用户名: 密码: 验证码:
组分污染物在金刚石膜电极上的电化学行为与同时测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石膜(Boron-doped diamond,简称BDD)电极具有独特的电化学特性如低的背景电流、宽的电势窗口、化学惰性、耐腐蚀性等,使之既适合环境污染物的分析,又适合环境污染物的降解。基于BDD电极其独特的电化学优势,针对环境污染物往往具有化学组分结构和性质相近、难以分离、组分复杂体系等特性,探讨组分污染物在BDD电极上的电化学行为及其同时测定将具有重要的研究意义。
     本文主要在研究了组分有机污染物、种重金属离子在BDD电极上的电化学行为及其相互作用的基础上,采用循环伏安法、微分脉冲伏安法、微分脉冲溶出伏安法等种电分析方法探讨BDD电极进行组分环境污染物直接电化学伏安法分离和同时测定的方法可行性,建立了具有快速、简便、廉价等优点的组分环境污染物同时测定的直接检测新方法。
     同时,基于BDD的宽电势窗口特性,研究了难生化、难氧化的典型芳香分子在BDD电极上的电化学氧化可行性和氧化特征行为,为BDD电极直接电化学氧化降解芳香烃污染物奠定了研究基础,具有重要的理论研究意义。
     (1)研究了组分有机污染物在BDD电极上的电化学行为与同时测定。采用循环伏安法(CV)、微分脉冲伏安法(DPV)等电化学方法研究了苯酚、苯二酚、硝基苯酚在BDD电极上的氧化还原电化学行为;探讨了组分酚类化合物在电极的吸附竞争情况;实现了苯酚—对苯二酚、苯酚—对硝基苯酚、对苯二酚—对硝基苯酚、苯酚—对苯二酚—对硝基苯酚等组分有机污染物的电化学分离;建立了组分酚类污染物同时测定的简便、灵敏的方法。
     (2)研究种共存的重金属离子在BDD电极上的电化学行为,建立种重金属离子同时测定的实验方法。以银离子、铜离子、铅离子、镉离子、亚锡离子等重金属离子为研究对象,采用循环伏安法、微分脉冲溶出伏安法等电化学方法,分别以硝酸介质和醋酸盐缓冲溶液介质,考察了单离子体系、种离子组成混合体系在BDD电极上的电化学氧化还原行为,研究了种金属离子共存在BDD电极上的共沉积、相互作用。探讨了种重金属离子在BDD电极上的电化学伏安分离的可行性,实现了种重金属离子的电化学同时测定。
     (3)研究了芳香分子污染物在BDD电极上的电化学氧化特性。采用线性扫描伏安法和微分脉冲伏安法,以苯、甲苯、对二甲苯、间二甲苯、乙苯五种典型芳香分子为研究对象,以0.5mol.L~(-1)的硫酸溶液为支持电解质,研究了这五种芳香分子在BDD电极上的电化学氧化行为,采用计时电量法研究芳香分子在BDD电极上的吸附,并采用恒电位计时电流法进一步探讨芳香分子电化学氧化
    的机理。循环伏安法研究各种芳香分子在BDD电极上的氧化和还原行为的实验
    发现,在整个循环伏安的负向扫描过程中均无还原峰出产生,这表明芳香分子在
    BDD电极上的氧化反应是不可逆的。苯、甲苯、间二甲苯、对二甲苯、乙苯在
    BDD电极上的氧化峰数目分别为2、3、3、3、4,这一结果与理论计算得到的
    芳香分子结构中的不同电荷密度的H原子的种类数目正好相差1,而其中最高的
    氧化电位恰好位于BDD电极析氧电位(2.4V)之后,推测是由苯环氧化开环产
    生的氧化峰,而最低氧化电位处的氧化峰则是由苯环上的电荷密度几乎相等的H
    原子的氧化产生的,而介于最低氧化电位与最高氧化电位的个氧化峰依次是有
    苯环取代基—CH_2—与—CH_3上的H原子的氧化密切相关的。苯环上有取代基,
    且取代基上H的种类越,则芳香分子在BDD电极上的氧化峰个数越,芳香
    分子初始氧化电位越低,如苯、甲苯、乙苯的初始氧化电位依次为1.91V、1.75V、
    1.67V;而当苯环上取代基相同时,取代基越,芳香分子越易于氧化,如对二
    甲苯和甲苯的初始氧化电位分别为1.63V和1.75V;而取代基的取代位置基本不
    影响氧化性质,如对二甲苯和间二甲苯的初始氧化电位为1.63V和1.64V。这是
    非常有意义的研究结果。由此表明,芳香分子能够在BDD电极上发生直接的电
    化学氧化,且在不同的氧化电极电位下,可有效地控制芳香分子的氧化程度和氧
    化产物结构。
BDD is one of the most popular electrode materials. It exhibits several excellent electrochemical properties, including a wide electrochemical potential window in either aqueous or non-aqueous media, very low background current, corrosion resistance and etc., which make it a promising electrode material for both the determination and the degradation of environmental pollutants. However, it is well-known that environmental pollutants have several special properties, such as the similarity for both their component structure and quality, difficulty of separation, the complex multi-components and etc. So based on BDD electrode's unique electrochemical advantages, it is of utmost significance to study the electrochemical behavior of multi-component pollutants and to realize the simultaneous determination of them.
    In this paper, we firstly studied the electrochemical behavior and interaction of multi-component organic pollutants and of several kinds of heavy metal ions at BDD electrode. Then cyclic voltammetry, differential pulse voltammetry, differential pulse stripping voltammetry and other electrochemical techniques were adopted to investigate the feasibility of voltammetric separation and simultaneous determination of mutil-pollutant system at BDD electrodes. Finally, an analytic method for the direct and swift determination of multi-component environmental pollutants with low-cost was established satisfyingly.
    Consequently, our research job which is concerning the feasibility of electrochemical oxidation of representative non-biodegradable and refractory aromatic compounds at boron-doped diamond electrode is a challenging and primary one for the further research of direct electrochemical oxidation and degradation of aromatic compounds.
    (1) Simultaneous electrochemical determination of multi-component system of organic pollutants was realized at BDD electrode. Here, cyclic voltammetry and differential pulse voltametry were adopted to study the electrochemical redox behavior of phenol, hydroquinone, 4-nitrophenol at BDD electrode. We also discussed the absorption competition among organic pollutants primarily in this work; And then the separation of multi-component systems, such as phenol and hydroquinone, phenol and 4-nitrophenol, hydroquinone and 4-nitrophenol, phenol, hydroquinone and 4-nitrophenol, has been implemented. As a result, a simple and sensitive method for
     simultaneous determination of multi-component of hydroxybenzene pollutants has been established.
     (2) With the electrochemical behavior of multi-metal-ion system investigated, a method of simultaneous determination of multi-metal-ion system has also been set up. Choosing Ag~+, Cu~(2+), Pb~(2+), Sn~(2+) as our research objects, cyclic voltammetry, differential pulse voltammetry, differential pulse stripping voltammetry and other electrochemical techniques were used here to investigate the electrochemical redox behavior of both single-metal-ion system and multi-ion system at BDD electrode in nitric acid solution or in acetate buffer solution respectively. Whereafter, the interaction among metal ions was studied during their co-deposition process at BDD electrode. And the feasibility of electrochemical separation of multi-metal-ion system was discussed. Finally, the simultaneous determination of multi-metal-ion system at BDD electrode was realized.
     (3) The electrochemical oxidation of aromatic compounds at BDD electrode was studied. For this purpose, linear sweep voltammetry and differential pulse voltammetry were adopted for the investigation of electrochemical oxidation of benzene, toluene, m-xylene, p-xylene and ethylbenzene at BDD electrode in 0.5 M H2SO4 solution as a supporting electrolyte. The absorption of aromatic compounds at BDD was studied by chronocoulometry, the electrochemical oxidation mechanism of aromatic compounds was further dicussed by chronoamperometry and the redox behavior of aromatic compounds at BDD electrode was investigated by cyclic voltammetry. As a result of these explorations, it was found that there was no reduction peak emerged during the whole negative scanning process of cyclic voltammetry, which means that the redox reaction of aromatic molecules should be irreversible. To prove this assumption, our following research was mainly focused on analysing the redox behavior of aromatic molecules at BDD electrode during the positive linear sweeping process. And our experimental results indicated that the oxidation peak quantity of benzene, toluene, m-xylene, p-xylene and ethylbenzene at BDD electrode is 2, 3, 3, 3 and 4 respectively. And the difference between these data and the varieties of H atoms with different charge density on the aromatic molecules calculated theoretically is found to be only 1. The highest oxidation potential was located at a potential higher than the oxygen evolution potential at BDD electrode, which may be caused by the opening of benzene ring. Simultaneously, the oxidation peak emerged at the lowest oxidation potential may be induced by the oxidation of H atoms on benzene ring with the same charge density. So according to the above results, we believe that there should be a very close relationship between the multiple oxidation peaks which are amidst the two oxidation peaks located at both the lowest potential and the highest potential and the oxidation of H atoms located on the benzene substituent groups, such as-CH_2-and-CH_3 respectively. According to our supposition, if substituent existed, then the greater the varieties of H atoms on the substituent are, the more oxidation peaks of aromatic molecules at BDD electode would be, and the lower the initial oxidation potential of aromatic molecules would be. For example, the initial oxidation potentials of benzene, toluene and ethylbenzene are 1.91V, 1.75V and 1.67V respectively. If the substituents on benzene ring were the same ones, then the larger the quantity of substituents is, the more easily the aromatic would be oxidized. For example, the initial oxidation potentials of p-xylene and toluene are 1.63V and 1.75V respectively. Besides, it was observed that the substituent location would have no effect on the property of oxidation. For example, the initial oxidation potentials of p-xylene and m-xylene are 1.63V and 1.64V respectively. The results are interesting and promising. It indicates that the direct electrochemical oxidation of aromatic molecules at BDD electrode can be realized, Under different oxidation potentials, both the oxidation extent and the oxidized products' structure of aromatic molecules can be under control effectively.
引文
[1] Panizza M., Cerisola G., Application of diamond electrodes to electrochemical processes. Electrochimica Acta., 2005, Vol.51 (2): 191-199
    [2] Fujishima A., Rao T. N., New directions in structuring and electrochemical applications of boron-doped diamond thin films. Diamond and Related Materials, 2001, Vol.10 (9-10): 1799-1803
    [3] Rao T. N., Fujishima A., Recent advances in electrochemistry of diamond. Diamond and Related Materials, 2000, Vol.9 (3-6): 384-389
    [4] 胡陈果,高硼掺杂金刚石膜电极的电化学应用研究.物理学和高新技术,2002,Vol.31(2):93-97
    [5] Manivannan A., Seehra M. S.Fujishima A., Detection of mercury at the ppb level in solution using boron-doped diamond electrode. Fuel Processing Technology, 2004, Vol.85 (6-7): 513-519
    [6] Manivannan A., Kawasaki R., Tryk D. A., et al., Interaction of Pb and Cd during anodic stripping voltammetric analysis at boron-doped diamond electrodes. Electrochimica Acta.; 2004, Vol.49 (20): 3313-3318
    [7] Prado C., Wilkins S. J., Marken E, et al., Simultaneous electrochemical detection and determination of lead and copper at boron-doped diamond film electrodes. Electroanalysis, 2002, Vol.14 (4): 262-272
    [8] Zhang Y. R., Yoshihara S., Cathodic stripping voltammetry of nickel on boron-doped diamond. Journal of Electroanalytical Chemistry, 2004, Vol.573 (2): 327-331
    [9] Chatterjee A., Wiltshire R., Holt K. B., et al., Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 2002, Vol.11 (3-6): 646-650
    [10] Welch C. M., Nekrassova O.Compton R. G., Reduction of hexavalent chromium at solid electrodes in acidic media: reaction mechanism and analytical applications. Talanta, 2005, Vol.65 (1): 74-80
    [11] Saterlay A. J., Marken E, Foord J. S., et al., Sonoelectrochemical investigation of silver analysis at a highly boron-doped diamond electrode. Talanta, 2000, Vol.53 (2): 403-415
    [12] Goodwin A., Lawrence A. L., Banks C. E., et al., On-site monitoring of trace levels of free manganese in sea water via sonoelectroanalysis using a boron-doped diamond electrode. Analytica Chimica Acta., 2005, Vol.533 (2): 141-145
    [13] Banks C. E., Kruusma J., Moore R. R., et al., Manganese detection in marine sediments: anodic vs. cathodic stripping voltammetry. Talanta, 2005, Vol.65 (2): 423-429
    [14] Ramesham R., Differential pulse voltammetry of toxic metal ions at the boron-doped CVD diamond electrode. Journal of Materials Science, 1999, Vol.34 (7): 1439-1445
    [15] Banks C. E., Hyde M. E., Tomcik P., et al., Cadmium detection via boron-doped diamond electrodes: surfactant inhibited stripping voltarnmetry. Talanta, 2004, Vol.62 (2): 279-286
    [16] Sonthalia P., McGaw E., Show Y., et al., Metal ion analysis in contaminated water samples using anodic stripping voltammetry and a nanocrystalline diamond thin-film electrode. Analytica Chimica Act., 2004, Vol.522 (1): 35-44
    [17] Nakabayashi S., Tryk D. A., Fujishima A., et al., Electrochemical reduction of Cu2+ without surface trapping on synthetic conductive diamond electrodes. Chemical Physics Letters, 1999, Vol.300 (3-4): 409-413
    [18] Yoshihara S., Shinozaki K., Shirakashi T., et al., Photoelectrodeposition of copper on boron-doped diamond films: application to conductive pattern formation on diamond. The photographic diamond surface phenomenon. Electrochimica Acta., 1999, Vol.44 (16): 2711-2719
    [19] Zak J., Kolodziej-Sadlok M., AFM imaging of copper stripping/deposition processes in selected electrolytes on boron-doped diamond thin-film electrodes. Electrochimica Acta.,2000, Vol.45 (17): 2803-2813
    [20] Zeng A., Liu E., Tan S. N., et al., Stripping voltammetric analysis of heavy metals at nitrogen doped diamond-like carbon film electrodes. Electroanalysis, 2002, Vol.14 (18): 1294-1298
    [21] Zeng A., Liu E., Zhang S., et al., Diamond-like carbon films for electrochemical sensor. Advanced Materials Processing, 2003, Vol.437 (4): 467-470
    [22] Stefan R. I., Bairu S. G, Diamond paste based electrodes for the determination of Pb(II) at trace concentration levels. Talanta, 2004, Vol.63 (3): 605-608
    [23] Salimi A., Hyde M. E., Banks C. E., et al., Boron doped diamond electrode modified with iridium oxide for amperometic detection of ultra trace amounts of arsenic(III). Analyst,2004, Vol.129 (1): 9-14
    [24] Chailapakul O., Popa E., Tai H., et al., The electrooxidation of organic acids at boron-doped diamond electrodes. Electrochemistry Communications, 2000, Vol.2 (6):422-426
    [25] Canizares P., Garcia-Gomez J., Lobato J., et al., Electrochemical oxidation of aqueous carboxylic acid wastes using diamond thin-film electrodes. Industrial & Engineering Chemistry Research, 2003, Vol.42 (5): 956-962
    [26] Montilla F., Michaud P. A., Morallon E., et al., Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes. Electrochimica Acta., 2002, Vol.47 (21): 3509-3513
    [27] Nekrassova O., Lawrence N. S.Compton R. G, The electrochemical oxidation of 5-thio-2-nitrobenzoic acid (TNBA) at a boron doped diamond electrode: Demonstration of a CEC reaction. Electroanalysis, 2003, Vol.15 (19): 1501-1505
    [28] Panizza M., Michaud P. A., Cerisola G, et al., Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2001, Vol.507 (1-2): 206-214
    [29] Canizares P., Diaz M., Dominguez J. A., et al., Electrochemical oxidation of aqueous phenol wastes on synthetic diamond thin-film electrodes. Industrial & Engineering Chemistry Research, 2002, Vol.41 (17): 4187-4194
    [30] Iniesta J., Michaud P. A., Panizza M., et al., Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 2001, Vol.46 (23): 3573-3578
    [31] Iniesta J., Michaud P. A., Panizza M., et al., Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and Wastewater treatment. Electrochemistry Communications, 2001, Vol.3 (7):346-351
    [32] Zhi J. E, Wang H. B., Nakashima T., et al., Electrochemical incineration of organic pollutants on boron-doped diamond electrode. Evidence for direct electrochemical oxidation pathway. Journal of Physical Chemistry B, 2003, Vol.107 (48): 13389-13395
    [33] Muna G W., Tasheva N.Swain G M., Electro-oxidation and amperometric detection of chlorinated phenols at boron-doped diamond electrodes: A comparison of microcrystalline and nanocrystalline thin films. Environmental Science & Technology, 2004, Vol.38 (13): 3674-3682
    [34] Terashima C, Rao T. N., Sarada B. V., et al., Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Analytical Chemistry, 2002, Vol.74 (4): 895-902
    [35] Rodrigo M. A., Michaud P. A., Duo I., et al., Oxidation of 4-chlorophenol at boron-doped diamond electrode for Wastewater treatment. Journal of the Electrochemical Society, 2001, Vol.148 (5): D60-D64
    [36] Sopchak D., Miller B., Avyigal Y., et al., Rotating ring-disk electrode studies of the oxidation of p-methoxyphenol and hydroquinone at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2002, Vol.538: 39-45
    [37] Pastor-Moreno G, Riley D. J., The influence of surface preparation on the electrochemistry of boron doped diamond: A study of the reduction of 1,4-benzoquinone in acetonitrile. Electrochemistry Communications, 2002, Vol.4 (3): 218-221
    [38] Fernandes A., Morao A., Magrinho M., et al., Electrochemical degradation of C. I. Acid Orange 7. Dyes and Pigments, 2004, Vol.61 (3): 287-296
    [39] Foord J. S., Holt K. B., Compton R. G, et al., Mechanistic aspects of the sonoelectrochemical degradation of the reactive dye Procion Blue at boron-doped diamond electrodes. Diamond and Related Materials, 2001, Vol.10 (3-7): 662-666
    [40] Ceron-Rivera M., Davila-Jimenez M. M.Elizalde-Gonzalez M. P., Degradation of the textile dyes Basic yellow 28 and Reactive black 5 using diamond and metal alloys electrodes. Chemosphere, 2004, Vol.55 (1): 1-10
    [41] Polcaro A. M., Mascia M., Palmas S., et al., Electrochemical degradation of diuron and dichloroaniline at BDD electrode. Electrochimica Acta., 2004, Vol.49 (4): 649-656
    [42] Bellagamba R., Comninellis C.Vatistas N., Direct electrochemical oxidation of polyacrylates. Annali Di Chimica, 2002, Vol.92 (10): 937-943
    [43] Bellagamba R., Michaud P. A., Comninellis C, et al., Electro-combustion of polyacrylates with boron-doped diamond anodes. Electrochemistry Communications, 2002, Vol. 4(2): 171-176
    
    [44] Zhang Y R., Asahina S., Suzuki M., et al., Electrochemical behavior of 3,6-dihydroxyphenanthrene on boron-doped diamonds. Surface & Coatings Technology, 2003, Vol.169:303-306
    
    [45] Cvacka J., Swain G M., Barek J., et al., Determination of aminonaphthalenes and ammobiphenyls by liquid chromatography with amperometric detection on diamond-film electrode. Chemicke Listy, 2002, Vol.96 (1): 33-38
    [46] Lee J., Park S. M., Direct electrochemical assay of glucose using boron-doped diamond electrodes. Analytica Chimica Acta., 2005, Vol.545 (1): 27-32
    [47] Siangproh W., Wangfuengkanagul N.Chailapakul O., Electrochemical oxidation of tiopronin at diamond film electrodes and its determination by amperometric flow injection analysis. Analytica Chimica Acta., 2003, Vol.499 (1-2): 183-189
    [48] Siangproh W., Ngamukot P.Chailapakul O., Electrochemical determination of captopril at boron-doped diamond thin film electrode applied to a flow injection system. Sensors and Actuators B-Chemical, 2003, Vol.91 (1-3): 60-66
    [49] Ivandini T. A., Sarada B. V., Terashima C, et al., Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2002, Vol.521 (1-2): 117-126
    [50] Fujishima A., Rao T. N., Popa E., et al., Electroanalysis of dopamine and NADH at conductive diamond electrodes. Journal of Electroanalytical Chemistry, 1999, Vol.473 (1-2): 179-185
    [51] Roy P. R., Saha M. S., Okajima T., et al., Selective detection of dopamine and its metabolite, DOPAC, in the presence of ascorbic acid using diamond electrode modified by the polymer film. Electroanalysis, 2004, Vol.16 (21): 1777-1784
    [52] Sarada B. V., Rao T. N., Tryk D. A., et al., Electrochemical oxidation of histamine and serotonin at highly boron doped diamond electrodes. Analytical Chemistry, 2000, Vol.72 (7): 1632-1638
    [53] Popa E., Kubota Y., Tryk D. A., et al., Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Analytical Chemistry, 2000, Vol.72 (7): 1724-1727
    [54] Marken R, Paddon C. A.Asogan D., Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochemistry Communications, 2002, Vol.4 (1): 62-66
    [55] Zhang J. D., Oyama M., Electroanalysis of myoglobin and hemoglobin with a boron-doped diamond electrode. Microchemical Journal, 2004, Vol.78 (2): 217-222
    [56] Nekrassova O., Allen G D., Lawrence N. S., et al., The oxidation of cysteine by aqueous ferricyanide: Akinetic study using boron doped diamond electrode voltammetry. Electroanalysis, 2002, Vol.14 (21): 1464-1469
    [57] Stefan R. I., Bokretsion R. G, Determination of creatine and creatinine using a diamond paste based electrode.. Instrumentation Science & Technology, 2003, Vol.31 (2): 183-188
    [58] McEvoy J. P., Foord J. S., Direct electrochemistry of blue-copper proteins at a polycrystalline boron-doped diamond electrode. Journal of Inorganic Biochemistry, 2003, Vol.96 (1): 183-183
    [59] Spataru N., Sarada B. V, Tryk D. A., et al., Anodic voltammetry of xanthine, theophylline, theobromine and caffeine at conductive diamond electrodes and its analytical application. Electroanalysis, 2002, Vol.14 (11): 721-728
    [60] Rao T. N., Sarada B. V., Tryk D. A., et al., Electroanalytical study of sulfa drugs at diamond electrodes and their determination by HPLC with amperometric detection. Journal of Electroanalytical Chemistry, 2000, Vol.491 (1-2): 175-181
    [61] Wangfuengkanagul N., Chailapakul O., Electrochemical analysis of D-penicillamine using a boron-doped diamond thin film electrode applied to flow injection system. Talanta, 2002, Vol.58 (6): 1213-1219
    [62] Boonsong K., Chuanuwatanakul S., Wangfuengkanagul N., et al., Electroanalysis of lincomycin using boron-doped diamond thin film electrode applied to flow injection system. Sensors and Actuators B-Chemical, 2005, Vol.108 (1-2): 627-632
    [63] Brillas E., Sires I., Arias C, et al., Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode. Chemosphere, 2005, Vol.58 (4): 399-406
    [64]. Ivandini T. A., Sarada B. V, Terashima C, et al., Gradient liquid chromatography of leucine-enkephalin peptide and its metabolites with electrochemical detection using highly boron-doped diamond electrode. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2003, Vol.791 (1-2): 63-72
    [65] Witek M. A., Swain G. M., Aliphatic polyamine oxidation response variability and stability at boron-doped diamond thin-film electrodes as studied by flow-injection analysis. Analytica Chimica Acta., 2001, Vol.440 (2): 119-129
    [66] Wangfuengkanagul N., Siangproh W.Chailapakul O., A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode. Talanta, 2004, Vol.64 (5): 1183-1188
    [67] Wangfuengkanagul N., Chailapakul O., Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. Journal of Pharmaceutical and Biomedical Analysis, 2002, Vol.28 (5): 841-847
    [68] Wang J., Chen G, Muck A., et al., Microchip capillary electrophoresis with a boron-doped diamond electrode for rapid separation and detection of purines. Journal of Chromatography A, 2004, Vol.1022 (1-2): 207-212
    [69] Suryanarayan V., Zhang Y., Yoshihara S., et ill., Voltammetric assay of naproxen in phannaceutical fonnulations using boron-doped diamond electrode. Electroanalysis, 2005, Vol.17 (11): 925-932
    [70] Brillas E., Boye B., Sires I., et al., Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta., 2004, Vol.49 (25): 4487-4496
    [71] Uchikado R., Rao T. N., Tryk D. A., et al., Metal-modified diamond electrode as an electrochemical detector for glucose. Chemistry letters, 2001 (2): 144-145
    [72] Provent C, Haenni W, Santoli E., et al., Boron-doped diamond electrodes and microelectrode-arrays for the measurement of sulfate and peroxodisulfate. Electrochimica Acta., 2004, Vol.49 (22-23): 3737-3744
    [73] Suryanarayanan V, Zhang Y, Yoshihara S., et al., Amperometric determination of sodium thiosulphate using boron-doped diamond electrodes applied to flow injection analysis, Sensors and Actuators B-Chemical, 2004, Vol.102 (1): 169-173
    [74] Lawrence N. S., Thompson M., Prado C., et al., Amperometric detection of sulfide at a boron doped diamond electrode: The electrocatalytic reaction of sulfide with ferricyanide in aqueous solution. Electroanalysis, 2002, Vol.14 (7-8): 499-504
    [75] Komatsu M., Sagara T.Nakashima N., Aqueous electrochemistry of C-60 incorporated in artificial lipid thin-film on a p-type semiconductive diamond electrode. Journal of the Electrochemical Society, 2002, Vol.149 (7): E227-E232
    [76] Xu J. Z., Swain G M., Oxidation of azide anion at boron-doped diamond thin-film electrodes. Analytical Chemistry, 1998, Vol.70 (8): 1502-1510
    [77] Ndao A. N., Zenia E, Deneuville A., et al., Effect of boron concentration on the electrochemical reduction of nitrates on polycrystalline diamond electrodes. Diamond and Related Materials, 2000, Vol.9 (3-6): 1175-1180
    [78] Saha M. S., Furuta T.Nishiki Y., Conversion of carbon dioxide to peroxycarbonate at boron-doped diamond electrode. Electrochemistry Communications, 2004, Vol.6 (2): 201-204
    [79] Hu Z. C., Korus R. A., Levinson W. E., et al., Adsorption and Biodegradation of Pentachlorophenol by Polyurethane-Immobilized Flavobacterium. Environmental Science & Technology, 1994, Vol.28 (3): 491-496
    [80] 周定,候文华.固定化微生物处理含酚废水研究环境科学,1990,Vol.11(1):1-6
    [81] 张晶,任庆,朱焕山,芳香族化合物生物降解研究现状与展望..辽宁城乡环境科技,2004,Vol.24(1):54-56
    [82] 陆永生,沈虹华彬,含单环芳香烃废水的超声降解实验研究.上海环境科学,1999,Vol.18(11):494-296
    [83] 卞华松,张大年,赵一先等,水溶液中硝基苯的超声微电场降解.环境化学,2002,Vol.21(3):264-270
    [84] 俞英,顾伯锷,吴震霄等.TiO2在光照下分解有机污水的研究.石油大学学报,1994,Vol.18(2):90-95
    [85] 鲁弘懿,王栋,葛君.氯苯在铂电极上电解特征的研究.辽宁化工,2004,Vol.33(7):373-376
    [86] Jedral W., Merica S. G.Bunce N. J., Electrochemical oxidation of chlorinated benzenes. Electrochemistry Communications, 1999, Vol.1 (3-4): 108-110
    [87] 马淳安,张文魁,黄辉等.硝基苯的电还原特性研究.电化学,1999,Vol.5(4):395-400
    [88] 刘永辉,电化学测试技术.北京:北京航空学院出版社,1993:142
    [89] 王保成,孙彦平.苯在铂电极上的电化学行为.太原理工大学学报,2002,Vol.33(4):369-371
    [90] Montilla F., Morallon E.Vazquez J. L., Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions. Electrochimica Acta., 2002, Vol.47 (27): 4399-4406
    [91] K S., Process simulation of the anodic oxidation of benzene to p-benzoquinone in a two-phase electrolyte. Chemical Engineering and Processing, 1992, Vol.31 (1): 21-29
    [92] Kim K. W., Kuppuswamy M.Savinell R. E, Electrochemical oxidation of benzene at a glassy carbon electrode. Journal of Applied Electrochemistry, 2000, Vol.30 (5): 543-549
    [93] Kawagoe K. T., Johnson D. C., Electrocatalysis of Anodic Oxygen-Transfer Reactions-Oxidation of Phenol and Benzene at Bismuth-Doped Lead Dioxide Electrodes in Acidic Solutions. Journal of the Electrochemical Society, 1994, Vol.141 (12): 3404-3409
    [94] 赵玉娥,阮皓,张恒彬等.苯直接电氧化合成对苯醌.吉林大学自然科学学报,1998(2):105-106
    [95] 赵玉娥,王玉香,苯的间接电氧化北京联合大学学报,2000,Vol.14(3):31-33
    [96] Hupert. M., Muck. A., Wang. J., et al., Conductive diamond thin-films in electrochemistry. Diamond and Related Materials, 2003, Vol.12 (10-11): 1940-1949
    [97] 韦进宝,钱沙华.环境电分析化学.北京:化学工业出版社,2002
    [98] Chen S. E, Mowery R. A., Castleberry V. A., et al., High-performance liquid chromatography method for simultaneous determination of aliphatic acid, aromatic acid and neutral degradation products in biomass pretreatment hydrolysates. Journal of Chromatography A, 2006, Vo1.1104 (1-2): 54-61
    [99] Treetepvijit S., Preechaworapun A., Praphairaksit N., et al., Use of nickel implanted boron-doped diamond thin film electrode coupled to HPLC system for the determination of tetracyclines. Talanta, 2006, Vol. 68 (4): 1329-1335
    [100] 周珊,康君行,黄骏雄.固相微萃取-气相色谱/质谱联用法测定饮用水中苯类化合物.环境化学,2001,Vol.20(2):191-195
    [101] 王翔如,严健贾丽等.固相微萃取与气相色谱质谱联用快速检测水中的萘及硝基萘.分析化学,1998,Vol.26(2):133-136
    [102] Proestos C., Sereli D.Komaitis M., Determination of phenolic compounds in aromatic plants by RP-HPLC and GC-MS. Food Chemistry, 2006, Vol.95 (1): 44-52
    [103] Zhou L., Gu L., Wang Y., et al., Determination of bifendate in human plasma by HPLC-MS bioequivalence on bifendate pills in healthy volunteers. Journal of Pharmaceutical and Biomedical Analysis, 2006, Vol.40 (4): 1025-1030
    [104] Tsai Y. H., Hwang D. E, Cheng C. A., et al., Determination of tetrodotoxin in human urine and blood using C18 cartridge column:, ultrafiltration and LC-MS. Journal of Chromatography B, 2006, Vol.832 (1): 75—80
    [105] 汪尔康.21世纪的分析化学.北京:科学出版社.1999:39-40.
    [106] 高鸿.分析化学前沿.北京:科学出版社.1991:126-128,336-337.
    [107] Ni Y., Qiu P.Kokot S., Study of the voltammetric behaviour of maleic hydrazide and its determination at a hanging mercury drop electrode. Talanta, 2004, Vol.63 (3): 561-565
    [108] Pavlova V., Mirceski V., Komorsky-Lovric S., et al., Studying electrode mechanism and analytical determination of cocaine and its metabolites at the mercury electrode using square-wave voltammetry. Analytica Chimica Acta., 2004, Vol.512 (1): 49-56
    [109] John S. A., Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution. Journal of Electroanalytical Chemistry, 2005, Vol.579 (2): 249-256
    [110] Zhao C., Song J. E, Flow-injection biamperometry for direct determination of hydroxylamine at two pretreated platinum electrodes. Analytica Chimica Acta., 2001, Vol.434 (2): 261-267
    [111] Xu E, Gao M. N., Wang L, et al., Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates. Talanta, 2002, Vol.58 (3): 427-432
    [112] Fiehn O., Jekel M., Analysis of phenolic compounds in industrial waste water with HPLC and post-column reaction detection. J. Chromatogr. A, 1997, Vol.769 (2): 189-200
    [113] Pocurull E., Marce R. M.Borrull E, Determination of phenolic compounds in natural waters by liquid chromatography with ultraviolet and electrochemical detection after on-line trace enrichment. Journal of Chromatography A, 1996, Vol.738 (1): 1-9
    [114] Crespin M. A., Ballesteros E., Gallego M., et al., Trace enrichment of phenols by on-line solid-phase extraction and gas chromatographic determination. Journal of Chromatography A, 1997, Vol.757 (1-2): 165-172
    [115] Kishi H., Admoto H.Fujii T., Analysis of alcohols and phenols with a newly designed gas chromatographic detector. Analytical Chemistry, 1998, Vol.70 (16): 3488-3492
    [116] Martinez D., Pocurull E., Marce R. M., et al., Separation of eleven priority phenols by capillary zone electrophoresis with ultraviolet detection. Journal of Chromatography A, 1996, Vol.734 (2): 367-373
    [117] Morales S., Cela R., Highly selective and efficient determination of US Environmental Protection Agency priority phenols employing solid-phase extraction and non-aqueous capillary electrophoresis. Journal of Chromatography A, 2000, Vol.896 (1-2): 95-104
    [118] Dressman S. F., Simeone A. M.Michael A. C., Supercritical fluid chromatography with electrochemical detection of phenols and polyaromatic hydrocarbons. Analytical Chemistry, 1996, Vol.68 (18): 3121-3127
    [119] Vieira I. C., Fatibello O., Biosensor based on paraffin/graphite modified with sweet potato tissue for the determination of hydroquinone in cosmetic cream in organic phase. Talanta, 2000, Vol.52 (4): 681-689
    [120] Nanni E. J., Lovette M. E., Hicks R. D., et al., Separation and quantitation of phenolic compounds in mainstream cigarette smoke by capillary gas chromatography with mass spectrometry in the selected-ion mode.J. Chromatogr. A, 1990, Vol.505 (2): 365-374
    [121] 刘斌,孙向英,徐金瑞.席夫碱壳聚糖修饰电极的制作及其在对苯二酚测定中的应用.分析化学研究报告,2003,Vol.31(9):1048-1052
    [122] Hu S. S., Xu C. L., Wang G. E, et al., Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta, 2001, Vol.54 (1): 115-123
    [123] Einaga Y., Sato R., Olivia H., et al., Modified diamond electrodes for electrolysis and electroanalysis applications. Electrochimica Acta., 2004, Vol.49 (22-23): 3989-3995
    [124] Laviron E., General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical system. Journal of Electroanalytical Chemistry, 1979, Vol.101:19-28
    [125] Bard A. J., Faulkner L. R., Electrochemical Methods. New York: John Wiely and Sons, 1980:522-525
    [126] Florence T. M., Anodic Stripping Voltammetry with a Glassy Carbon Electrode Mercury-Plated In Situ. Electroanalytical Chemistry and Interracial Electrochemistry, 1970, Vol.27 (2): 273-281
    [127] Reeder G. S., Heineman W. R., Electrochemical characterization of a microfabricated thick-film carbon sensor for trace determination of lead. Sens. Acrnators B, 1998, Vol.52 (1-2): 58-64
    [128] Silva P. R. M., Elkhakani M. A.Chaker M., Development of Hg-electroplated-iridium based microelectrode arrays for heavy metal traces analysis. Anal. Chim. Acta., 1999, Vol.385 (1-3): 249-255
    [129] Wang J., Tian B., Screen-printed stripping voltammetric/potentiometric electrodes for decentralized testing of trace lead. Anal. Chem., 1992, Vol. 64 (15): 1706-1709
    [130] Baldo M. A., Daniele S.Mazzocchin G. A., A study on the suitability of carbon disk microelectrodes for trace analysis of lead and copper by ASV. Electroanalysis, 1998, Vol.10 (6): 410-416
    [131] Tsai Y. C., Coles B. A., Holt K., et al., Microwave-enhanced anodic stripping detection of lead in a river sediment sample. A mercury-free procedure employing a boron-doped diamond electrode. Electroanalysis, 2001, Vol.13 (10): 831-835
    [132] Hocevar S. B., Wang J., Deo R. P., et al., Potentiometric stripping analysis at bismuth-film electrode. Electroanalysis, 2002, Vol.14 (2): 112-115
    [133] Manivannan A., Ramakrishnan L, Seehra M. S., et al., Mercury detection at boron doped diamond electrodes using a rotating disk technique. Journal of Electroanalytical Chemistry, 2005, Vol.577 (2): 287-293
    [134] 张晶,任庆,朱焕山.芳香族化合物生物降解研究现状与展望.辽宁城乡环境科技,2004,Vol.24(1):54-56
    [135] Montilla F., Huerta E, Morallon E., et al., Electrochemical behaviour of benzene on platinum electrodes. Electrochimica Acta., 2000, Vol.45(25-26):4271-4277
    [136] 牟伯中,苏荣国王修林,微生物对芳香烃的降解作用.环境与开发,2000,Vol.15(4):16~18
    [137] 杨永华,华晓梅,陈素玲.芳香族化合物生物降解代谢及其分子遗传研究.环境科学进展,1995,Vol.3(6):31-43
    [138] Ito S., Ktayama R.Kunai A., A Novel Paired Electrosynthesis of p-Benzoquinone and Hydroquinone from Benzene. Tetrahedron Letters, 1989, Vol.30 (2): 205-206
    [139] 马淳安,褚有群.对苯二酚电合成的研究.精细化工.1996,V01.13:48-51
    [140] 郑可利,赵崇涛,朱则善.以苯为原料电化学氧化制备对苯醌的研究.化学世界.1992,Vol.6:256-259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700