用户名: 密码: 验证码:
部分取代苯化合物对发光菌的急性毒性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中有毒污染物的种类和数量日益增,给生态环境造成巨大威胁,如何评价这些污染物对环境的毒性影响越来越受到人们的关注。本文通过查阅国内外大量文献,对有毒污染物的研究现状作了简要分析。在众有机物中,单环、多环芳香族化合物及其它们的各种取代衍生物占有重要地位,它们是很石化和化工工业的原料和产品,种类繁,且毒性较大。同时,发光细菌作为毒性评价指示生物,具有方便、灵敏、经济,与其它毒性数据有较好相关性等诸优点。因此,本文采用发光细菌法作为急性毒性检测方法,选取了17种取代苯化合物作为受试化合物,测定了这些化合物的单一毒性及部分化合物的联合毒性,对测定结果进行定性分析,并对单一化合物的毒性结果建立了预测模型。最后测定了两种废水不同处理工艺对发光菌的毒性,初步评价了处理工艺对毒性去除的影响。
     首先测定了17种取代苯化合物对发光菌的急性毒性,初步探讨了苯环上不同取代基类型和取代位置对毒性的影响。同时,计算了理化意义明确的量子化学描述符和线性溶剂化自由能参数,进而运用定量结构活性相关方法解析了毒性与化合物结构间的关系。结果表明,该组化合物对发光菌的毒性与化合物的分子体积、面积间呈显著正相关关系,经检验预测方程稳健、可靠,能够用于预测其它相似结构化合物的毒性。
     在单一化合物毒性测定基础上,选取苯、苯酚、苯胺、硝基苯、对氯酚进行等毒性的联合毒性研究,评价联合作用类型,并进一步研究复合有机物变比例的联合毒性影响,选取苯胺+苯酚、硝基苯+对氯酚、氯苯+苯胺、氯苯+苯酚、氯苯+对二氯苯5组混合物进行变比例的联合毒性研究,初步分析、评价混合物毒性的变化规律及影响因素。实验
    
    郑州大学硕士学位论文
    部分取代苯化合物对发光菌的急性考性研究
    表明,联合作用类型不但与其组成化合物类型有关,也与化合物含量密切相关,相同组
    成的混合物在不同配比下其联合作用类型是变化的,这可能与化合物的联合作用机理有
    关,有待进一步验证。
     工业废水及生活污水大处理后仍不能消除其对环境的毒性影响,其中,造纸废水
    由于含大量有机氛化物,不易生物降解,而且有关城市污水的毒性影响报道也较少,因
    此,本文最后选取某造纸厂中段废水及某污水处理厂各工艺出水,测定造纸废水经三种
    混凝剂及三种超滤膜处理前后的毒性大小,结果表明,复合混凝剂(硅藻土+硫酸铝)
    对废水毒性的去除贡献最大,其次为硫酸铝,聚合硫酸铁(PFS)的影响最小。超滤膜
    对废水毒性的效果较好,其中MWCO600O对毒性的去除贡献最大。对于某污水处理厂
    废水,测定了废水沿处理工艺的毒性变化,结果表明,该处理工艺对废水的去除有一定
    的效果,但出水中仍残留一些有毒有机物,因此,有必要对废水处理工程进行毒性控制。
Nowadays it is one of the difficult problems that how to evaluate the toxicity of the substituted benzenes to the environment efficiently. Photobacterium Phosphoreum used as bio-indicator is convenience sensitive and economical. 17 substituted benzenes were studied in this paper. The acute toxicity of these 17 tested compounds and the combined toxicity of 5 compounds were measured. The data of single compounds was discussed roughly and the predicted equation was set up. The effect of combined compounds was analysed approximately. The toxicity of two kinds of wastewaters to Photobacterium Phosphoreum was measured at last. The results can be used to evaluate the toxicity impact to the environment of the treatment technics of these wastewaters.
    The acute toxicities of 17 substituted benzenes to Photobacterium Phosphoreum were measured, and the effects of substituted groups and positions on toxicities were discussed roughly. The molecular structural descriptors, such as quantum chemical parameters and linear solvation energy parameters, with clear physicochemical senses, were calculated, and relationships between toxicities of tested compounds and their molecular structural descriptors were developed by using quantitative structure-activity relationship (QSAR) technique. The results indicated that there was a significant positive proportion between toxicity and intrinsic volume or area of compound molecules, and the equations were robust enough through Jacknife test. The results were satisfying when the obtained equation was used to predict 27 compounds with similar structure as selected ones.
    Based on the determination of single compounds, Benzene Phenol Aniline Nitrobenzene and o-chlorophenol were selected. These 5 compounds were combined by equal toxicity method and the toxicity types were evaluated. Then another 5 groups were choosed. These compounds were combined by varied proportion. And the combined toxicity effect were also determined. The law of the combined toxicity and the influence factor were analyzed roughtly. The results indicated that the combined toxicity was related not to the types but to the contents of the test compounds.
    The toxicity of wastewater to the environment was not well eliminated by most treatment plants. The paper wastewater was difficult to be treated for high COD and toxic
    
    
    
    compounds. The sewage was also not think much of. In the last part, the toxicity of paper intermediate wastewater and sewage from different treatments were measured. For paper wastewater, the results indicated that wastewater was still provided with toxicity even after coagulation although the composite coagulation reagent was the best one to get rid of the toxicity of wastewater . On the other hand, its toxicity could be greatly dropped by ultrafiltration and MWC06000 was the best one. For the sewage from a wastewater treatment plant, the existing technics could remove part toxicity, but there was some toxicity left in the effluent So the control of the toxicity impact of the treatment technics was very important.
引文
[1] 王晓燕,尚伟,水体有毒有机污染物的危害及优先控制污染物[J],首都师范大学学报(自然科学版),2002,23(3):73-78
    [2] 崔玉川,傅涛,我国水污染及饮用水源中有机物染物的危害[J],城市环境与城市生态,1998,11(3):23-25
    [3] 张铣,刘毓谷,毒理学[M],北京:北京医科大学、中国协和医科大学联合出版社,1997
    [4] Biesinger K E. Christensen G M, Fiandt J T. Ecotoxic[J]. Environ. Safety, 1986, 11: 9
    [5] Spehar R L, Fiandt J T. Environ. Toxic[J]. Chem., 1986, 5: 917
    [6] Van Leeuwen C J, Niebeek G, Luttmer W. Water Quality Criteria for Heavy Metals[J], a Daphnids View, 1987, 20: 200
    [7] Environment Agency. 1996. Direct Toxicity Assessment(DTA) Methods Guidelines.RD Note 322. Bristol, UK: UK Environment Agency.
    [8] Environment Agency.1996.Toxicity-based Consents Pilot Study. R&D Technical Report. Bristol, UK: UK Environment Agency.
    [9] Jin HJ, Lou X, Zhang ZH, et al. 1994, Ecotoxicological monitoring of major industrial effluents in Nanjing, China. Fish Physiology, Toxicology and Water Quality Management. EPA/600/R-94/138.Washington DC, USA: US Environmental Protection Agency. 99-107
    [10] Thomas N A, 1988, Use of biomonitoring to control toxics in the United States[J], Wat Sci Techn, 10: 101-108
    [11] 于晓丽,李秀珍等,用发光菌评价油田采油污水综合毒性[J],石油与天然气化工,2002,3 1(2):101-104
    [12] 李慧蓉,生物监测技术及其研究进展[J],江苏石油化工学院学报,2002,14(2):57-60
    [13] Hart, W. B., P. Doudoroff & Greenbank. The Evaluation of the Toxicity of Industrial Wastes, Chemicals and Other substances to Freshwater Fishes[J]. Waste Control Laboratory, Atlantic Refining Co., Philadelphia, Pa. 1945, 376 pp
    [14] Doudoroff, P., B. G. Anderson, G. E. Burdick et al. Bioassay for the Evaluation of Acute Toxicity of Industrial Wastes to Fish[J]. Sewage Ind. Wastes 1951, 23: 1380-11397
    [15] De Zwart D. The microtox as on alternative assay in the acute toxicity assessment water pollutants aquat[J]. Toxicology, 1983, 4: 129
    [16] Liu D. A rapid biochemical test for measuring chemical toxicity[J]. Bull Environ Contam Toxicol, 1981, 26(2): 145-149
    [17] Trevors J T, Mayfield CI, Inniss W E. A rapid toxicity test using Pseudomonas fluorescens[J]. Bull Environ Contain Toxicol, 1981, 26(4): 433-439
    [18] Van Dijk J, Van der Meer C, W ijnans M. The toxicity of sodium pentachlorophenolate for three species of decapod crustaceans and their larvae[J]. Bull Environ Contam Toxicol, 1977, 17(5): 622-630
    [19] Wong M H. Sewage sludge as conditioner for improving soils affected by sulfur dioxide[J]. Bull Environ Contam Toxicol, 1979, 23(6): 717-724
    [20] Honig R A, Mcginniss M J, Buikem a AL, et al. Toxicity tests of aquatic pollutants
    
    using Chilomomas paramecium Ehrenberg(Flagellate)populations[J]. Bull Environ Contam Toxicol, 1980, 25(2): 169-175
    [21] Sastry K V, Gupta PK. The in vivo effect of mercuric chloride on some digestive enzymes of a fresh water teleost fish, Channa punctatus[J]. Bull Environ Contam Toxicol, 1979, 22(1-2): 9-16
    [22] G Bitton & B J Dutka. Toxicity Testing Using Microorganisms Boca Raton. Florida. CRC Press Inc., 1986, 1: 1-8
    [23] Bulich A A et al., J, Biolumin Chemilumin, 1990, 5: 71
    [31] Hastings, JW, Baldw in TO, Riley PL. Proteolytic inactivation of the luciferase from the luminous marine bacterium Beneckea harveyi[J]. J Bopl Chem, 1978, 253(16): 5551-5554
    [24] Thomulk KW, McGee DJ, Lange JH. Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water[J]. Bull Environ Contam Toxicol, 1993, 51(4): 538-544
    [25] Bulich AA, lsenberg DL. Use of the luminescent bacteria system for the rapid assessment of aqustic toxicity[J]. ISA Transactions, 1981, 20(1): 29-32
    [26] Maria T, Margareta H, Birgitta S. Comparison of the microtox test with 96-Hr LC50 test for the Harpacticoid Nitocra spinipes[J]. Ecotoxicol Environ Safety, 1986, 11: 127
    [27] 顾学濂,发光细菌检测水土环境毒性的进展和评价[J],土壤学进展,1987,15(3):48-51
    [28] 吴自荣,以发光细菌作指示生物快速评价大气污染物的生物毒性[J],中国环境科学,1988,8(1):59
    [29] Wanger VO, Blevins RD, Chemically induced histone modification as a predictor of carcinogenicity[J], Arch Environ Contam Toxicol, 1993, 25(2): 260-266.
    [30] 顾宗濂,用生物发光计测定污染水体生物毒性[J],环境科学,1983,4(5):30-33
    [31] Greene JC, Miller WE, Debacon MK, et al. A comparison of three microbial assay procedures for measuring toxicity of chemical residues[J]. Arch Environ Contam Toxicol[J], 1985, 14(6): 659-667
    [32] 吴自荣,杨颐康,金心等,利用发光细菌快速评价苏州河水质[J],中国环境科学,1987,7(2):60-62
    [33] 吴伟,胡庚东等,发光细菌在渔业水域污染物急性毒性快速检测中的应用[J],湛江海洋大学学报,1998,18(2):20-24
    [34] 乔鸿泽,周德智等,发光细菌法评价工业废水的毒性[J],环境监测管理与技术,1996,8(2):20-22
    [35] 王华东,水环境污染概论[M],北京:北京师范大学出版社,1989
    [36] Blum, D. J., Speece, R. E., Determining chemical toxicity to aquatic species[J], Environ. Sci. Technol., 1990, 24(3): 284-293
    [37] Wang L. S., Han S. K., Quantitative structure activity relationships[M], Beijing: Chemical Industry Press, 1999
    [38] Wei D. B., Zhang A. Q., et al., Progressive study and robustness test of QSAR model based on quantum chemical parameters for predicting BCF of selected polychlorinated organic compounds[J], Chemosphere, 2001, 44(6): 1421-1428
    [39] Lu G. H., Yuan X., Zhao Y. H., QSAR study on the toxicity of substituted benzenes to the algae[J], Chemosphere, 2001, 44(2): 437-440
    [40] Yang H., Yu H. X., Huang Q. G., et al.., Quantitative structure toxicity relationships
    
    for fluorine-contained aromatics to Photobacterium Phosphoreum[J], Chemosphere, 1997, 35(11): 2657-2663
    [41] Wei D. B., Zhang A. Q., Wei Z. B., Han S. K., Wang L. S., .A case study of logistic QSAR modeling methods and robustness tests[J], Ecotoxicol. Environ. Safe., 2002, 52(2): 143-149
    [42] Dezwart D., Slooff W., The Microtox as on alternative assay in the acute toxicity assessment of water pollutants[J]. Aquat. Toxicology, 1983, 4(2): 129-183
    [43] 顾宗濂,发光细菌法检测水土环境毒性的进展和评价[J],环境科学与技术,1987,2:2-6
    [44] Cambridgesoft Co., CS MOPAC 97, 1997
    [45] Dewar M. J. S., Zoebisch E. G., Healy E. F, Stewart J. J. P., et al, The development and use of quantum- mechanical molecular-models. 76. AM1. A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc., 1985, 107(13): 3902-3909
    [46] Hickey J. P., Passino-Reader D. R., Linear solvation energy relationships: "Rules of Thumb" for estimation of variable values[J], Environ. Sci. Technol., 1991, 25(10): 1753-1760
    [47] 邢其毅,徐瑞秋等,基础有机化学(上下册)[M],北京:高等教育出版社,1983
    [48] Hansch C., Leo A., Exploring QSAR: Fundamentals and applications in chemistry and biology. American Chemical Society, Washington DC, 1995
    [49] Sixt S., Altschah J., Bruggemann J., Quantitative structure - toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors, Chemosphere, 1995, 30(12): 2397-2414
    [50] Wilson L. Y., Famini G. R., Using theoreticadescriptors in quantitative structure-activity relationships some toxicological indexes, J. Med. Chem., 1991, 34(5): 1668-1674
    [51] Gong P(龚平), Li P-J( 李培军), Sun T-H(孙铁珩), Ecotoxicological effecte of Cd, Zn, Phenantbrene and MET combined pollution on soil microbe[J]. Chin Environ Sci(中国环境科学), 1997, 17(1): 58-62(in chinese)
    [52] 马梅,王毅,王子健,城市污水生物处理过程中有毒有机污染物浓度及毒性变化的规律[J],工业水处理,1999,19(6):9-13
    [53] Bulich A A. In: L L Markings and R A Kimerle, eds., Aquatic Toxicology. STP 667, American Society for Testing and Materials, Philadelphia, PA USA, 1979: 98-106
    [54] Hao O J et al. Wat. Sci.Tech., 1996, 34(10): 43-50
    [55] Morel JL et al., Arch. Envir. Contam. Toxicol., 1988, 17: 493-496
    [56] Fernandez A et al., Wat. Res., 1995, 29(5): 1281-1286
    [57] Sherrard K B et al. Environmental Toxicology and Chemistry, 1996, 15(7): 1034-1037
    [58] Kaiser K L E. Environmental Health Perspectives, 1998, 106: 583-591

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700