用户名: 密码: 验证码:
EMS处理诱发大白菜变异的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物种质资源是品种改良的物质基础。种质资源匮乏是目前大白菜品种改良中面临的最大问题,创造具有丰富遗传基础的育种材料是大白菜育种工作者研究的重点之一。人工诱变可使自然突变率提高千倍以上,从而使人们定向地创造和筛选变异成为可能。但人工诱变存在着方向不确定性和多为隐性突变,将人工诱变与小孢子培养相结合,可达到基因迅速纯合和缩短突变鉴定时间的目的。
     本研究以6份不同基因型大白菜为试验材料,采用EMS为诱变剂,分别进行了种子诱变、花蕾诱变结合游离小孢子培养、游离小孢子诱变与培养以及花粉诱变处理方法的研究,确定了不同处理方法适宜的EMS浓度和处理时间,探讨了种子处理后种子和幼苗防御系统相关生理生化指标的变化,并对蕾期授粉自交后代和游离小孢子培养后代进行了田间形态学鉴定及分子辅助鉴定,初步获得了一定类型的变异材料。主要研究结果如下:
     1.以‘99-2’和‘津育80’大白菜种子为材料,研究了不同EMS浓度浸泡种子诱变4h后种子的萌发情况、电导率变化及种子与幼苗的SOD、POD活性和MDA的含量变化。结果表明,EMS浓度范围为0~1.0%,随着EMS浓度的增大,种子的发芽势、发芽率逐渐降低,幼苗根尖和叶缘出现褐化并逐渐加剧,成活率下降;种子浸出液电导率及种子和幼苗的MDA含量均逐渐增大;EMS对种子及幼苗SOD、POD活性影响表现为低浓度促进、高浓度抑制。初步确定大白菜种子诱变处理的适宜EMS浓度为0.4%~0.6%。
     2.以大白菜‘85-1’的花蕾为处理对象,研究了不同浓度的EMS浸泡花蕾不同时间小孢子膨大以及产胚成苗情况的影响,结果表明随着EMS浓度增大或处理时间延长,小孢子膨大率和产胚率逐渐降低,畸形胚率增加;以0.1%的EMS处理花蕾15min和30min可得到一定数量的活性胚并能够正常发育成植株,变异率较高,1%浓度处理15min也可以得到少量的活性胚胎但是再生植株能力差,未发育成苗。
     3.对大白菜‘85-1’‘A01’‘A06’3个自交系的小孢子进行了EMS诱变处理并培养,对小孢子培养过程的细胞学观察结果表明,随着培养基中EMS含量的增加和诱变培养时间的延长,小孢子膨大率出现了明显的下降,各浓度时间下均未形成成熟的胚状体。
     4.用EMS-石蜡油处理‘85-1’‘A12’的花粉,研究花粉离体萌发半致死的EMS浓度和处理时间。结果表明:常温下存于液体石蜡油中的大白菜花粉在1h内萌发率不受影响,之后随储存时间延长而降低;随着EMS浓度的增大或时间的延长,花粉萌发率降低;适宜大白菜花粉诱变的EMS诱变剂量为0.15%,处理时为45~60min。
     5..对诱变后代进行了常规和分子鉴定,从中筛选了不同类型的突变体。其中种子诱变M1代无显著性状差异,M2代出现能够直接观察到的不同差异类型。花粉诱变、花蕾浸泡诱变后获得的小孢子植株差异较明显,且变异类型较多。
Germplasm resources are the foundation of crop varietal improvement. The scarcity of germplasm resources is the most serious problem in Chinese cabbage breeding, the creation of breeding materials with rich genetic basis is the emphasis of research for breeding scientists. Natural mutation ratio can be improved more than a thousand times by artificially inducing variation, which makes it possible to create and screen orientation variation. The direction of artificial mutagenesis is uncertainty, and most of mutants are recessive. Combined artificial mutagenesis and microspore culture together, we can get homozygous genes rapidly and reduce the time used for mutations identification.
     In this experiment, different genotypes of Chinese cabbage were used as materials , the methods of seed mutagenesis,bud mutation combined with microspore culture, isolated microspore mutation and culture and pollen mutagenesis were investigated by EMS inducing. The suitable EMS concentration and processing time of different treatment methods were determined. The variation in related physiological and biochemical characteristics on the defense system in seeds and seedlings after dealing with seeds were discussed. Furthermore, The morphological identification and molecular profiling were conducted in offsprings of buds pollination selfing and free microspore culturing, resulting in some types of mutation materials. The main research results are as follows:
     1. Using Chinese cabbage genotypes’99-2’and‘Jinyu 80’, the effects of 4h seed-treatment with different EMS concentration solutions on several major characteristics such as seeds germination, seeds conductivity and the activity of SOD, POD and MDA in seeds and seedlings of Chinese cabbage were studied in the present paper. The results showed that EMS concentrations ranged from 0-0.1%, with EMS concentration increasing, seed germination potential, seed germination rate and seedling surviving rate gradually decreased, the root tip and cotyledon edge of seedlings became brown gradually. The conductivity of seeds and the MDA content of seeds and seedlings were both increased with EMS concentration increasing. The SOD, POD activity of seeds and seedlings was promoted by low EMS concentration solution treatment and inhibited by high EMS concentration solution treatment. The optimal EMS concentrations inducing Chinese cabbage seeds mutations ranged from 0.4% to 0.6%.
     2. Using buds of Chinese cabbage '85-1' as materials,the effects of different EMS concentrations on the rate of microspore swollen and the condition of embryos alive and regeneration were studied. The results showed that with EMS concentration and treatment time increasing, both the rate of microspore swollen and embryonic generation reduced gradually, and the number of deformity embryos increased. Treating buds by 0.1% EMS for 15min or 30min, we can get quite some energetic embryos which can be regenerated into seedlings as normal, with a high variation ratio. But if the EMS concentration was reached 1%, with treatment time of 15min, only a few activity embryos were produced with a low regeneration ratio and without seedlings at all.
     3. mutagenesis microspore of three inbred lines in vitro induced by EMS then cultibated , In the process of the microspore culture , though cytology observation, we can get the result that the rate of microspore expands is significantly reduced along with the increase of concentration and the extension of mutagenesis time, nothing embryos was got at last。
     4. Pollens of two different varieties of Chinese cabbage were treated with EMS-paraffin oil solution, half lethal EMS concentration and treatment time of pollen germination in vitro were studied. The result showed that the germination rate of pollen stored in liquid paraffin oil was not affected within 1h, and then was decreased with prolonged storage. With the increasing EMS concentration or the mutagenesis time gradually, the rate of pollen germination reduced. The suitable EMS concentration induced for pollen mutagenesis was 0.015%,with treatment time of 45~60min.
     5. By routine identification and molecular appraisal, sdifferent types of mutants from mutagenesis offsprings were screened.After the seeds mutagenesis, there was no significant differences in traits variation in M1 generation, but some mutants can be observed in M2 generation. There were large differences in phenotypic variation among the plants obtained from microspore culture of pollens mutagenesis and buds mutagenesis, with multiple mutant types.
引文
[1]蒋武生,张晓伟,原玉香,等.大白菜游离小孢子培养技术研究进展及应用[J].河南农业科学, 2009, (9): 152- 154.
    [2]冯大领,石学萍,杨煜,等.大白菜细菌人工染色体文库的构建及鉴定[J].园艺学报, 2011, 38(1): 151–158
    [3]郭瑞锋,王秀英,巫东堂,等.大白菜游离小孢子培养技术研究进展[J].山西农业科学, 2008, 36 (3): 7-11
    [4]中华人民共和国农业部.中国农业统计资料[M].北京:中国农业出版社, 2007, 61.
    [5]张凤兰,李建伟.我国大白菜生产现状及发展对策[J].中国蔬菜, 2011, (3): 1-2
    [6]赵大芹,潘业勤,陶莲,等.大白菜游离小孢子培养的研究进展[J].贵州农业科学. 2008, 36(4): 3-7
    [7]葛亚明,陈利萍.植物细胞工程在十字花科作物种质创新中的研究进展.细胞生物学杂志, 2004, 26(5): 471-474.
    [8]张国庆,周伟军,姚先伶,等.芸薹属植物远缘杂交研究现状山西农业科学, 2001, 29(4): 25?30.
    [9]江伟,王小霞,鲜开梅,等.大白菜游离小孢子培养技术研究[J].北方园艺, 2007, (5): 49-51
    [10]王秀英,巫东堂,赵军良,等.影响大白菜游离小孢子培养因素的研究[J].中国瓜菜, 2009, (2): 10-12
    [11]高玉梅.白菜类作物的分类与系统进化的分子研究[D].北京:蔬菜花卉研究所, 2009.
    [12]季彪俊.植物种质资源研究的内涵与方法[J].中国青年农业科学学术年报. 2004: 227-233.
    [13]张国庆,周伟军,姚先伶,等.芸薹属植物远缘杂交研究现状山西农业科学. 2001, 29(4): 25?30.
    [14] Cuartero J, M C Bolarin, M J Asins. Increasing salt tolerance in the tomato[J]. Journal of Experimental Botany, 2006, 57(5): 1045-1058.
    [15] He Shaozhen, Han Yuanfeng, Wang Yuping, et al. In vitro selection and identification of sweetpotato(Ipomoea batatas (L.) Lam.) plants tolerant to NaCl[J]. Plant Cell Tiss Organ Cult, 2009, 96: 69-74.
    [16]胡齐赞,龚亚明,韦顺恋,等.大白菜花药和游离小孢子培养比较研究[J].浙江农业学报. 2007, 19(5): 352-355
    [17]周立名,王飞,王佳. EMS诱变处理定向筛选猕猴桃耐盐突变体研究[J].西北农业学报, 2009, 18(5): 330-335, 340
    [18]江树业.水稻突变群体的构建及功能基因组学[J].分子植物育种, 2003, 1(2): 137-150.
    [19]宋炜,刘志增,陈景堂,等.诱变技术在植物育种中的应用[J] ,河北农业大学学报, 2003, 26(5): 116 - 119.
    [22]张旭,杨兆顺.诱变技术在玉米育种中的应用[J].天津农业科学, 2004, 10 (4): 25-27.
    [21]郝爱萍,詹亚光,尚洁.诱变技术在植物育种中的新进展[J] ,生物技术通报, 2004, 6: 30-34
    [20]郭泰,刘忠堂,胡喜平,等.辐射诱变培育高油大豆新品种及其应用.核农学报, 2005, 19(3): 163-167.
    [24]金梦阳,危文亮.续随子辐射效应研究及适宜辐射剂量预测[J].中国油料作物学报, 2008, 30(4): 428-432.
    [23]万贤国.辐射诱变在创造种质资源上的应用[J].作物研究, 1994, 8(2): 1-4.
    [25]游晴如,黄庭旭,张水金,等.植物诱变新技术及其在水稻育种上的应用[J].江西农业学报. 2003, 15(2): 43-47
    [26]王志东.我国辐射诱变育种的现状分析[J].同位素, 2005, 18(3): 183-185.
    [27]武秀荣,安毅.激光对玉米陈种子萌发的生物效应[J].激光生物学报, 2002, 11 (4): 251-253.
    [28]张建东,陈怡平,张晋豫,等. CO2激光对玉米种子萌发及幼苗生长发育的影响[J].激光技术, 2004, 28(5): 494-497.
    [29]蔡光泽.激光诱变小麦生育期性状和穗部性状的生物学效应研究[J].激光生物学报, 2003, 8(12): 254-258.
    [30]周柱华,齐延芳,邱登林,等.γ射线照射花粉后对玉米结实及生长影响的探讨[J].玉米科学, 2002, 10(4): 39-41.
    [31]周柱华,阴卫军,张青,等.玉米辐射育种关键技术环节的研究[J].山东农业科学, 2006, (4): 7-12.
    [32]李雪娇,黄丽萍.化学诱变在花卉育种中的应用[J].北方园艺, 2007, (2): 60-63.
    [33]安学丽,蔡林,王久光,等.化学诱变及其在农作物育种上应用[J].核农学报. 2003, 17(3): 239-242
    [34]周平兰,梁满中,陈良碧.合子期化学诱变在作物育种中的应用.核农学报, 2004, 18(6): 453456.
    [35] Maluszynski M, K Nichterlein, L Van Zanten, et al. Officially released mtant varietyes- the FAO/IAEA database. Mutation Breeding Review, 2000, 12: 1-84.
    [36] FAO/IAEA Mutant Variety Database. http: //www-mvd. iaea. org/MVD/default. htm. 2006. 5. 5.
    [37] Greene E A, Codomo C A, Taylor N E, et al. Spectrum of chemically induced mutations froma large-scale reverse-genetic screen in Arabidopsis [J]. Genetics, 2003, 164(2): 731-740.
    [38] Feiz L, Beecher B S, Martin J M, et al. In Planta Mutagenesis Determines the Functional Regions of the Wheat Puroindoline Proteins[J]. Genetics, 2009, 183(3): 853-60.
    [39] Feiz L, Martin J M, Giroux M J. Creation and functional analysis of new Puroindoline alleles inTriticum aestivum[J]. Theoretical and Applied Genetics, 2009, 118(2): 247-57.
    [40]韩锁义,张恒友,杨玛丽,等.大豆“南农86-4”突变体筛选及突变体库的构建[J].作物学报, 2007, 33(12): 2059-2062.
    [41]赵天祥,孔秀英,周荣华,等. EMS诱变六倍体小麦偃展4110的形态突变体鉴定与分析[J].中国农业科学, 2009, 42(3): 755-764.
    [42]陈锋,徐艳花,董中东,等. TILLING技术的形成和发展及其在麦类作物中的应用[J].麦类作物学报, 2010, 30(1): 178-182.
    [43]韩微波,刘录祥,郭会君,等.小麦诱变育种新技术研究进展[J].麦类作物学报, 2005, 25(6): 125-129.
    [44] JANDERG, BAERSONSR, HUDAKJA, et al. Ethyl methanesulfonate saturation mutagenesis in Arabidopsisto determine frequency of herbicide resistance [J]. PlantPhysiol, 2003, (131): 139-146.
    [45]高秀华,孔祥强,赵彦修,等.盐芥EMS突变体创制的探讨[J].安徽农业科学, 2006, 34(20): 5189-5190, 5193.
    [46]孔祥强,赵彦修,张慧.中华补血草EMS突变体创制的初步研究.安徽农业科学. 2007, 36(3): 973, 1155
    [47]佟星,赵波,金文林,等.小豆EMS诱变M3代叶形突变体的筛选及农艺性状分析[J].徽农业科学. 2010, 8(9): 4472-4474, 4496
    [48]齐志广,黄占景,陈桂平,等.小麦耐盐突变体及其亲本在生育中后期生理指标的比较研究[J].常德师范学院学报:自然科学版, 2001, 13(2): 72-74.
    [49]毛培胜,常淑娟,王玉红,等.人工老化处理对羊草种子膜透性的影响[J].草业学报, 2008, 17(6): 66-70
    [50]原小燕,李加纳,刘列钊. EMS对油菜种子萌发的影响[J].西南师范大学学报:自然科学版, 2010, 35(3): 217-221
    [51] Lichter R.Induction of haploid plants from isolated pollen of Brassica napus. Plant Breeding. 1982, (105):427一434.
    [52] Swanson E B, M P Counmans, G L Brown et al. The characterization of herbicide tolerant plants in Brassica napus L.After in vitro selection of microscopes and protoplasts. Plant Cell Peport, 1988, 7:83-87.
    [53]顾宏辉,张冬青,张国庆,等.油菜离体小孢子诱变育种研究进展.浙江农业学报, 2003, 15(5): 318-322
    [54]王传堂,王秀贞,唐月异,等EMS直接注入花生花器创制高产突变体[J].核农学报, 2010, 24(2):239-242
    [55]顾佳清,张智奇,周音,等. EMS诱导水稻中花11突变体的筛选和鉴定[J].上海农业学报, 2005, 21(1): 7-11.
    [56]姚秋燕,王国芬,徐智斌,等. EMS诱导小麦条锈菌毒性突变的研究[J].西北农林科技大学学报:自然科学版, 2006, 34(6): 120-123.
    [57]李海军,池书敏,刘志增,等.利用EMS化学诱变改造玉米自交系的研究[J].玉米科学, 2002, 10(3): 36-37.
    [58] Ahoowalia B S, Maluszynski M, Nichterlein K. Global impact of mutation-derved varieties. Euphytica. 2004, 135: 187-204.
    [59] Neuffer M. G. Pamtfin oil technique for treating mature corn pouch with mutagens[J]. Maydie, 1978, 22: 21-28.
    [60]祝丽英,池书敏,刘志增,等.甲基磺酸乙醇(EMS)在创造玉米新种质中的应用[J].玉米科学, 2000, 8(1): 19-20.
    [61]刘治先.米育种技术[J].玉米科学. 1995, 3(4):12-15.
    [62] Greaves J A, G K Rufener, M T Chang, et al. Development of resistance to Pursuit herbicide in corn-the IT gene [M]. Proceedings of the 48th Annual Corn and Sorghum Industry Research Conference. 1993, 104-118.
    [63]李海军,张丽华,陈景堂,等.利用EMS花粉诱变玉米新种质研究[J].河北农业科学, 2004, 01(29): 29-33.
    [64]薛守旺,周洪生.化学诱变及在玉米育种上的应用[J].玉米科学. 1998, 6 (2): 10-13.
    [65]刘志斋,蔡林,王久光,等. EMS处理对玉米自交系配合力的影响[J].玉米科学, 2007, 15(1): 29-32.
    [66]张景萍. EMS诱变玉米花粉突变体生理生化特性的研究[D].西南农业大学. 2004
    [67]刘艳萌,张学英,葛会波,等. EMS处理对草莓离体叶片再生植株耐盐性的影响[J].河北农业大学学报. 2006, 29(6): 25-29.
    [68]焦杨,陈志斌,刁钰婵,等玉米EMS诱变后代变化趋势的研究[J].徽农业科学. 2007. 35(26): 8143- 8144
    [69]杨镇,刘晓丽,李刚. EMS诱变剂对玉米自交系改造效果的研究[J].辽宁农业科学, 2006, (5): 7-10.
    [70] Slade A J, Fuerstenberg S I, Loeffler D, et al. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING [J]. Nature Biotechnology, 2004, 23(1): 75-81.
    [71] Xin Z, Wang M L, Barkley N A, et al. Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population[J]. BMC Plant Biology, 2008, 8: 103.
    [72]徐艳花,陈锋,董中东,等. EMS诱变的普通小麦豫农201突变体库的构建与初步分析.麦类作物学报. 2010, 30(4): 625-629
    [73] Jena K K, Khusch G S. Monosomic aline addition lines of rice: production, morphology, cytology and breeding behavior[J]. Genome, 1989, 32: 449-455.
    [74] Piquemal J, Cinquin E, Couton F, et al. Construction of an oilseed rape (Brassica napus L. ) genetic map with SSR markers[J]. Theoretical and Applied Genetics, 2005, 111: 1514-1523.
    [75] Ferreira M E, Satagopan J, Yandell B S, et al. Mapping loci controlling vernalization requirement and flowering time in Brassica napus[J]. Theoretical and Applied Genetics. 1995, 90: 727-732.
    [76] Suwabe K, Iketani H, Nunome T. Isolation and characterization of microsatellites in Brassica rapa L. [J]. Theoretical and Applied Genetics, 2002, 104: 1092-1098.
    [77] Szewc-McFadden A K, Kresovich S, Bliek S M, et al. Mc Ferson. Identification of polymorphic, conserved simple sequence repeats (SSR) in cultivated Brasscia species[J]. Theoretical and Applied Genetics, 1996, 93: 534-538.
    [78] Miller T E, Reader S M. A guide to the homology of chromosome with in the tritilleease[J]. Theor Appl Genet, 1987, 74: 214-217.
    [79]任卫波,郭慧琴,徐柱,等. TILLING技术研究进展及其在植物空间诱变上的应用前景.安徽农业科学. 2009, 37(21): 9827-9829, 9838
    [80]周桂元,洪彦彬,林坤耀,等.花生空间诱变及SSR标记遗传多态性分析.中国油料作物学报. 2007, 29(3): 238 - 241
    [81]和江明,王敬乔,陈薇,等. EMS对甘蓝型油菜离体小孢子胚胎发生能力的影响[J].西南农业学报, 2004, 17(6): 690-693.
    [82]刘泽,赵仁渠.空间条件对油菜诱变效果的研究-突变类型的观察与筛选.中国油料作物学报, 2000, 22(4): 6-8.
    [83] Shah SA, Ali I, Rahman K.‘abasin-95’, a new oilseed rape cultivar developed through induced mutations. Mut Breed Newsletter, 2001, 45: 3-4.
    [84] Jiang L, Becker HC. Inheritance of apetalous flowers in a mutant of oilseed rape. Crop Sci, 2003, 43: 508-510.
    [85] Polsoni L, Kott LS, Beversdorf WD. Large scale microspore culture technique for mutation selection studies in Brassica napus L. Can J Botany, 1988, 66: 1681-1685.
    [86]李云昌,李英德,徐育松,等.胡琼.双低抗(耐)病杂交油菜新品种华油2790的选育.中国油料作物学报. 2004, 26(3): 84-86.
    [87] Zhao Y, Wang ML, Zhang YZ, Du LF, Pan T. A chlorophyll-reduced mutant in oilseed rape, Brassica napus, for utilization in F1 hybrid production. Plant Breed, 2000, 119: 131-135.
    [88]李丽君,郑普山,谢苏婧.镉对玉米种子萌发和生长的影响[J].山西大学学报(自然科学版), 2001, 24(1): 93-94.
    [89]周青,黄晓华,张一.镉对种子萌发的影响[J].农业环境保护, 2000, 19(3): 156-158.
    [90]王国槐.农学实践[M].长沙:湖南科学技术出版社, 2004: 12-22.
    [91]毛培胜,常淑娟,王玉红,等.人工老化处理对羊草种子膜透性的影响[J].草业学报, 2008, 17(6): 66-70
    [92]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社, 1999: 67-69.
    [93]张志良.植物生理学实验指导[M].北京:高等教育出版社, 2000: 123-124.
    [94]赵世杰,许长成,邹琦,等.植物中丙二醛测定方法的改进[J].植物生理通讯. 1994, 30(3): 207-210
    [95]王长里,付晶,杨学举. EMS诱导小麦突变体的研究及展望[J].安徽农业科学, 2008, 36(19): 8038-8039
    [96]高秀华,孔祥强,赵彦修,等.盐芥EMS突变体创制的探讨[J].安徽农业科学, 2006, 34(20): 5189-5190, 5193
    [97]王幼平,徐晓霞,高宏波,等. EMS和-(60) Co对海甘蓝种子萌发及其M 1代农艺性状的影响[J].木本植物研究, 1999, 19(1): 64-67.
    [98] Smith M T, Berjak P. Deteriorative changes associated with the loss of viability of stored desiccation tolerant and sensitive seeds [C]. Kigel J, Galili G. Seed Development and Germination. New York: Marcel Dekker Inc, 1995: 701-704.
    [99]张绍铃,陈迪新,康琅.培养基组分及PH值对梨花粉萌发和花粉管生长的影响[J].西北植物学报, 2005, 25(2): 225-230
    [100]陈和明,尹光天,胡哲森.黄藤花粉萌发与低温贮藏研究[J].西北植物学报, 2006, 26(7): 1395-1400
    [101]杜玉虎,张绍玲,姜雪婷.果梅花粉离体萌发及花粉管生长特性研究[J].西北植物学报, 2006, 26(9): 1816-1852
    [102]刘雪莲,陈莹.培养基组分对花粉离体萌发的影响研究进展[J].通化师范学院学报. 2009, 30(12): 43-46
    [103]祝丽英,池书敏,刘志增,等. EMS对玉米花粉诱变效应的研究[J].河北农业大学学报. 2002, 25(1): 17-20, 28
    [104]祝丽英.利用EMS花粉诱变创造玉米新种质及其突变体鉴定方法的研究[D].河北农业大学. 2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700