用户名: 密码: 验证码:
胜利褐煤和新疆长焰煤中可溶有机物的分离与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低阶煤的非燃料利用需要解决的主要化学问题是要对煤中有机质的组成结构有一个确切的认识。从煤的可溶物中分离和鉴定低分子量的化合物是一个非常有效的方法,通过这种方法可以更好的认识煤的结构并高效利用煤资源。为研究低阶煤中可溶物的组成,本课题选用胜利褐煤(SL)和新疆长焰煤(XCC)为原料,首先探讨了SL的苯/甲醇热溶(TD)及热溶物的分离与分析。在此基础上,选用对环境较为友好的混合溶剂甲苯/乙醇分别对SL和XCC进行超声萃取和热溶,可溶物GC/MS分析后采用柱层析和中压制备色谱的方法进行分离,分离后的各馏分通过GC/MS分析推断其组成和化合物的结构,其中从SL的苯/甲醇热溶物中分离得到的一个具有抗炎活性的化合物结合LC/MS分析进一步确证化合物的纯度和结构。
     SL的甲苯/乙醇超声萃取物和热溶物的收率分别为1.7%和40.5%;XCC的超声萃取物和热溶物的收率分别为3.1%和52.4%。从两种低阶煤的可溶物的收率可以看出,以甲苯/乙醇为溶剂,不同的煤种之间XCC的超声萃取物和热溶物的收率均高于SL;而针对同一煤种的不同溶解条件,热溶物的收率远高于超声萃取物的收率,主要原因是330oC条件下SL和XCC中的大分子结构单元发生了断裂而生成了在甲苯/乙醇中易溶的小分子。
     对SL和XCC各不同条件下得到的可溶物的GC/MS分析结果表明,除了在SL的苯/甲醇热溶物中只检测到9种化合物,在SL的甲苯/乙醇超声萃取物和热溶物中分别检测到41种和109种化合物,在XCC的甲苯/乙醇超声萃取物和热溶物中都检测出63种化合物,以上组成复杂的混合物尤其是热溶物中的化合物的显著特点是含氧化合物(OOCs)的相对含量占突出优势:在SL的甲苯/乙醇热溶物检测到71种OOCs,相对含量高达64.24%;XCC的甲苯/乙醇热溶物检测到37种OOCs,相对含量为53.10%。以上发现为从低阶煤中富集和分离高附加值的OOCs提供了重要的理论依据。此外,还从可溶物中发现了罕见的含磷、氯、氟和硅原子的有机物。
     对各不同条件下得到的可溶物进行分离与纯化,结果从可溶组分的复杂混合物中成功分离出7种纯度较高的化合物,分别为:从SL的苯/甲醇热溶物中分离到环八硫和具有抗炎活性的6-羟基-7-异丙基-1,1,4a-三甲基-2,3,4,4a,10,10a-六氢菲-9(1H)-酮(HIPTMHHP);从SL的甲苯/乙醇超声萃取物和热溶物中都分离得到高纯度的邻苯二甲酸二(6-甲基庚基)酯;从SL的甲苯/乙醇超声萃取物和热溶物中分别得到磷酸三丁酯和二萘甲烷;从XCC的热溶物中得到1-甲基-7-异丙基-菲和9,10-二氢-9,10,11-三甲基-9,10-亚甲基蒽-11-醇。
     此外还富集到各种类型的族组分,主要包括:从各条件下得到的SL和XCC的可溶组分中都富集到一系列C14-C32范围内连续分布的正构烷烃;从SL的苯/甲醇热溶物、XCC的甲苯/乙醇超声萃取物和热溶物中都富集到主要以苯环、萘环和菲环为母体的芳烃和含氮、磷杂原子镶嵌在环内的芳香族化合物;从SL的苯/甲醇热溶物中得到15种碳数分布范围为C15-C27的长链甲基酮、12种碳数分布范围为C17-C28的长链脂肪酸乙酯、2种长链脂肪酸和4种长链脂肪酰胺;从SL的甲苯/乙醇超声萃取物中富集到3种互为同分异构体的苯甲基苯甲酸酯、18种从己基苯基碳酸酯到二十三碳烷基苯基碳酸酯连续分布的苯基碳酸酯和3种OOCs;从SL的甲苯/乙醇热溶物中富集到和其超声萃取物中相同种类的18种苯基碳酸酯以及21种从辛烷酸乙酯到二十八碳烷酸乙酯连续分布的直链脂肪酸乙酯;从XCC的超声萃取物中富集到大黄素甲醚为主成分的7种含氧化合物和结构较为复杂的3种含氮化合物(ONCs);从XCC的甲苯/乙醇热溶物中富集到25种脂肪酸乙酯类化合物,除了20种从壬烷酸乙酯到二十八碳烷酸乙酯连续分布的直链脂肪酸乙酯,还包括3种带有甲基支链的碳烷酸乙酯和2种带有支链的烯酸乙酯。
     从本论文的研究成果可以推测:选用合适的溶剂和较为温和的条件溶解低阶煤中的有机质,不仅可以从中获得高附加值的有机化学品,还可以有效的去除煤中含有的杂原子,以减少原煤直接燃烧对环境造成的污染,为低阶煤的洁净和非燃料利用都提供了切实有效的理论依据。此外,深入了解低阶煤中直接分离到和大分子断裂后的小分子的结构,可以为低阶煤的大分子结构研究提供可靠的证据。
Main chemical problem for none-fuel use of low-rank coals is to know the composition oforganic matter in the coals. Isolating and identifying the low molecular weight compound fromthe soluble fraction in coal is an effective approach for better understanding coal structure andmaking full use of coals in the future. In order to investigate the compositions of solubleorganic molecules in low-rank coals, Shengli lignite (XL), and Xinjiang Changyan Coal (XCC)were selected in this subject. Firstly, we researched the thermal dissolution (TD) of SL in abenzene/methanol then separation and analysis of its soluble matter. On this basis, SL and XCCwere undergoing ultrasonic extraction (UE) and TD in a mixed solvent toluene/ethanol friendlyto the environment. The soluble mixture was analyzed with GC/MS, and then separated bygelatin column chromatography (GCC) and medium pressure liquid chromatography (MPLC).All the subfractions after separation were analyzed with GC/MS analysis to identify theircomposition and structure. The high purity and molecular mass of a compound withanti-inflammatory activity separated from TDSL with benzene/methanol were furtherconfirmed by HPLC/MS analysis.
     The yields of UESL, TDSL, UEXCC and TDXCC matter with toluene/ethanol are1.7%,40.5%,3.1%and52.4%, respectively. Seeing from the yields of the soluble matter from twodifferent low-rank coals, the yields of UEXCC and TDXCC are all obviously higher than thoseof SL’s. However, the yields of TD mixture are far greater than UE matter for the same coalunder different soluble conditions. The main reason is that soluble small molecules wereobtained after the bonds break of the macromolecule in toluene/ethanol at330oC.
     The results of GC/MS analysis indicate that all kinds of compounds were detected in thesoluble matter from SL and XCC under different dissolution conditions except that only9compounds detected in TDSL with benzene/methanol.41and109compounds were detectedfrom the UESL and TDSL in toluene/ethanol, respectively. The same number,63compoundswere both detected from the UEXCC and TDXCC with toluene/ethanol. The obvious characterof the above complex mixture especially the TD matter is that the relactive content oforganoxygen compounds (OOCs) is noticably high.71OOCs were decteted and the relativecontent are64.24%from TDSL with toluene/ethanol.37OOCs were decteted and the relativecontent are53.10%from TDXCC with toluene/ethanol. This gave us important theoreticalevidence to investigate the possibility for separating and enriching some OOCs from low-rankcoals. What’s more, some unusual phosphorus, fluorine and silicon-containing compoundswere detected in the soluble matter.
     With further isolation and purification of each soluble matter,7compounds with highpurity were separated successfully and identified as octathiocane and6-hydroxy-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a,10,10a-hexahydrophenanthren-9(1H)-one(HIPTMHHP) with anti-inflammatory activity from TDSL in benzene/methanol,bis(6-methylheptyl)phthalate from UESL and TDSL in toluene/ethanol, tributyl phosphate and(naphthalen-1-yl)(naphthalen-2-yl) methane from UESL and TDSL with toluene/ethanol,respectively,1-methyl-7-isopropylphenanthrene and9,10-dihydro-9,10,11-trimethyl-9,10-methanoanthracen-11-ol from XCCTD.
     Further more, all kinds of group fractions were enriched and they mainly include: a seriesof normal normal alkanes in the range of C14-C32from every soluble matter of SL and XCC,various types of aromatics mainly including parent body of benzene-, naphthalene-andphenanthrene-ring and some heteratom atoms like nitrogen and phosphorus from TDSL withbenzene/methanol and XCCUE and TDXCC with toluene/ethanol,15methyl alkanones in rherange of C15-C27, methyl alkanoates of C17-C28,2alkanoic acids and4fatty acid amides fromTDSL with benzene/ethanol,18phenylcarbonates of C6-C23from UESL and TDSL withtoluene/ethanol,3tolyl benzoates isomers of each other and3OOCs from UESL withtoluene/ethanol,7OOCs mainly including physcion from UEXCC,3organonitrogencompounds (ONCs) with complex structure from UEXCC,21straight-chain ethyl alkanoatesfrom TDSL with toluene/ethanol,25ethyl alkanoates including20straight-chain ethylalkanoates,3side-chain ethyl alkanoates and2side-chain ethyl esters olefine acid fromTDXCC with toluene/ethanol.
     By dissolving the low-rank coals with suitable solvents at mild conditions, we can obtainsome high-valued organic chemicals and effectively remove the heteratom-containing organiccompounds to reduce their pollutions to the environment when coals are combusted directly.This could provide effective theoretical basis for clean and non-fuel use of low-rank coals.Further, probing deeply into the structure of small moleculars from direction separation andbonds break of the macromolecule could also give reliable evidences for research on thestructure of macromolecule in low-rank coals.
引文
[1]任少飞,冯华.中国经济增长与煤炭消费结构的关系[J].煤化工,2006,6:108-114.
    [2]国家统计局工业交通统计司,国家发展和改革委员会能源局.中国能源统计年鉴-2004[M].北京:中国统计出版社,2005:281-286.
    [3]国家统计局工业交通统计司,国家发展和改革委员会能源局.中国统计年鉴-2005[M].北京:中国统计出版社,2006.
    [4]徐振刚,杜铭华.新型煤化工及其在我国的发展[J].煤化工,2003,6:4-8.
    [5]杜铭华,徐振刚,郭治.新型煤化工发展战略探讨[J].洁净煤技术发展讨论,2003,25(6):24-29.
    [6]程守云,闫铁雷.国内低阶煤干燥技术的工业应用新进展[J].广州化工,2002,40(16):25-26.
    [7] Hatcher, P. G., Breger, I. A., Szeverenyi, N., et al. Nuclear magnetic resonance studies of ancient buriedwood-II. Observations on the origin of coal from lignite to bituminous coal[J]. Organic Geochemistry,1982,4(1):9-18.
    [8] Ralph, J. P., Catcheside, D. E. A. Action of Aerobic Microorganisms on the Macromolecular Fraction ofLignite[J]. Fuel,1993,72(12):1679-1686.
    [9]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2007.
    [10]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [11] Rusianova, N. D., Maksimova, N. E., Jdanov, V. S., et al. Structure and reactivity of coals[J]. Fuel,1990,69(11):1448-1453.
    [12]张双全,吴国光.煤化学[M].徐州:中国矿业大学出版社,2004.
    [13] Richter, G. A. Cellulose from hardwood[J]. Ind. Eng. Chem.,1941(33):75-83.
    [14] Hoehne, K. Late Tertiary silicified wood in the Rosenback coal seams near Latschach[M]. Lake Faaker,Carinthia Geologie2,1953:185-189.
    [15] Pobiner, H. Improved inflection points in the non-aqueous potentiometric titration of acid functionalitiesin lignin chemicals by using internal standardization and ion exchange[J]. Anal Chim Acta,1983,155(C):57-65.
    [16]谢克昌.煤的结构与反应性的方位研究[J].煤炭转化,1992,15(1):24-30.
    [17]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-13.
    [18]袁新华,熊玉春,宗志敏,秦志宏,魏贤勇.分子煤化学与煤衍生物的定向转化[J].煤炭转化,2001,24(1):1-4.
    [19] Makabe, M., Ouchi, K. Reaction conditions and mechanism of coal liquefaction with ethanoltreatment[J]. J.Chem. Sot. Jpn., Chem. Ind. Chem.,1980,6(8):67-873.
    [20] Bimer, J., Salhut, P. D. On the solubilization of coal by methanol/NaOH treatment[J]. Erdol Kohle,Erdgas, Petro. chem.,1988,41(5):155-356.
    [21] Kuznetsov, P. N., Beregovtsova, N. G., Ruhailo, A. I., et al. Study of Kansk-Achinsk lignite liquefactionusing deuterated alcohols[J]. Fuel,1991,70(4):559-563.
    [22] Kuznetsov, P. N., Belakaya, N. A., Tomilova, T. A., et al. Peculiarities in methanol action duringliquefaction of different goal types[J]. Fuel,1990,68(8):1580-1583.
    [23] Kuznetaov, P. N., Sukhova, G. I., Himer, J., et al. Coal characterization for liquefaction in tetralin andalcohols[J]. Fuel,1991,70(9):1031-1038.
    [24] Luis, A. A., Eduardo, E. W. Supercritical toluene and ethanol extraction of an Illinois No.6coal[J]. Fuel,1984,63(2):227-238.
    [25] Shishido, M., Mashiko, T., Arai, K. Co-solvent effect of tetralin or ethanol on supercritical tolueneextraction of coal [J]. Fuel,1991,70(4):545-549.
    [26]孙林兵,张丽芳,秦志宏,宗志敏,魏贤勇.煤的CS2/NMP混合溶剂抽提研究进展[J].煤炭转化,2002,25(4):1-5.
    [27] Hromádková, Z., Ebringerová, A., Valachovic, P. Ultrasound-assisted extraction of water-solublepolysaccharides from the roots of valerian (Valeriana officinalis L.)[J]. Ultrason Sonochem,2002,9(1):37-42.
    [28] Sueli, R., Gustavo, A. S. P. Ultrasound extraction of phenolic compounds from coconut (Cocos nucifera)shell powder[J]. J Food Eng,2007,80:869-872.
    [29] Marta, K. The use of ultrasonic wave propagation parameters in the characterization of extracts fromcoals[J]. Fuel,1998,77(6):649-653.
    [30] Nishioka, M. Multistep extraction of coal[J]. Fuel,1991,70(12):1413-1419.
    [31] Krzesińska, M. The use of ultrasonic wave propagation parameters in the characterization of extractsfrom coals[J]. Fuel,1998,77(6):649-653.
    [32] Ding, M. J., Zong, Z. M., Zong, Y., et al. Group separation and analysis of a carbon disulfide-solublefraction from Shenfu coal by column chromatography[J]. Journal of China University of Mining andTechnology,2008,18(1):27-32.
    [33] Wei, X. Y., Shen, J. L., Takanohashi, T., et al. Effect of extractable substances on coal dissolution. Useof a carbon disulfide-N-methyl-2-pyrrolidinone mixed solvent as an extraction solvent for dissolutionreaction products[J]. Energy&Fuels,1989,3(5):575-579.
    [34] Miura, K., Shimada, M., Mae, K., et al. Extraction of coal below350oC in flowing non-polar solvent[J].Fuel,2001,80(11):1573-1582.
    [35] Miura, K., Nakagawa, H., Ashida, R., et al. Production of clean fuels by solvent skimming of coal ataround350oC [J]. Fuel,2004,83(6):733-738.
    [36] Ashida, R., Nakgawa, K., Oga, M., et al. Fractionation of coal by use of high temperature solventextraction technique and characterization of the fractions[J]. Fuel,2008,87(4-5):576-582.
    [37] Ashida, R., Morimoto, M., Makino Y., et al. Fractionation of brown coal by sequential high temperaturesolvent extraction[J]. Fuel,2009,88(8):1485-1490.
    [38] Yoshida, T., Takanohashi, T., Sakanishi, K., et al. Relationship between thermal extraction yield andsoftening temperature for coals[J]. Energy&Fuels,2002,16(4):1006-1007.
    [39] Yoshida, T., Takanohashi, T., Sakanishi, K., et al. The effect of extraction condition on 'HyperCoal'production (I) under room temperature filtration[J]. Fuel,2002,81(11-12):1463-1469.
    [40] Yoshida, T., Li C., Takanohashi, T., et al. Effect of extraction condition on "HyperCoal" production (2)effect of polar solvents under hot filtration[J]. Fuel Processing Technology,2004,86(1):61-72.
    [41] Li, C. Q., Takanohashi, T., Saito, I. Elucidation of mechanisms involved in acid pretreatment andthermal extraction during ashless coal production[J]. Energy&Fuels,2004,18(1):97-101.
    [42] Takanohashi, T., Shishido, T., Kawashima, H., et al. Characterisation of HyperCoals from coals ofvarious ranks[J]. Fuel,2008,87(4-5):592-598.
    [43] Sharma, A., Takanohashi, T., Morishita, K., et al. Low temperature catalytic steam gasification ofHyperCoal to produce H2and synthesis gas[J]. Fuel,2008,87(4-5):491-497.
    [44] Sharma, A., Takanohashi, T., Saito, I. Effect of catalyst addition on gasification reactivity of HyperCoaland coal with steam at775-700oC [J]. Fuel,2008,87(12):2686-2690.
    [45] Okuyama, N., Shigehisa, T., Nishibata, Y., et al. Thermoplastic performance of the solvent extractedashless coal and its applicability for coke material[J]. Iron And Steel Institute Of Japan Japanese Edition,2006,92(3):213-222.
    [46]陈博.中低阶煤的分级变温热溶[D].徐州:中国矿业大学图书馆,2012.
    [47]芦海云.霍林郭勒褐煤的超临界醇解[D].徐州:中国矿业大学图书馆,2011.
    [48] Nishioka, M. Multistep extraction of coal[J]. Fuel,1991,70(12):1413-1419.
    [49]刘长城,陈虹,孙元宝,等.煤的分级萃取及组成[J].吉林大学学报(理学版),2004,42(3):840-847.
    [50]王晓华.煤的溶剂分级萃取研究[D].徐州:中国矿业大学图书馆,2002.
    [51] Murtia, S. D. S., Sakanishi, K., Okuma, O., et al. Detailed characterization of heteroatom-containingmolecules in light distillates derived from Tanito Harum coal and its hydrotreated oil[J]. Fuel,2002,81(17):2241-2248.
    [52] Taga, R., Tang, N., Hattori, T., et al. Direct-acting mutagenicity of extracts of coal burning derivedparticulates and contribution of nitropolycyclic aromatic hydrocarbons[J]. Mutation Research,2005,581(8):91-95.
    [53] Islas, C. A., Suelves, I., Li, W., et al. The unusual properties of high mass materials from coal derivedliquids[J]. Fuel,2003,82(14):1813-1823.
    [54]金保升,周宏仓,仲兆平,肖睿,党小剑.三种不同中国煤中多环芳烃的分布特征研究[J].锅炉技术,2004,35(1):1-4.
    [55]金保升,周宏仓,仲兆平,肖睿,黄亚继.煤气化多环芳烃初步研究[J].东南大学学报(自然科学版),2005,35(1):100-104.
    [56]王晓华,夏美丽,薛晓宏,葛岭梅.两种贵州煤苯-甲醇萃取物族组成分析与萃取动力学表征[J].洁净煤技术,2006,12(1):61-63.
    [57] Liu, Z. W., Zong, Z. M., Li, J. N., et al. Isolation and identification of two bis(2-ethylheptyl)benzenedicarboxylates from Lingwu coal[J]. Energy Fuels,2009,23(1):588-590.
    [58] Liu, Z. W., Wei, X. Y., Zong, Z. M., et al. Isolation and identification of methyl alkanoates from Lingwucoal[J]. Energy&Fuels,2010,24(4):2784-2786.
    [59] Zong, Y., Zong, Z. M., Ding, M. J., et al. Separation and analysis of organic compounds in an Erdoscoal[J].2009, Fuel,88(3):469-474.
    [60]李婷,钟英,王芝等.芦荟苷A、B以及异芦荟色苷D的同时分离纯化[J].天然产物研究与开发,2011,5:878-881.
    [61]李云飞.中药分析信息处理技术的应用研究[D].杭州:浙江大学图书馆,2008.
    [62]李雪莹,武永刚.中压色谱快速制备红花中红花黄色素的含量测定[J].安徽农业科学,2012,40(15):8477-8479.
    [63] Hou, Z. G., Luo, J. G., Kong, L. Y. Medium-pressure liquid chromatography coupled to electrosprayionization mass spectrometry for separation and on-line characterization of flavonoids from asparagusofficinalis[J]. Chromatographia,2009,70(9-10):1447-1450.
    [64]王玉高,魏贤勇,李鹏,宗志敏,倪中海,韩相恩.霍林郭勒褐煤超临界乙醇解机理分析[J].燃料化学学报,2012,40(3):263-266.
    [65] Sobkowiak, M., Painter, P. A. Comparision of Drift and KBr Pellet Methodologies for the QuantitativeAnalysis of Functional Groups in Coal by Infrared Spectroscopy[J]. Energy&Fuels,1995,9:359-363.
    [66]孙昊,江春,秦志宏.徐州镜煤分级分次萃取物的FTIR分析[J].煤炭转化,2006.10,29(4):30-33.
    [67]张蓬洲,李丽云,叶朝辉.用固体高分辨核磁共振研究煤结构Ⅰ-我国一些煤的结构特征[J].燃料化学学报,1993,21(3):310-346.
    [68]秦匡宗,赵丕裕.利用固体13C核磁共振技术研究山东黄县褐煤的化学结构[J].燃料化学学报,1990,18(1):1-7.
    [69] Stock, L. M., Obeng, M. Oxidation and carboxylation:A reaction sequance for the study of aromaticstructural elements in pocahontas No.3Coal[J]. Energy&Fuels,1997,11(4):987-997.
    [70]鞠彩霞,徐伟,宗志敏等.微波条件下两种煤丙酮萃取物的GC/MS分析[J].煤炭转化,2007,30(1):1-3.
    [71]王旭珍,薛文华,朱玖玖,等.褐煤超临界流体抽提产物中脂肪烃组成结构的特征[J].燃料化学学报,1993,21(4):419-424.
    [72]彭耀丽,李艳,周肖,肖睿,谢瑞伦,马玉苗,位艳宾,魏贤勇.褐煤超临界醇解反应与产物的组成分析[J].煤炭工程,2009,(2):88-90.
    [73]候读杰,张林晔.实用油气地球化学[M].石油工业出版社.2003.
    [74] Schobert, H. H., Song, C. S. Chemicals and materials from coal in the21st century[J]. Fuel,2002,81:15-32.
    [75]刘淑琴,王媛媛,张尚军,鲍鹏程,党金莉.四种低阶煤中多环芳烃的分布特征[J].煤炭科学技术,2010,38(11):120-124.
    [76] Chen, B., Wei, X. Y., Zong, Z. M., et al. Difference in chemical composition of the products fromsupercritical methanolysis of two lignites[J]. Appl. Energy,2011,88(12):4570-4576.
    [77]史继扬,向明菊,洪紫青,林树基,周启永.五环三萜烷的物源和演化[J],沉积学报,1991,9(S1):26-30.
    [78]刘奎,孙淑和,吴奇虎,成绍鑫.褐煤的生物标志物研究[J],煤炭转化,1996,19(1):22-32.
    [79] Franciszek, C., Marek, S., Bernd, R. T. et al. Supercritical fluid extracts from brown coal litho types andtheir group components-molecular composition of non-polar compounds[J]. Fuel,2002,81:1933-1944.
    [80]陈永健,李伟,王建平,申俊,凌开成.低阶煤中氧的测定方法及对煤直接液化的影响[J].洁净煤技术,2012,18(2):50-55.
    [81]芦海云,魏贤勇,孙兵,等.氧化钙催化的霍林郭勒褐煤的超临界甲醇解研究[J].武汉科技大学学报,2010,33(1):83-88.
    [82] Lu, H. Y., Wei, X. Y., Yu, R., et al. Sequential thermal dissolution of Huolinguole lignite in methanol andethanol[J]. Energy&Fuels,2011,25(6):2741-2745.
    [83] Mondragon, F., Itoh, H., Ouchi, K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel,1982,61(11):1131-1134.
    [84] Iino, M., Matsuda, M. Synergistic effect of alcohol-benzene mixtures for coal extraction[J]. Bulletin ofthe Chemical Society of Japan,1984,57(11):3280-3294.
    [85]葛宜掌.煤低温热解液体产物中的酚类化合物(Ⅲ)分离与利用[J].煤炭转化,1997,20(2):49-55.
    [86]童兰英.白音华褐煤热解及酚类化合物分布研究[D].沈阳:大连理工大学图书馆,2008.
    [87]孙小嫚,张敬华,秦春梅,侯伟,其鲁.褐煤弱氧化产物的分析[J].转化利用,2009,15(3):43-45.
    [88] Aktas, Z., Aral, O. Supercritical toluene extraction of a reduced Turkish lignite[J]. Fuel ProcessingTechnology,1996,48:61-72.
    [89]岳晓明,王英华,魏贤勇,等.微波辅助下锡林浩特褐煤的CS2-丙酮萃取物组成分析[J].河南师范大学学报(自然科学版),2012,40(2):91-96.
    [90] Shaw, G. J., Franich, R. A., Eglinton, G., et al. Diterpenoid acids in Yallourn lignite[J]. Physics andChemistry of the Earth,2011,12:281–286.
    [91] Rezanka, T. Identification of very-long-chain acids from peat and coals by capillary gaschromatography-mass spectrometry[J], Journal of Chromatography A,1992,627(1-2):241-245.
    [92] Peuravuori, J., Simpson, A. J., Lam, B., et al. Structural features of lignite humic acid in light of NMRand thermal degradation experiments[J], Journal of Molecular Structure,2007,826(2-3):131-142.
    [93]宫贵贞,储济明,魏贤勇,等.煤氧化解聚的研究进展[J].化工进展,2011,30(11):2461-2466.
    [94] Monika, J., Fabianska,. GC-MS investigation of distribution of fatty acids in selected Polish browncoals[J]. Chemometrics and Intelligent Laboratory Systems,2004,72:241-244.
    [95]林启寿.中草药成分化学[M].北京:科学出版社,1977:44-43.
    [96]郑平.煤炭腐植酸的生产和应用[M].化学工业出版社,1991.
    [97]李保才,戴以忠,张慧芬,等. HNO3氧化褐煤制取黄腐酸[J].云南化工,1994,(4):5-8.
    [98]徐东耀,徐小方,王岩,等.提取褐煤中腐殖酸的新方法[J].煤炭加工与综合利用,2007,(2):29-31.
    [99]折步国,刘玉兰,周占京,等.从天祝褐煤中提取黄腐酸的研究[J].腐植酸,2000,(1):15-17.
    [100] Ren, H., Sun, J., Zhao, Q., et al. Synthesis and characterization of a novel heat resistant epoxy resinbased on N,N’-bis(5-hydroxy-1-naphthyl) pyromellitic diimide[J]. Polymer,2008,49(24):5249-5253.
    [101]吴晓聪,冯宇川,刘柏根.间苯二甲酸制备高性能醇酸树脂[J].江西化工,2006,4:157-159.
    [102]叶照坚,邱孟杰,李青.苯元羧酸酯类增塑剂的合成[J].塑料助剂,2003,6:21-24.
    [103] Wang, X. L., Li, J., Lin, H. Y., et al. Synthesis, structures and electrochemical properties of two novelmetal-organic coordination complexes based on trimesic acid (H3BTC) and2,5-bis(3-pyridyl)-1,3,4-oxadiazole (BPO)[J]. Solid State Sci.,2009,11(12):2118-2124.
    [104] Karabach, Y. Y., Kirillov, A. M., Haukka, M., et al. Copper (Ⅱ) coordination polymers derived fromtriethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane[J]. J.Inorg.Biochem.,2008,102(5-6):1190-1194.
    [105]赵继芳,孔庆江.偏三甲苯气相空气氧化法制备偏苯三甲酸酐[J].化学与粘合,2004(3):148-150.
    [106]刘兴玉,南国枝,曹重远.褐煤氧化制备水溶酸[J].石油大学学报(自然科学版),1999,23(3):83-85.
    [107]宫贵贞,魏贤勇,宗志敏.两种煤的次氯酸钠水溶液降解产物的分离与分析[J].燃料化学学报,2012,40(1):1-7.
    [108] Wang, Y. G., Wei, X. Y., Lu, H. Y., et al. Separation and analysis of the products from supercriticalethanolysis of Huolinguole lignite. Energy Sources, Part A: Recovery, Utilization, and EnvironmentalEffects, accepted (DOI:10.1080/15567036.2011.578114)
    [109]彭耀丽.锡林浩特和霍林郭勒褐煤的超临界醇解[D],徐州:中国矿业大学图书馆,2009.
    [110]谭桂琼,陈天祥,周华东,廖岩.交酯化法合成乌桕长链脂肪酸乙酯[J].贵州工业大学学报(自然科学版),2003,32(6):71-94.
    [111] Kambara, S., Takarada, T., Toyoshima, M., et al. Relation between functional forms of coal nitrogenand NOx essions from pulverized coal combustion [J]. Fuel,1995,74(9):247-1253.
    [112] Tomita, A. Suppression of nitrogen oxides emission by carbonaceous reductants[J]. Fuel ProcessTechnol,2001,71(1-3):53-70.
    [113] Stanczyk, K. Temperature-time sieve-A case of nitrogen in coal[J]. Energy Fuels,2004,18(2):405-409.
    [114] Wei, X. Y., Ni, Z. H., Xiong, Y. C., et al. Pd/C-catalyzed release of organonitrogen compounds frombituminous coals [J]. Energy Fuels,2002,16(2):527-528.
    [115] Liu, Z. X., Liu, Z. C., Zong, Z. M., et al. GC/MS analysis of water-soluble products from the mildoxidation of Longkou brown coal with H2O2[J]. Energy Fuels,2003,17(2):424-426.
    [116] Walker, J. M., Krey, J. F., Chen, J. S., et al. Targeted lipidomics: fatty acid amides and painmodulation[J]. Prostaglandins&other Lipid Mediators,2005,77(1-4):35-45.
    [117] Hughey, C. A., Rodgersa, R. P., Marshall, A. G., et al. Identification of acidic NSO compounds in crudeoils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotronresonance mass spectrometry[J]. Org. Geochem.,2002,33(7):743-759.
    [118]孙林兵,倪中海,张丽芳,宗志敏,魏贤勇.煤热解过程中氮/硫析出形态的研究进展[J].洁净煤技术,2002,8(3):47-50.
    [119] Demirbas, A. Sulfur removal from coal by oxydesulfurization using alkaline solution from wood ash[J].Energy Conversion&Management,1999,40(17):1815-1824.
    [120] Thoms, T. Developments for the precombustion removal of inorganic sulfur from coal[J]. Fuel Process.Technol.,1995,43(2):123-128.
    [121] Meffe, S., Perkson, A., Trass, O. Coal beneficiation and organic sulfur removal[J]. Fuel,1996,75(1):25-30.
    [122] Vasilakos, N. P., Clinton, C. S. Chemical beneficiation of coal with aqueous hydrogenperoxide/sulphuric acid solutions[J]. Fuel,1984,63(11):1561-1563.
    [123] Liu, K. C., Yang, J., Jia, J. P., et al. Desulphurization of coal via low temperature atmospheric alkalineoxidation[J]. Chemosphere,2008,71(1):183-188.
    [124] Mukherjee, S. Demineralization and desulfurization of high-sulfur Assam coal with alkali treatment[J].Energy Fuels2003,17(3):559-564.
    [125] Alvarez, R., Clemente, C., Gómez-Limón, D. The influence of nitric acid oxidation of low rank coaland its impact on coal structure[J]. Fuel,2003,82(15-17):2007-2015.
    [126] Moche, W., Thanner, G. PCDD/F-Emissions from coal combustion in small residential plants[J].Organohalogen Compound,1998,36:329-332.
    [127] Vassilev, S. V., Eskenazy, G. M., Vassileva, C. G. Contents, modes of occurrence and origin ofchlorine and bromine in coal[J]. Fuel,2000,79(8):903-921.
    [128] Chagger, H. K., Jones, J. M., Pourkashanian, M., et al. The formation of VOC, PAH and dioxins duringincineration[J]. Process Safety and Environmental Protection,2000,78(B1):53-59.
    [129] Scigala, R., Maslanka, A., Gliwice, P. Energetics combustion of fuels as a potential source of dioxinsand furans emissions[J]. Chemik,2000,53:91-94.
    [130] Geueke, K. J., Gessner, A., Hiester, E., et al. The DG ENV European dioxin emission inventory-stage II:Elevated emissions of dioxins and furans from domestic single stove coal combustion[J].Organohalogen Compound,2000,46:272-275.
    [131] Gullett, B. K., Wikstr m, E. Mono to trichlorinated dibenzodioxin (CDD) and dibenzofuran (CDF)congeners/homologues as indicators of CDD and CDF emissions from municipal waste and waste/coalcombustion[J]. Chemosphere,2000,40(9-11):1015-1019.
    [132] Anderson, D. R., Fisher, R. Sources of dioxins in the United Kingdom: The steel industry and othersources[J]. Chemosphere,2002,46(3):371-381.
    [133] Everaert, K., Baeyens, J. The formation and emission of dioxins in large scale thermal processes[J].Chemosphere,2002,46(3):439-448.
    [134] Hughey, C. A., Rodgers, R. P., Marshall, A. G., et al. Identification of acidic NSO compounds in crudeoils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotronresonance mass spectrometry[J]. Organic Geochemistry,2002,33(7):743-759.
    [135] Lynch, L. J., Sakurovs, R., Webster, D. S., et al.1H n.m.r. evidence to support the host/guest model ofbrown coals[J]. Fuel,1988,67(8):1036-1041.
    [136] Matuszewska, A. Geochemical interpretation and comparison of biomarker composition of bitumensobtained from coals and surrounding rocks[J]. Polish Geological Institute Special Papers,2002,7:169-180.
    [137]魏贤勇,宗志敏,孙林兵,等.重质碳资源高效利用的科学基础[J].化工进展,2006,25(10):1134-1142.
    [138]高毓涛,杨秀伟,艾铁民.狗肝菜乙醇提取物的化学成分研究[J].中国中药杂志,2006,31(12):985-987.
    [139]肖永庆,杨立新,崔淑莲,等.松叶防风化学成分研究[J].中国中药杂志,1995,5:294-295.
    [140] Barttle, K. D., Jones, D. W., Pakedl, H., et al. Paraffinic hydrocarbons from supercritical gas extracts ofcoal as organic geochemistry markers[J]. Nature,1979,277:285-287.
    [141] Sun, M., Ma, X. X., Yao, Q. X., et al. GC-MS and TG-FTIR study of petroleum ether extract andresidue from low temperature coal tar[J]. Energy&Fuels,2011,25(3):1140-1145.
    [142] Long, H., Shi, Q, Pan, N, et al. Characterization of middle-temperature gasification coal tar. Part2:Neutral fraction by extrography followed by gas chromatography-mass spectrometry and electrosprayionization coupled with Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy&Fuels,2012,26(6):3424-3431.
    [143] Zong, Y., Zong, Z. M., Ding, M. J., et al. Separation and analysis of organic compounds in an Erdoscoal[J]. Fuel,2009,88(3):469-474.
    [144] Yang, H. M., Zhao, W., Wang, Y. G.,et al. Enrichment and identification of condensed aromatics in abio-oil from degraded wheat stalk in supercritical ethanol[J]. Energy&Fuels,2013,26(1):596-598.
    [145] Ho, M. H., Wu, Y. S., Wen, S. W., et al, Yeung, K. T., Cheng, Y. K. and Gao, Z. Q. Highly efficient deepblue organic electroluminescent device based on1-methyl-9,10-di(1-naphthyl)anthracene[J]. AppliedPhysics Letters,2006,89:252903.
    [146] Bin, J. K., Hong, J. I. Efficient blue organic light-emitting diode using anthracene-derived emittersbased on polycyclic aromatic hydrocarbons[J]. Organic Electronics,2011,12(5):802-808.
    [147] Tyagi, P., Venkateswararao, A., Thomas, K. R. J. Solution processable indoloquinoxaline derivativescontaining bulky polyaromatic hydrocarbons: Synthesis, optical spectra, and electroluminescence[J].Journal of Organic Chemistry,2011,76(11):4571-4581.
    [148] Mclafferty, F. W. Mass spectrometric analysis: molecular rearrangements[J]. Anal. Chem.1959.31(1):82-87.
    [149] Yoshinori, H., Takazu, Y., Akio, Y., et al. Carbon-oxygen bond cleavage of esters promoted by hydridoand alkylcobalt (I) complexes having triphenylphosphine ligands. Isolation of an insertion intermediateand molecular structure of phenoxotris (triphenylphosphine) cobalt (I)[J]. J. Am. Chem. Soc.,1986,108(3):385-391.
    [150] Tsutomu, I., Sigeaki, M., Tokio, N., et al. A selective and efficient method for alcohol oxidationsmediated by N-oxoammonium salts in combination with sodium bromite[J]. J. Org. Chem.,1990,55(2):462-466.
    [151]王亚军,沈宗旋,李斌,等. L-脯氨酸催化α-酮酰胺与长链甲基酮的不对称直接Aldol反应[J].有机化学,2007,26(2):235-239.
    [152]凌关庭.食品添加剂手册,北京:化学工业出版社,1997:03576.
    [153] Forney, F. W., Markovetz, A. J. The biology of methyl ketones[J]. J. Lipid Res.,1971,12:383-395.
    [154]肖定军,马伟杰,邓松之.南海黄蜂海绵中系列长链甲基酮成分分析[J].分析化学研究简报,2004,32(12):1621-1623.
    [155] Pai, J. S., Lomanno, S. S., Nawar, W. W. Effect of heat treatments on the volatile composition ofcoconut oil[J]. J. Am. Oil Chemists' Soc.,1979,56(4):494-497.
    [156] Tuo, J., Li, Q. Occurrence and distribution of long-chain acyclic ketones in immature coals[J]. Appl.Geochem.,2005,20(3):553-568.
    [157]瞿文川,王苏民,吴瑞金,等.太湖沉积物中长链脂肪酸甲酯化合物的检出及意义[J].湖泊科学,1999,11(3):245-249.
    [158] Chao, K. P., Hua, K. F. and Hsu, H. Y. Anti-inflammatory activity of sugiol, a diterpene isolated fromCalocedrus formosana bark[J]. Planta Medica,2005,71:300-305.
    [159] Liu, H. L., Feng, Y. J., Chen, D. S., et al. Chemical constituents of the bark of Celastrus orbiculatus[J].Chinese Traditional Patent Medicine,2010,32(7):1169-1172.
    [160] Ma, H. Y., Wang, C. H., Yang, L., et al. Chemical consituents of Senecio cannabifolius var.integrilifolius[J]. Chinese Journal of Natural Medicines,2009,7(1):28-30.
    [161] Shaw, G. J., Franich, R. A., Eglinton, G., et al. Diterpenoid acids in Yallourn lignite[J]. Physics andChemistry of the Earth,2011,12:281-286.
    [162] Rezanka, T. Identification of very-long-chain acids from peat and coals by capillary gaschromatography-mass spectrometry[J]. Journal of Chromatography A,1992,627(1-2):241-245.
    [163] Cooper, J. E. Fatty acids in recent and ancient sediments and petroleum reservoir waters[J]. Nature,1962,93:744-746.
    [164] Kvenvolden, K. Evidence for transformation of normal fatty acids in sediment, in: G.D. Hobson, G.C.Speers (Eds.)[J]. Advances in Organic Geochemistry,1966:355-366.
    [165] Cooper, J. E., Bray, E. E. A postulated role of fatty acids in petroleum formation[J]. Geochimica etCosmochimica Acta,1963,27(11):1113-1127.
    [166] Dong, J. Z., Vorking, W. P., Lee, M. L. Origin of long-chain alkylcyclohexanes and alkylbenzenes in acoal-bed wax[J]. Geochimica et Cosmochimica Acta,1993,57(4):837-849.
    [167] Jaffe, R., Albrecht, P., Oudin, J. L. Carboxylic acids as indicators of oil migration: I. Occurrence andgeochemical significance of C-22distereomers of the (17βH,21βH) C30hopanoic acid in geologicalsamples[J]. Org. Geochem.,1988,13(1-3):483-488.
    [168] Mita, H., Fukunaga, N., Shimoyama, A. Characterization of dicarboxylic acids in theCretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan and comparison with those ofcarbonaceous chondrites[J]. Geochimica et Cosmochimica Acta,1998,62(23-24):3695-3702.
    [169] Azevedo, D. A., Neto, F. R. A., Simoneit, B. R. T. Extended saturated and monoaromatic tricyclicterpenoid carboxylic acids found in Tasmanian tasmanite[J]. Org. Geochem.,1994,22(6):991-1004.
    [170] Gillan, F. T., Sandstrom, M. W. Microbial lipids from a nearshore sediment from Bowling Green Bay,North Queensland: the fatty acids composition of intact lipid fraction[J]. Org. Geochem.,1985,8(5):321-328.
    [171] Philp, R. P. Fossil Fuel Biomarkers: Applications and Spectra.Translated by Fu Jia-mo[J]. ShengGuo-ying, Beijing: Science Press,1987.
    [172]齐庆杰.煤中氟赋存形态、燃烧转化与污染控制的基础和试验研究[D].杭州:浙江大学图书馆,2002.
    [173]薛改风,许传智,陈鹏.煤岩配煤技术在武钢生产中的应用研究[J].武汉科技大学学报,自然科学版,2006,29(6):57l-573.
    [174]陈启厚,杨俊和.坩埚焦性质的研究[J].燃料与化工,2001,32(3):124-126.
    [175]申明新.中国炼焦煤的资源与利用[M].北京:化学工业出版社,2007.
    [176]薛改凤,项茹,陈鹏,等.炼焦煤质量指标评价体系得研究[J].武汉科技大学学报:自然科学版,2009,32(1):36-40.
    [177]张浩源.淮北煤田煤中多环芳烃析出规律及环境意义[D].合肥:中国科学技术大学,2005.
    [178]陆胜勇,王丽英,李晓东,等.烟煤中多环芳烃分布特征的初步研究[J].环境科学研究,2002,15(4):7-9.
    [179] Michael, S., Thomas, A. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel,1983,62(11):1321-1326.
    [180] Murata, S., Hosokawa, M., Kidena, K., et al. Analysis of oxygen-functional groups in brown coals[J].Fuel Processing Technology,2000,67(3):231-243.
    [181] Kampouris, E. M., Constantinoglou, C., Prounias, N., et al. Extractable waxes from Greek lignites[J].Fuel,1973,52(1):47-51.
    [182]胡光洲,石欣欣,甄会丽,等.富蜡褐煤化学脱灰及其对萃取的影响[J].中国矿业大学学报,2012,41(3):446-451.
    [183] Schlosberg, R. H., Szajowski, P. F., Dupre, G. D., et al. Pyrolysis studies of organic oxygenates:3. Hightemperature rearrangement of aryl alkyl ethers[J]. Fuel,1983,62(6):690-694.
    [184] Schlosberg, R. H., Davis, J. W. H., Ashe, T. R. Pyrolysis studies of organic oxygenates.2. Benzylphenyl ether pyrolysis under batch autoclave conditions[J]. Fuel,1981,60(3):201-204.
    [185] Cranll, P. A., Volman, J. K. Alkyl and steryl esters in a recent lacustrine sediment[J]. Chemical Geology,1981,32(1-4):29-43.
    [186]徐雁前,刘生梅,段毅.柴达木盆地第四系沉积物中长链脂肪酸乙酯化合物的检出及意义[J].1994,12(3):99-105.
    [187] Everaert, K., Baeyens, J. The formation and emission of dioxins in large scale thermal processes[J].Chemosphere,2002,46(3):439-448.
    [188] Finkelman, R. B. Modes of occurrence of potentially hazardous elements in coal: levels ofconfidence[J]. Fuel Processing Technology,1994,39(1-3):21-34.
    [189] Huggins, F. E., Huffman, G. P. Chlorine in coal: an XAFS spectroscopic investigation[J]. Fuel,1995,74(4):556-559.
    [190]赵峰华,任德贻,张旺.煤中氯的地球化学特征及逐级化学提取[J].中国矿业大学学报,1999,28(1):61-64.
    [191] Jimenez, A., Martinez, T. M. R., Suarez-Ruiz, I. Mode of occurrence and origin of chlorine inPuertollano coals (Spain)[J]. Fuel,1999,78(13):1559-1565.
    [192] Spears, D. A., Manzanares-Papayanopoulos, L. I., Booth, C. A. Distribution and origin of traceelements in a UK coal; the importance of pyrite[J]. Fuel,1999,78(14):1671-1677.
    [193] Vassilev, S. V., Eskenazy, G. M., Vassileva, C. G. Contents, modes of occurrence and behaviour ofchlorine and bromine in combustion wastes from coal-fired power stations[J]. Fuel,2000,79(8):923-938.
    [194]蒋旭光,徐旭,严建华,等.我国煤中氯含量分布特性的试验研究[J].煤炭转化,2001,24(2):58-61.
    [195]蒋旭光,徐旭,严建华,等.煤中氯的分布及燃烧过程中氯析出特性的试验研究[J].煤炭学报,2001,26(6):667-670.
    [196] Shao, D., Hutchinson, E. J., Cao, H., et al. Behavior of chlorine during coal pyrolysis[J]. Energy Fuels,1994,8(2):399-401.
    [197] Sun, L. B., Zong, Z. M., Kou, J. H., et a1. Identification of organic chlorines and iodnies in the extractsfrom hydrotreated Argonne Premium coal residues[J]. Energy Fuels,2007,21(4):2238-2239.
    [198]袁海龙,张纯.超临界流体萃取-HPLC法测定何首乌中大黄酸,大黄素及大黄素甲醚的含量[J].中草药,1999,(4):258-260.
    [199]昝立峰,图力古尔,包海鹰,等.紫红丝膜菌子实体的化学成分研究[J].2008,27(2):284-288.
    [200]黄晟,谷莉,赵亮,等.毛细管电泳法测定虎杖药材中白藜芦醇苷,大黄素和大黄素甲醚的含量[J].2006,26(1):20-23.
    [201] Wei, X. Y., Wang, X. H., Zong, Z. M. Extraction of organonitrogen compounds from five Chinese coalswith methanol[J]. Energy&Fuels,2009,23(10):4848-4851.
    [202]李金纳,宗志敏,刘滋武,等.灵武烟煤甲醇萃取物分析.武汉科技大学学报,2009,32(6):644-647.
    [203]姚婷.克拉玛依天然沥青的分离与分析[D].徐州:中国矿业大学图书馆,2012.
    [204]李艳,宗志敏,黄丽莉,黄勇,陈飞剑,路瑶,许晶晶,姚子硕,魏贤勇.灵武煤CS2/NMP萃取物的柱层析分离及其馏分的GC/MS分析[J].武汉科技大学学报,2010,33(1):88-94.
    [205]丁明洁.煤及煤液化衍生物中有机组分的族组分分离与分析[D].徐州:中国矿业大学图书馆,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700