide, a key of Pushing plate theory from the kinematic to the dinamics. In nearly centenary time, not only measurement technology, analysis method and theoretical research of in-situ stress have made great progress and many valuable results, but also accumulated a large amount of observation data. With the measured in-situ stress data, we researched the present state of the in-situ stress field and the strong earthquakes'disturbance impact to it by numerical simulation method in the Chinese Mainland.
     Firstly, we collected and analysed the measured in-situ stress data of3586on the Chinese Mainland1474points by the method of hydraulic fracturing and overcoring. We have solved the problem of uneven distribution of the measured in-situ stress data along the depth by the equal depth group summarized method, and given the stress magnitude and orientation characteristic in the upper crust within the measured depth range on Chinese Mainland and each study area. And through the method of subtracting the effect of gravity from the measured stress, we analysed the role of the tectonic stress field. And we have given the orientation characteristic and magnitude range of the horizontal tectonic stress on Chinese Mainland and each active block.
     Secondly, we have built a finite element model including the present main active faults and actual layered structure of the lithosphere (ground, Moho, and lithosphere). And we also introduced the spherical structure in the model to make the numerical model and the geological model more consistent. Based on this model, we used gravity and plate tectonic as the main influencing factors, the research results of the measured in-situ stress in the upper crust as the target controls, to make the inversion analysis of the present in-situ stress field in the Chinese Mainland, and gave the magnitude estimation of it.
     Thirdly, we made the numerical simulation research about the stress field adjustment law caused by strong earthquake in Chinese Mainland, with the method of reduce the seismogenic fault elements group modulus to simulate the loss of carrying capacity when the faults were unstable. Thus we could explore the annual time scale of a wide range of changes in the stress field and the corresponding strong seismic activity migration mechanism.
     We have made the following key findings:
     First, the statistical analysis of the measured shallow crust stress data.
     (1) The maximum horizontal principle stress σH, the minimum horizontal principle stress σh and the vertical stress σV in shallow crust of China all increase linearly with depth:σH=0.0229D+4.738, σh=0.0171D+1.829, σv=0.0272D; The range of σT and σt in shallow crust of China are:4.738<σT<0.0139D+4.738and1.829<σt<0.0081D+1.829, respectively. Regression equation of horizontal tectonic differential stress in China mainland is:σT-σt=0.0058D+2.912with a gradient of5.8MPa/km, and surface value at Okm is3MPa.
     (2) The maximum horizontal tectonic stress σT, minimum horizontal tectonic stress σt both increase linearly with depth. The intermediate regression value of σT1(at2000m depth) is various in research regions, the maximum value is45.6MPa while the minimum value is26.8MPa. According to intermediate regression σT1value, the ranking (from largest to smallest) of research regions is:Qinghai-Tibet, north section of north-south seismic belt, south China, middle section of north-south seismic belt, north China, south section of north-south seismic belt, northwestern China, northeast China. Horizontal tectonic differential stress σT—σt increase linearly with depth and the maximum and minimum of the intermediate regression value of σT—σt is25.3MPa and13.0MPa, respectively. Ranking of research regions based upon the intermediate regression σT—σt value is:Qinghai-Tibet, northwestern China, north section of north-south seismic belt, south China, south section of north-south seismic belt, north China, middle section of north-south seismic belt, northeast China. In general, the stress magnitude is much higher in western than in eastern China. This indicates that the strong collision of Indian plate with Eurasian plate dominates the present tectonic stress field in Chinese mainland.
     (3) Compared to most other study regions, the crustal stress magnitudes in the Qinghai-Tibet block which in under the northward compression is low in shallow depths and high in deep.
     Second, numerical simulation analysis of the in situ stress field.
     (1) We built a three-dimensional spherical shell model of the Chinese continental lithosphere. And we made the path to estimate the present in-situ stree field in Chinese Mainland, with the method of numerical simulation invertion analysis, and with the research results of the measured in-situ stress in the upper crust as the target controls.
     (2) The simulation results showed that the general direction characteristics of maximum horizontal stress basically spreads radially from the center of Tibetan Plateau. The directions of maximum horizontal stress gradually rotate clockwise from NS to NNE, NE, NEE, SE and are consistent with the result of focal mechanism solution.
     (3) The stress states in different study regions are evidently different. The stress magnitude is obviously lower in the center of Qinghai-tibet active block and higher in the surrounding area of the block.
     (4) The maximum and minimum tectonic stress σH and σh were generally compressive at the depth of2000metres in Chinese Mainland shallow crust, and the magnitude range are14.5MPa<σH<58.0MPa、3.8MPa<σh<26.7MPa.
     Third, the research of stress field adjustment caused by strong earthquake in Chinese Mainland.
     (1) Killing one elements group will cause the stress field's adjustment in large area. Over55%of elements'equivalent stress increased more than0.1MPa. The change of direction of principal stress was less than20degree in99.7%area.
     (2) Setting up initial stress field greatly influenced the perturbed stress field caused by killing elements group.
     (3) By killing the elements group of November11th2001Kunlun mountain Ms8.0strong earthquake area, the perturbed stress field was corresponded with the actual observed value of in-situ stress and the strain step of drilling strain observation.
引文
[1]王仁,何国琦,殷有泉,蔡永恩.华北地区地震迁移规律的数学模拟[J].地震学报,1980.2(1):32-42.
    [2]王仁,梁海华,马宗晋.用叠加法反演东亚地区现代构造应力场[C].国际交流地质学术论文集,1985:29-35.
    [3]王仁.有限单元等数值方法在我国地球科学中的应用和发展[J].地球物理学报,1994.37(增刊1):128-139.
    [4]杨学祥,陈殿友.构造形变,气象灾害与地球轨道的关系[J].地壳形变与地震,2000.3(10):39-48.
    [5]游永雄,王荣敏,游永乾,樊昌尧,戎志国.地壳应力场和密度场资料在油气检测中的应用[J].石油物探,2002,41(4):500-505.
    [6]许忠淮,汪素云,黄雨蕊,等.由大量地震的资料推断我国大陆构造应力场[J].地球物理学报,1989,32(6):636-647.
    [7]丁健民.世界应力图与构造应力场.当今世界地球科学发展—中国科学家谈第28届国际地质大会[C].北京:地质出版社,1987:22-26.
    [8]Sbar, M. L. and Sykes, L. R. Seismicity and lithospheric stress in New-York and adjacent areas[J]. J. geophys. Res.,1977,82(36):5771-5786.
    [9]Haimson, B. C. Near surface and deep hydrofracturing stress measurements in the Waterloo Quartzite[J], Int. J. Rock Mech. Min. Sci. and Geomech. Abstr.,1980,17: 81-88.
    [10]Haimson, B. C. and Herrick C. Borehole breakouts-a new tool for estimating in situ stress in rock stress[C]. Lulea, Sweden:CENTEK Publishers,1986:271-280.
    [11]Zoback, M. L. and Zoback, M. D. State of stress in the conterminous United States[J]. Jour. Geophys. Res.1980,85(11):6113-6156.
    [12]Zoback, M. L. and Zoback, M. D. Regional tectonic stress field of the continental U.S.:Geophysical framework of the continental U.S.[C], Geological Society of America Memoir,1989,172:523-539.
    [13]Zoback, M. L., et al. Global patterns of tectonic stress, Nature,1989,341:291-298.
    [14]Rumreel, F., Baumgfirtner J. and Alheid H. J. Hydraulic fracturing stress measurements along the eastern boundary of the SW German block in proceedings of workshop on hydraulic fracturing stress measurements, dec[M]. Washington, D.C.: National Academy Press,1983,3-17.
    [15]Worotniki G. and Denham D. The state stress in the upper part of the earth's crust in Australia according to measurements in tunnels and mines and from seismic observation[C]. Investigation of Stress in Rock-Advances in Stress Measurement, Sydney, Australia:Int. Soc. Rock Mech. Symp.,1976:71-82.
    [16]Hast N. The measurement of rock pressure in mines[C]. Sveriges Geologiska Undersokning, Series C Arsbok.1958,52(3).
    [17]Hast N. The state of stress in the upper part of the Earth's crust[J]. Tectonophysics 1969,8:169-211.
    [18]Leeman, ER. The measurement of stress in rock, Ⅱ:Borehole rock stress mea-suring instruments,1964.
    [19]Gay N. C. In-situ stress measurements in Southern Africa. Tectonophysics,1975, 29,447-459.
    [20]Gay N. C. Principal horizontal stresses in Southern Africa. Pure appl. Geophys, 1977,115,1-10.
    [21]Richardson, R. M., Solomon, S. C, and Sleep, N. H. Tectonic stress in the plates[J]. Rev. Geophys. Space Phys.,1979,17(5):981-1019.
    [22]Zoback, M. L. First and second order patterns of stress in the lithosphere:the World Stress Map project[J]. Journal Geophysical Research,1992,97:11703-11728.
    [23]Heidbach O., Reinecker J, Tingay M, Muller B, Sperner B, Fuchs K, Wenzel F. Plate boundary forces are not enough:Second-and third-order stress patterns highlighted in the World Stress Map database[J]. Tectonics 2007.26(6):TC6014.
    [24]Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeβ D, Muller B. The 2008 release of the World Stress Map[EB/OL]. www.world-stress-map.org,2008.
    [25]Heidbach O. and Hohne J. CASMI-a visualization tool for the World Stress Map database[J]. Computers & Geosciences,2008.34(7):783-791.
    [26]Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeβ D, Muller B. Global crustal stress pattern based on the World Stress Map database release 2008[J]. Tectonophysics, 2010.482(1):3-15.
    [27]李方全王连捷.华北地区地应力测量[J].地球物理学报,1979.22(1):1-8.
    [28]丁旭初,梁海庆.活动性断裂附近的剪应力[C].中国活动断裂,北京:地震出版社,1982:122-126.
    [29]杨树新,王建军.山东鲍店煤矿采矿诱发地震的应力环境分析[J].地壳构造与地壳应力文集.地震出版社,2002,(14):73-79.
    [30]郭啟良,等.汶川Ms8.0级大震前后的水压致裂原地应力测量[J].地球物理学 报,2009(5):1395-1401.
    [31]陈群策,等.山西盆地现今地应力状态与地震危险性分析[J].地球学报,2010.31(4).541-548.
    [32]李宏,谢富仁,等.乌鲁木齐市区断层附近原地应力测量研究[J].地震地质,2007(4),805-812.
    [33]彭华,马秀敏,姜景捷.龙门山北端青川断层附近应力测量与断层稳定性[J].地质力学学报.2009.15(2):114-130.
    [34]彭华,马秀敏,姜景捷.差应变法地应力测量—以汶川地震断裂带科学钻探WFSD-1钻孔为例[J].地质力学学报,2011.17(3):249-261.
    [35]谭成轩,等.中国大陆中东部M_s≥8.0级特大地震发震背景初步分析[J].岩石力学与工程学报,2010.29(A02):3598-3607.
    [36]廖椿庭,施兆贤.金川矿区原岩应力实测及在矿山设计中的应用[J].岩石力学与工程学报,1983.2(1):103-112.
    [37]王连捷,等.地应力测量及其在工程中的应用[M].北京:地质出版社.1991.
    [38]蔡美峰,乔兰,李长洪,等.矿山地应力场测量及其在新城金矿采矿设计中的应用[M].北京:地震出版社,1996.
    [39]蔡美峰,等.金川二矿区深部地应力测量及其分布规律研究[J].岩石力学与工程学报,1999.18(4):414-418.
    [40]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报,2007.26(5):929-933.
    [41]刘允芳,罗超文,龚壁新.岩体地应力与工程建设[M].武汉:湖北科学技术出版社.2000.
    [42]郭启良,安其美,赵仕广,等.水力劈裂测试在天湖电站设计中的应用[J].水力发电,1994,(4):57-60.
    [43]郭启良,安其美,等.水压致裂应力测量在广州后水蓄能电站设计中的应用研究[J].岩石力学与工程学报,2002,21(6):828-832.
    [44]郭启良,丁立丰.岩体力学参数的原地综合测试技术与应用研究[J].岩石力学与工程,2004,23(23):3928-3931.
    [45]郭启良,丁立丰,张志国,侯砚和.压力洞室围岩的高压透水率测试技术与应用研究[J].岩石力学与工程学报,2005,24(2):230-235.
    [46]郭启良,王海忠,张志国.小天都水电站气垫调压室洞壁围岩的高压透水性测量研究[J].水力发电学报,2005,2(1):102-106.
    [47]郭啟良,等.川西某水电工程气垫调压室原地应力及相关岩体特性参数的测量与应用分析[J].岩石力学与工程学报,2007.26(10):230-235.
    [48]尹健民,等.清远抽水蓄能电站地应力测试分析与高压隧洞设计验证[J].长江科学院院报,2008.25(5):43-45.
    [49]杨树新.矿区地应力场回归分析及在矿山设计中的应用[C],第三届全国地应力会议专辑,北京:地震出版社,1994.
    [50]杨树新,许兆义,李宏.长江三峡工程船闸区开挖前后实测应力特征与分析[J].岩土力学,2006,27(增刊2):61-65.
    [51]杨树新,等.高地应力环境下硐室开挖围岩应力释放规律[J].煤炭学报,2010.35(1):26-30.
    [52]鄢家全,等.中国及邻区现代构造应力场的区域特征[J].地震学报,1979.1(1):9-24.
    [53]曾秋生,卞兆银,业成之,王进英,沈洁贞,等.中国地壳应力状态图[A].中国岩石圈动力学地图集[C],北京:中国地图出版社,1989.
    [54]李方全,刘光勋.我国现今地应力状态及有关问题[J].地震学报,1986,(82):492-501.
    [55]丁旭初,张文涛.中国大陆东部现今构造应力状态[J].地震学报,1988,(10):25-38.
    [56]许忠淮.东亚地区现今构造应力图的编制[J].地震学报,2001,23(5):492-501.
    [57]谢富仁,陈群策,崔效锋,等.中国大陆地壳应力环境研究[C].北京:地质出版社,2003.
    [58]谢富仁,等.中国大陆及邻区现代构造应力场分区[J].地球物理学报,2004.47(4):654-662.
    [59]谢富仁,等.中国大陆地壳应力环境基础数据库[J].地球物理学进展,2007.22(1):131-136.
    [60]刘峡.华北地区现今地壳运动及形变动力学数值模拟[D].合肥:中国科学技术大学.2007.
    [61]汪素云,陈培善.中国及邻区现代构造应力场的数值模拟[J].地球物理学报,1980,23(01):35-45.
    [62]汪素云,张琳.中国及其邻区周围板块作用力的研究[J].地球物理学报,1996.39(6):764-771.
    [63]许忠淮,汪素云,俞言祥.根据观测的应力方向利用有限单元方法反演板块边界作用力[J].地震学报,1992.14(4):446-455.
    [64]臧绍先,宁杰远,刘宝诚.中国周边板块的相互作用及其对中国应力场的影响-I.太平洋板块,菲律宾海板块的影响[C].八十年代中国地球物理学进展.北京:学术书刊出版社,1989:293-305.
    [65]臧绍先,郑斯华.中国周边板块的相互作用及其对中国应力场的影响[J].地球物理学报,1992.35(4):428-440.
    [66]安美建,石耀霖,李方全.用遗传有限单元反演法研究东亚部分地区现今构造应力场的力源和影响因素[J].地震学报,1998,20(3):225-231.
    [67]张东宁,许忠淮.中国大陆岩石层动力学数值模型的边界条件[J].地震学报,1999.21(002):133-139.
    [68]焦明若,张国民,车时,刘杰.中国大陆及其周边地区构造应力场的数值计算及其在地震活动性解释上的应用[J].地震学报,1999,21(2),123-132.
    [69]傅容珊黄建华.东亚大陆形变应力场格局演化的数值模拟[J].地壳形变与地震,2000.20(3):1-10.
    [70]李永林,高旭.喜马拉雅弧边界作用力的变化对中国内陆应力场的影响[J].地震,2000.20(Z1).
    [71]郭良迁,黄立人.中国大陆地壳的应变应力场研究[J].华北地震科学,2000.18(003):50-58.
    [72]陶玮,洪汉净.中国大陆及邻区强震活动主体地区形成的数值模拟[J].地震学报,2000.22(003):271-277.
    [73]陶玮,洪汉净.中国大陆东部大洋板块俯冲的三维黏弹性有限元模型[J].地震地质,2003.25(001):39-51.
    [74]党亚民,陈俊勇,晁定波.中国及其邻区地壳应力场数值特征的研究[J].测绘科学,2001.26(2):11-14.
    [75]杨树新,陈连旺,谢富仁.中国大陆现今构造应力场的回归分析研究[J].岩土力学,2003.24(2):357-360.
    [76]陈连旺,杨树新,谢富仁,等.中国大陆构造应力应变场现今年变化特征的数值模拟[J].中国地震,2005,(3):341-349.
    [77]郑勇,傅容珊,熊熊.中国大陆及周边地区现代岩石圈演化动力学模拟[J].地球物理学报,2006.49(2):415-427.
    [78]朱守彪,石耀霖.中国大陆及邻区构造应力场成因的研究[J].中国科学:D辑,2006.36(12):1077-1083.
    [79]范桃园,龙长兴,杨振宇,陈群策,吴中海,邵兆刚,仝亚博.中国大陆现今地应力场黏弹性球壳数值模拟综合研究[J].地球物理学报,2012,55(4):1249-1260.
    [80]Lu Y. Z., Yang SX, Chen LW, Lei JS, He P. Migration trend of strong earthquakes in North China from numerical simulations[J]. JOURNAL OF ASIAN EARTH SCIENCES,2011,(50):116-127.
    [81]杨树新,等.用单元降刚法探索中国大陆强震远距离跳迁及主体活动区域转移 [J].地球物理学报,2012.55(1):105-116.
    [82]McNutt M. Lithospheric stress and deformation[J], Rev. Geophys.,1987, (25): 1245-1253.
    [83]Fleitout L.and Froidevaux C. Tectonic stresses in the lithosphere[J]. Tectonics,1983, (2):315-324.
    [84]Voight B., Taylor J. W., Voight J.P. Tectonophysical implications of rock stressdeterminations[J], Geol. Rdsch.,1969, (58):655-676.
    [85]Ranalli G. and Chandler T.E. The Stress Field in the Upper Crust as Determined from In Situ Measurements[J]. Geol. Rdsch.,1975, (64):653-674.
    [86]Brown E.T., E. Hoek. Technical note trends in relationships between measured in-situ stress and depth[J]. Int. J. Rock Mech. Min.Sci.&Geomech.Abstr,1978, (15): 211-215.
    [87]Cornet F.H. and Scotti O. In-situ stress fields and focal mechanism solutions in central France[J]. Geophysical Research Letters,1994,(21):2345-2348.
    [88]Zhang A. and Stephansson O. Stress Field of the Earth's Crust[C]. New York: Springer,2010.
    [89]李方全,祁英男.地壳应力随深部的变化规律[J].岩石力学与工程学报,1988,7(4):301-309.
    [90]蔡美峰.地应力测量原理和技术[M].北京:科学出版社,2000.
    [91]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报,1999,16:49-63.
    [92]景锋,盛谦,张勇慧,刘元坤.不同地质成因岩石地应力分布规律的统计分析[J].岩土力学,2008,29(7):1877-1883.
    [93]朱焕春,陶振宇.地形地貌与地应力分布的初步分析[J].水利水电技术,1994,223(1):29-34.
    [94]赵德安,陈志敏,蔡小林,等.中国地应力场分布规律统计分析[J].岩石力学与工程学报,2007,26(6):1265-1271.
    [95]石耀霖.地应力主应力的方位角求和与平均[J].地震学报,2004,26(1):106-109.
    [96]张培震,邓起东,等.中国大陆的强震活动与活动地块[J].中国科学(D辑),2003,33(Supp 1):12-20.
    [97]景锋,盛谦,张勇慧,等.中国大陆浅层地壳实测地应力分布规律研究[J].岩土力学与工程学报,2007,26(10):2057-2062.
    [98]许忠淮,石耀霖.岩石圈构造与大陆动力学[J].地震学报,2003,25(5):512-527.
    [99]邓起东,张裕明,许桂林,等.中国构造应力场特征及其与板块运动的关系[J]. 地震地质,1979,1(1):11-22.
    [100]邓起东,张维岐.海原走滑断裂带及其尾端挤压构造[J].地震地质,1989,11(1):1-14.
    [101]阚荣举,张四昌,晏凤桐,等.我国西南地区现代构造应力场与现代构造活动特征的探讨[J].地球物理学报,1977,20(2):96-108.
    [102]王连捷,吴珍汉,王薇,等.青藏高原中段现今构造应力场的数值模拟[J].地质力学学报,2006,12(2):140-149.
    [103]张春山,吴满路,廖椿庭,等.青海格尔木-五道梁地区现今地应力测量结果及其构造分析[J].地球物理学报,2005,26(2):183-186.
    [104]Fleitout, L., Froidevaux C. Tectonic and topography for a lithosphere containing density hererogeneities, Tectonics,1982,1,21-57.
    [105]Kirby S. Tectonic stresses in the lithosphere:Constraints provided by the experimental deformation of rocks. J. Geophys. Res.,1980,85,6353-6363.
    [106]Nakamura K. Volcanoes as possible indicators of tectonic stress orientation—principle and proposal, Journal of Volcanology and Geothermal Research, 1977,2:1-16.
    [107]郭良迁,李延兴,杨国华,胡新康.中国大陆现今应变场动态[J].地震学报,2008,30(6):560-569.
    [108]强祖基,姚清林,魏乐军,曾佐勋,郭坚峰.从震前卫星热红外图像看中国现今构造应力场特征[J].地球学报,2009,(6):873-884.
    [109]郭怀志,马启超,薛玺成,等.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [110]McGarr A. and Gay N. C. State of stress in the Earth's crust[J], Annu. Rev. Earth Planet. sci.,1978, (6):405-436.
    [111]尹祥础.固体力学[M].北京:地震出版社,1985.
    [112]Tapponnier, P. and Molnar P. Active faulting and tectonics in China[J], J. Geophys. Res.,1977, (82):2905-2930.
    [113]Wang, Y. P. and Ma, X. Basic characteristics of active tectonics in China[J]. Episodes,1995, (18):73-76
    [114]Ren J. S. The Geotectonic Map of China and Its Adjacent Area (1:5,000,000) and Its Explanatory Text[M]. Beijing:Geological Publishing House, (in Chinese and English),1999
    [115]潘裕生.青藏高原的形成与隆升[J].地学前缘,1999.6(3):153-163.
    [116]潘裕生,方爱民.中国青藏高原特提斯的形成与演化[J].地质科学,2010. 45(1).92-101.
    [117]张文佑.断块构造导论[M].北京:石油工业出版社.1984.
    [118]马杏垣.国家地震局中国岩石圈动力学地图集编委会,中国岩石圈动力学地图集:英汉对照[C].北京:中国地图出版社.1989.
    [119]丁国瑜.活动亚板块、构造块体相对运动.中国岩石圈动力学概论[M].北京:地震出版社,1991.142-153.
    [120]张培震.中国大陆岩石圈最新构造变动与地震灾害[J].第四纪研究,1999(5):404-413.
    [121]Lee, J.S. and Li S. The geology of China[D]. Birmingham:University of Birmingham,1918.
    [122]滕吉文,曾融生,闫雅芬,张慧.东亚大陆及周边海域Moho界面深度分布和基本构造格局[J].中国科学(D辑),2002.32(2):89-100.
    [123]朱介寿,蔡学林,曹家敏,严忠琼.中国及相邻区域岩石圈结构及动力学意义[J].中国地质,2004.33(4):793-803.
    [124]邓起东,徐锡伟,于贵华,等.中国活动断裂的分布特征[C].中国活动断层研究,北京:地震出版社,1994,1-14.
    [125]丁国瑜.中国活断层图集[M].北京:地震出版社,1989.
    [126]刘光勋,马廷著,黄佩玉,白玉芹,等.主要活动断裂及其现今运动[C].中国岩石圈动力学地图集.北京:中国地图出版社,1989.
    [127]高维明,陈兆恩.中国活动断裂的基本特征[J].地震,1993,(1):1-4,20.
    [128]向宏发,虢顺民.中国大陆区一些主要活动断裂滑移方式的地质位错与地震位错对比研究[J].中国地震,1995.11(003):195-203.
    [129]闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报,1999.21(4):411-418.
    [130]徐锡伟,P. Tapponnier.阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模式讨论[J].中国科学:D辑,2003,33(10):967-975.
    [131]沈军,李莹甄,汪一鹏,宋方敏.阿尔泰山活动断裂[J].地学前缘,2003,10(特刊):132-141.
    [132]刘强,杨坤光,张传林,董永观,郭坤一.西昆仑康西瓦断裂显微构造特征及其地质意义[J].矿物岩石,2003,23(3):26-30.
    [133]马保起,苏刚,侯治华,舒赛兵.龙门山断裂带中段晚第四纪活动速率[J].国际地震动态,2004,z1:23.
    [134]高战武,徐杰,等.张家口—蓬莱断裂带的分段特征[J].华北地震科学,2001,19(1):35-42,54.
    [135]刘春,邵辉成,等.利用地震矩张量初步分析断裂带的运动学特征[J].地震地质.2005,27(3):429-436.
    [136]杨占宝.郯庐断裂带中新生代演化与含油气盆地形成分布综述[J].地质力学学报2006,12(1).45-50,72.
    [137]徐杰,马宗晋,等.中国大陆东部新构造期北西向断裂带的初步探讨[J].地学前缘,2003,(1):193-198.
    [138]吴涛,李志文.关于沧东断裂性质的分析[J].石油学报,1994,15(003):17-25.
    [139]徐杰,高战武.太行山山前断裂带的构造特征[J].地震地质,2000,22(2):111-122.
    [140]徐杰,牛娈芳,等.唐山-河间-磁县新生地震构造带[J].地震地质,1996,18(3):193-198.
    [141]李赶先.台湾海峡及两侧弧陆碰撞断裂系形成机制及其与地震活动关系[J].台湾海峡.1996,15(001):81-85.
    [142]Wang R., Sun X.Y. and Cai Y.E. A mathematical simulation of earthquake sequence in north China in the last 700 years[J]. Science in China,Ser.B,1983, (1): 106-115.
    [143]陈开平,马谨.印度与欧亚大陆碰撞构造变形数值分析[J].地震地质,1995,17(3):277-284.
    [144]傅容珊,黄建华,常筱华,曹抗震.东亚大陆变形应力场格局演化的数值模拟[J].地壳变形与地震,2002,20(3):1-10.
    [145]肖兰喜,朱元清,陶九庆,杜宪宋.岩石圈流变强度与中国大陆构造运动关系的探讨[J].西北地震学报,2003,25(4):304-311.
    [146]Dutton C.E. On some of the greater problems of physical geology[J]. Proc. Amer. Phil. Soc.1989,11(51):536-537.
    [147]黄忠贤,胥颐,郝天珧,彭艳菊,郑月军.中国东部海域岩石圈结构面波层析成像[J].地球物理学报,2009,52(3):653-662.
    [148]Huang Z., et al.. Rayleigh wave tomography of China and adjacent regions[J], J. Geophys. Res.2003,108(B2).
    [149]宋仲和,陈国英,安昌强,陈立华,庄真,傅竹武,吕梓龄,胡家富.中国大陆及其海域地壳-上地幔三维速度结构[J].中国科学B辑,1993,2:70-78.
    [150]魏荣强,臧绍先.大陆岩石圈流变结构研究进展及存在问题[J].地球物理学进展,2007,22(2):359-363.
    [151]Wang, Y. Heat flow pattern and lateral variations of lithosphere strength in China mainland:constraints on active deformation[J]. Physics of the Earth and Planetary Interiors,2001.126(3):121-146.
    [152]臧绍先,李昶,宁杰远,等.华北地区岩石圈三维流变结构的一种初步模型[J].中国科学(D辑),2002,32(7):588-597.
    [153]臧绍先,李昶.岩石圈流变机制的确定及影响岩石圈流变强度的因素[J].地球物理学进展,2002.17(1):50-60.
    [154]臧绍先,刘永刚.华北地区岩石圈热结构的研究[J].地球物理学报,2002.45(001):56-66.
    [155]周永胜,何昌容.地壳主要岩石流变参数及华北地壳流变性质研究[J].地震地质,2003,25(1):109-122.
    [156]石耀霖,曹建玲.中国大陆岩石圈等效粘滞系数的计算和讨论[J].地学前缘,2008,15(3):82-95.
    [157]魏荣强,臧绍先.岩石破裂强度的温度和应变率效应及其对岩石圈流变结构的影响[J].地球物理学报,2006,49(6):1730-1737.
    [158]Sibson, R.H. Frictional Constraints on Thrust, Wrench and Normal Faults.1974.
    [159]Yin, Z.M. and Ranalli G. Critical stress difference, fault orientation and slip direction in anisotropic rocks under non-Andersonian stress systems[J]. Journal of Structural Geology,1992.14(2):237-244.
    [160]Byerlee, J. Friction of rocks[J]. Pure and Applied Geophysics,1978.116(4): 615-626.
    [161]王威,王绳祖,崔效锋.地壳温压条件下居庸关花岗岩,济南辉长岩的强度特性[C].现代地壳运动.北京:地震出版,1989.
    [162]陈连旺,詹自敏,叶际阳,李玉江,李妍.大型走滑活动断裂带对青藏高原构造变形影响的数值模拟研究[C].湖南长沙:中国地球物理学会第二十七届年会论文集,2011:347-348.
    [163]曹建玲,石耀霖,张怀,王辉.青藏高原GPS位移绕喜马拉雅东构造结顺时针旋转成因的数值模拟[J].地球物理学报,2009,54(2):224-234.
    [164]Parsons T. Post-1906 stress recovery of the San Andreas fault system calculated from three-dimensional finite element analysis[J]. Journal of geophysical research,2002, 107(8):1-13.
    [165]陆远忠,叶金铎,蒋淳,等.中国强震前兆地震活动机理的数值模拟研究[J].地球物理学报,2007,50(2):499-508.
    [166]陈连旺,张培震,陆远忠等.川滇地区强震序列库仑破裂应力加卸载效应的数值模拟[J].地球物理学报,2008,51(5):1411-1421.
    [167]Savage, J. C. and Langbein J. Postearthquake relaxation after the 2004 M6 Parkfield, California, earthquake and rate-and-state friction[J], J. Geophys. Res., 2008,113.
    [168]柳厚祥,方风华,李宁,等.地铁隧道施工诱发桩基变形的数值仿真分析[J].中南大学学报(自然科学版),2007,38(4):771-777.
    [169]朱援祥,王勤,赵学荣,等.基于ansys平台的焊接残余应力模拟[J],武汉理工大学学报,2004,26(2):69-72.
    [170]Liao C.T., Zhang C.S., Wu M.L., et. al. Stress change near the Kunlun fault before and after the M 8.1 Kunlun Mountain earthquake[J]. Geophysical Research Letters,2003,30(20):20-27.
    [171]邱泽华,谢富仁,苏恺之,等.发展钻孔应变观测的战略构想[J].国际地震动态,2004,301(1):7-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700