用户名: 密码: 验证码:
三维结构的光学活性笼状环芳分子的设计与合成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以碳-碳三键为桥联的环芳化学,特别是富碳化合物和构型保持的大环类化合物研究,是现代环芳化学研究中最引人注目的领域之一。
     环芳化合物的性质取决于它的几何形状、电子效应和芳环上的取代基。三键的刚性结构可以使大环骨架得以很好的扩展,而苯环可以控制三键桥联的方向,从某种意义上决定了整个分子的形状。三键和芳香环的组合可以形成一系列形态各异的平面或三维环芳化合物。通过C≡C的连接,各种芳香环可以组合成形状特定的二维或三维的大环化合物。它们在分子构型、分子手性、液晶材料和传感材料等方面的潜在应用被广泛研究。其中一些高度不饱和的此类化合物被作为是有序碳材料的前驱体。本文在本实验室以前的工作的基础上设计并合成了一系列新型的光学活性的环芳化合物及其衍生物。
     由于联萘在反应前后构型保持稳定,以及乙炔键在空间上良好的定向作用,本文选择了光学活性的2,2'-二乙炔基.1,1'-联萘作为合成模板来构筑目标分子。本文第二章主要讨论具有单一手性[(R)构型或(S)构型]的2,2'-二乙炔基-1,1'-联萘模板的合成。以光学纯的(R)-或(S)-联萘二酚为起始原料,通过酚羟基的酯化反应、磺酸酯与格氏试剂的Kumada反应、甲基的溴化反应、二溴甲基的水解反应和特殊的Wittig反应来制得2,2'-二乙炔基-1,1'-联萘。
     本文第三章从光学纯的(R)-2,2'-二乙炔基-1,1'-联萘为手性模板,设计了分子间和分子内偶联两条反应路线来合成设计的双层三桥联分子。虽未得到设计的目标分子,却都得到了一个双层笼状化合物,并探讨了合成中涉及的几种反应类型:Sonogashira偶联反应,脱保护基TMS的反应,封管反应,铜盐促进的炔烃偶合反应。
     本文第四章解决了第三章中位阻太大,不能形成三桥联分子的问题。通过CPK模型的分子模拟和Chem3D的模拟计算,设计了一个延长的三叉苯炔化合物91作为平面连接桥,并成功地合成了该连接桥。在引入光学纯的(R)-2,2'-二乙炔基-1,1'-联萘为手性模板后,铜盐催化的末端炔偶联成功地合成了设计的双层状的三桥联分子。
     本文当中所有的中间体和目标化合物都经过MS、IR、~1H NMR、~(13)C NMR和DEPT组合测定得到确认。
The chemistry of cyclophynes having carbon-carbon triple bond bridges has been one of the most actively investigated fields in modern cyclophane chemistry, particularly in connection with the evolving fields of carbon-rich materials and shapepersistent macrocyclic compounds.
     The properties of cyclophynes are characterized by the geometric and electronic properties of triple bonds and the substitution pattern of the aromatic rings.With regard to the geometrical properties,the macrocyclic frameworks of cyclophynes can be expanded by incorporation of triple bonds because of their linearity.The substitution pattern of the aromatic rings,on the other hand,fixes the direction of the bridging triple bonds,defining the whole molecular shape.As a result,a variety of two-and three-dimensional architectures can be built by connecting aromatic rings with triple bond linkages.On the other hand,nonplanar macrocycles of this type have been studied with regard to their conformation,chirality,and their potential application to liquid crystalline and sensing materials.Some highly unsaturated members of this type of compound have been shown to serve as precursors of ordered carbon materials.On the base of our labe was described,and a series of new type of cyclophynes and their derivatives were designed and synthesized.
     Because of the stability of binaphthalene's configuration in the reactions and the fine directional function of ethynyl in the space,enantiopure 2,2'-diethynyl-1,1'-binaphthyl was used as synthetic template for the synthesis of target molecules.In the second chapter in this paper,the synthesis of enantiopure[(R)-or(S)-form] 2,2'-diethynyl-1,1'-binaphthyl was described.2,2'-Diethynyl-1,1'-binaphthyl was synthesized from binapythol by esterification of hydroxyl,Kumada reaction of sulfonic ester with Grignard reagent,bromination of methyl,hydrolyzation of dibromomethyl and especial Wittig reaction.
     In the third chapter,three-dimensional cage-like cyclophanes 76 were designed and synthesized from enantiopure[(R)-or(S)-form]2,2'-diethynyl(dihydroxy)-1, 1'-binaphthyl,However we have not been given to benzene for the plane of target compounds and got a strange three-dimensional,cage-like cyclophanes.And in the process of synthetic routes involved reaction of several types:Sonogashira reaction, Sealed-tube reaction and Eglinton coupling reaction.
     In the forth chapter,we solved the problem of steric hindrance in the third chapter. Through the CPK model of the Chem3D molecular modeling and simulation,we design a three-dimensional compound 91 with an extension trigeminal benzene-acetylene as a flat connecting bridge,three-dimensional cage-like cyclophanes 94 were designed and synthesized though Eglinton coupling reaction from enantiopure[(R)-or(S)-form]2,2'-diethynyl(dihydroxy)-1,1'-binaphthyl.
     All the intermediates and target compounds synthesized in this paper were characterized by MS,IR,~1H NMR,~(13)C NMR and DEPT
引文
[1] Haley M M, Tykwinski R R. Carbon-rich compounds. Weinheim: Wiley, 2006: 229-294
    
    [2] Meijere A D, Kozhushkov S I. Macrocyclic structurally homoconjugated oligoacetylenes: acetylene- and diacetylene-expanded cycloalkanes and rotanes. Topics in Current Chemistry, 1999, 1999(201): 1-42
    [3] Diederich F, Gobbi L. Cyclic and linear acetylenic molecular scaffolding. Topics in Current Chemistry, 1999, 1999(201): 43-79
    [4] Haley M M, Pak J J, Brand S C. Macrocyclic oligo(phenylacetylenes) and oligo(phenyldiacetylenes). Topics in Current Chemistry, 1999, 1999(201):81-130
    [5] Bunz U H F. Carbon-rich molecular objects from multiply ethynylated π-complexes. Topics in Current Chemistry, 1999, 1999(201): 131-161
    [6] Moore J S. Shape-persistent molecular architectures of nanoscale dimension. Acc Chem Res, 1997, 30(10): 402-413
    [7] Zhao D J, Moore S. Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. Chem Commun, 2003, (7): 807-818
    [8] Haley M M. It takes alkynes to make a world-new methods for dehydrobenzoannulene synthesis. Synlett, 1998, 1998(6): 557-565
    [9] Marsden J A, Palmer G J, Haley M M. Synthetic strategies for dehydrobenzo[n]annulenes. Eur J Org Chem , 2003, 2003(13): 2355-2369
    [10] Bunz U H F, Rubin Y, Tobe Y. Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks. Chem Soc Rev, 1999, 28(2): 107-119
    
    [11] H(o|¨)ger S. Highly efficient methods for the preparation of shape-persistent macrocyclics. J Polym Sci Part A: Polym Chem, 1999, 37(15): 2685-2698
    
    [12] Solooki D, Bradshaw J D, Tessier C A, et al. Syntheses and crystal structures of 1,2:5,6:9,10:13,14:17,18:21,22-hexabenzo-3,7,11,15,19,23-hexadehydro[24] annulene (HBC), 1,2:5,6:9,10:13,14-tetrabenzo-3,7,11,15-tetradehydro[16] annulene (QBC) and a tetracobalt complex of QBC. The first example of a transition metal complex of QBC. J Organomet Chem, 1994, 470(2): 231-236
    
    [13] Iyoda M, Vorasingha A, Kuwatani Y, et al. A one-step synthesis of dehydro[12]annulenes using palladium-catalyzed reaction of o-diiodoarenes with acetylene gas. Tetrahedron Lett, 1998, 39(26): 4701-4704
    [14] Kehoe J M, Kiley J H, English J J, et al. Carbon networks based on dehydrobenzoannulenes.3.Synthesis of graphyne substructures. Org Lett, 2000, 2(7): 969-972
    [15] Miljanic O S, Vollhardt K P C, Whitener G D. An alkyne metathesis-based route to ortho-dehydrobenzannulenes. Synlett, 2003, 2003(1): 29-34
    [16] Solooki D, Bradshaw J D, Tessier C A, et al. Synthesis and characterization of trithienocyclotryne(TTC) and its tetracobalt complex. The first example of a dehydroannulene containing thiophene rings. Organometallics, 1994, 13(2):451-455
    [17] Tovar J D, Jux N, Jarrosson T, et al. Synthesis and X-ray characterization of an octaalkynyldibenzooctadehydro[12]-annulene. J Org Chem, 1997, 62(11):3432-3433
    [18] Palmer G J, Parkin S R, Anthony J E. Synthesis of a remarkably stable dehydro[14]annulene. Angew Chem Int Ed, 2001, 40(13): 2509-2512
    [19] Nishinaga T, Nodera N, Miyata Y, et al. Dehydro[12]- and -[18]annulenes fused with tetrafluorobenzene: synthesis, electronic properties, packing structures, and reactivity in the solid state. J Org Chem, 2002, 67(17): 6091-6096
    [20] Jusélius J, Sundholm D. The aromaticity and antiaromaticity of dehydroannulenes. Phys Chem Chem Phys, 2001, 3(12): 2433-2437
    [21] Alkorta I, Rozas I, Elguero J. An ab initio study of the NMR properties (absolute shieldings and NICS) of a series of significant aromatic and antiaromatic compounds. Tetrahedron, 2001, 57(28): 6043-6049
    [22] Matzger A J, Vollhardt KPC. Benzocyclynes adhere to Hückel's rule by the ring current criterion in experiment (~1H NMR) and theory (NICS). Tetrahedron Lett, 1998, 39(38): 6791-6794
    
    [23] Pak J J, Weakley T J R, Haley M M. Stepwise assembly of site specifically functionalized dehydrobenzo[18]annulenes. J Am Chem Soc, 1999, 121(36): 8182-8192
    
    [24] Haley M M, Bell M L, English J J, et al. Versatile synthetic route to and DSC analysis of dehydrobenzoannulenes: crystal structure of a heretofore inaccessible [20]annulene derivative. J Am Chem Soc, 1997, 119(12): 2956-2957
    [25] Sarkar A, Haley M M. Synthesis and characterization of dehydrothieno[18]annulenes. Chem Commun, 2000, (18): 1733-1734
    [26] Pak J J, Weakley T J R, Haley M M, et al. Synthesis and characterization of annulene-fused pseudorotaxanes. Synthesis, 2002, 2002(9): 1256-1260
    [27] Boydston A J, Haley M M. Diatropicity of dehydrobenzo[14]annulenes: comparative analysis of the bond-fixing ability of benzene on the parent 3,4,7,8,9,10,13,14-octadehydro[14]annulene. Org Lett, 2001, 3(22): 3599-3601
    
    [28] Boydston A J, Haley M M, Williams R V, et al. Diatropicity of 3,4,7,8,9,10,13,14-octadehydro[14]annulenes: a combined experimental and theoretical investigation. J Org Chem, 2002, 67(25): 8812-8819
    [29] Kimball D B, Haley M M, Mitchell R H, et al. Dehydrobenzoannulene- dimethyldihydropyrene hybrids: model systems for the synthesis of molecular aromatic probes. Org Lett, 2001, 3(11): 1709-1711
    [30] Kimball D B, Haley M M, Mitchell R H, et al. Dimethyldihydropyrene- dehydrobenzoannulene hybrids: studies in aromaticity and photoisomerization. J Org Chem, 2002, 67(25): 8798-8811
    [31] Boydston A J, Bondarenko L, Haley M M, et al. [2.2]Paracyclophane/ dehydrobenzoannulene hybrids: transannular delocalization in open-circuited conjugated macrocycles. Angew Chem Int Ed, 2001, 40(16): 2986-2989
    
    [32] Hisaki I, Haley M M, Sonoda M, et al. Formation and characterization of highly strained dibenzopentakisdehydro[14]annulene and theoretical study on its aromaticity. Chem Lett, 2004, 33(5): 620-621
    
    [33] Haley M M, Brand S C, Pak J J. Carbon networks based on dehydrobenzoannulenes: dynthesis of graphdiyne substructures. Angew Chem Int Ed, 1997,36(8): 836-838
    
    [34] Blanchette H S, Brand S C, Haley M M, et al. Bis(enediyne) macrocycles: synthesis, reactivity, and structural analysis. Tetrahedron, 2000, 56(49): 9581-9588
    
    [35] Marsella M J, Wang Z Q, Reid R J, et al. Synthesis of acetylenic cyclophanes via intramolecular self-assembly: evidence of perfluorophenyl-phenyl quadrupole interactions in the solution state. Org Lett, 2001, 3(6): 885-887
    [36] Baxter P N W. Synthesis and fluorescence ion-sensory properties of the first dehydropyridoannulene-type cyclophane with enforced exotopic metal ion binding sites. Chem Eur J, 2003, 9(11): 2531-2541
    [37] Baxter P N W. Synthesis and properties of a twistophane ion sensor: a new conjugated macrocyclic ligand for the spectroscopic detection of metal ions. J Org Chem, 2001, 66(12): 4170-4179
    [38] Baxter P N W. Twistophane macrocycles with integrated 6,6'-connected-2,2'- bipyridine units: a new lead class of fluorescence sensors for metal ions. Chem Eur J, 2002, 8(22): 5250-5264
    [39] Heuft M A, Fallis A G. Template-directed synthesis of helical phenanthroline cyclophanes. Angew Chem Int Ed, 2002, 41(23): 4520-4523
    [40] Grave C, Schlüter A D. Shape-persistent, nano-sized macrocycles. Eur J Org Chem, 2002, 2002(18): 3075-3098
    [41] Agrofoglio L A, Gillaizeau I, Sonogashira K. Palladium-assisted route to nucleosides. Chem Rev, 2003, 103(5): 1875-1916
    [42] Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett, 1975, 16(50): 4467-4470
    [43] Tykwinski R R , Sonogashira K. Evolution in the palladium-catalyzed cross-coupling of sp- and sp~2-hybridized carbon atoms. Angew Chem Int Ed, 2003,42(14): 1566-1568
    [44] Behr O M, Eglinton G, Galbraith A R. Synthesis and self-association properties of diethynylbenzene macrocycles. J Chem Soc, 1960, 37(52): 3614-3625
    [45] Hoger S, Meckenstock A D, Pellen H. High-yield macrocyclization via Glaser coupling of temporary covalent templated bisacetylenes. J Org Chem, 1997,62(14): 4556-4557
    [46] Hoger S, Meckenstock A D. Template-directed synthesis of shape-persistent macrocyclic amphiphiles with convergently arranged functionalities. Chem Eur J, 1999,5(6): 1686-1691
    
    [47] Kawase T, Ueda N, Darabi H R. et al. [2.2.2.2]Metacyclophane-l,9,17,25- tetrayne. Angew Chem Int Ed, 1996, 35(13-14): 1556-1558
    [48] Kawase T, Ueda N, Oda M. [2.2.2]Metacyclophane-1,9,17-triyne. Tetrahedron Lett, 1997, 38(38): 6681-6684
    
    [49] Kawase T, Hosokawa Y, Kurata H, et al. 8,16,24,32-Tetramethoxy[2.2.2.2] metacyclophane-1,9,17,25-tetrayne: a novel ionophore having a preorganized but unexpectedly flexible cavity. Chem Lett, 1999, 28(8): 745-746
    [50] Utsumi K, Kawase T, Oda M. [2.0.2.0]Metacyclophane-l,15-diynes. A potential fragment of double-helical conjugated systems. Chem Lett, 2003, 32(4): 412-413
    [51] Srinivasan M, Sankararaman S, Dix I, et al. Synthesis and structure of a new [6,6]metacyclophane with enediyne bridges. Org Lett, 2000, 2(24): 3849-3851
    [52] Yamaguchi Y, Kobayashi S, Wakamiya T, et al. A simple hybrid cyclyne consisting of 1,3-diethynylbenzene and ether units: synthesis and novel Ag~+-induced cyclization leading to the perylene skeleton formation. J Am Chem Soc, 2000, 122(30): 7404-7405
    [53] Kobayashi S, Wakumoto S, Yamaguchi Y, et al. Synthesis and properties of novel thiaarenecyclynes. Tetrahedron Lett, 2003, 44(9): 1807-1810
    [54] Laskoski M, Steffen W, Morton J G M, et al. Synthesis and explosive decomposition of organometallic dehydro[18]annulenes: an access to carbon nanostructures. J Am Chem Soc, 2002, 124(46): 13814-13818
    
    [55] Zhang J, Moore J S. Aggregation of hexa(phenylacetylene) macrocycles in solution: a model system for studying π-π interactions. J Am Chem Soc, 1992, 114(24): 9701-9702
    [56] Shetty A S, Zhang J, Moore J S. Aromatic π-stacking in solution as revealed through the aggregation of phenylacetylene macrocycles. J Am Chem Soc, 1996, 118(5): 1019-1027
    [57] Lahiri S, Thompson J L, Moore J S. Solvophobically driven π-stacking of phenylene ethynylene macrocycles and oligomers. J Am Chem Soc, 2000, 122(46): 11315-11319
    [58] Zhao D, Moore J S. Synthesis and self-association of an imine-containing m-phenylene ethynylene macrocycle. J Org Chem, 2002, 67(11): 3548-3554
    [59] Zhang J, Moore J S. Liquid crystals based on shape-persistent macrocyclic mesogens. J Am Chem Soc, 1994, 116(6): 2655-2656
    [60] Moore J S, Zhang J. Efficient synthesis of nanoscale macrocyclic hydrocarbons. Angew Chem Int Ed, 1992, 31(7): 922-924
    [61] Zhang J, Pesak D J, Moore J S, et al. Geometrically-controlled and site-specifically-functionalized phenylacetylene macrocycles. J Am Chem Soc, 1994, 116(10): 4227-4239
    [62] Shortell D B, Palmer L C, Moore J S. Solid-phase approaches toward cyclic oligomers. Tetrahedron, 2001, 57(44): 9055-9065
    [63] Ge P H, Moore J S, Herrmann W A, et al. Structural characterization of a cyclohexameric meta-phenyleneethynylene made by alkyne metathesis with in situ catalysts. Angew Chem Int Ed, 2000, 39(20): 3607-3610
    [64] Vidal-Ferran A, Müller C M, Sanders J K M. A convergent approach to unsymmetrical porphyrin oligomers. J Chem Soc, Chem Commun, 1994, (23):2657-2658
    [65] Anderson S, Anderson H L, Sanders J K M. Template-directed synthesis of linear and cyclic butadiyne-linked porphyrin oligomers up to a linear octamer. J Chem Soc Perkin Trans, 1995, (18): 2247-2254
    [66] Anderson S, Anderson H L, Sanders J K M. The roles of templates in the syntheses of porphyrin oligomers. J Chem Soc Perkin Trans, 1995, (18): 2255-2267
    [67] Anderson S, Anderson H L, Sanders J K M. Expanding roles for templates in synthesis. Acc Chem Res, 1993, 26(9): 469-475
    [68] Li J, Ambroise A, Yang S I, et al. Template-directed synthesis, excited-state photodynamics, and electronic communication in a hexameric wheel of porphyrins. J Am Chem Soc, 1999, 121(38): 8927-8940
    
    [69] Rucareanu S, Mongin O, Schuwey A, et al. Supramolecular assemblies between macrocyclic porphyrin hexamers and star-shaped porphyrin arrays. J Org Chem, 2001, 66(15): 4973-4988
    
    [70] Collins S K, Yap G P A, Fallis A G. The synthesis of a novel strained diyneparacyclophane and its dimer by metal-mediated coupling. Angew Chem Int Ed, 2000, 39(2): 385-388
    [71] Collins S K, Yap G P A, Fallis A G. Synthesis of novel acetylenic cyclophanes with helical chirality: potential new structures for liquid crystals. Org Lett, 2000, 2(20): 3189-3192
    [72] Heuft M A, Collins S K, Fallis A G. Molecular folding of C60 acetylenic cyclophanes: π-stacking of superimposed aromatic rings. Org Lett, 2003, 5(11): 1911-1914
    [73] Haley M M, Bell M L, Brand S C, et al. One-pot desilylation/dimerization of ethynyl- and butadiynyltrimethylsilanes: Synthesis of tetrayne-linked dehydro- benzoannulenes. Tetrahedron Lett, 1997, 38(43): 7483-7486
    
    [74] Kr(o|¨)mer J, Rios-Carreras I, Fuhrmann G, et al. Synthesis of the first fully α-conjugated macrocyclic oligothiophenes: cyclo[n]thiophenes with tunable cavities in the nanometer regime. Angew Chem Int Ed, 2000, 39(19): 3481-3486
    [75] Fuhrmann G, Debaerdemaeker T, B(a|¨)uerle P. C-C bond formation through oxidatively induced elimination of platinum complexes-a novel approach towards conjugated macrocycles. Chem Commun, 2003, (8): 948-949
    [76] Henze O, Lentz D, Schlüter A D. Synthesis and an X-ray structure of soluble phenylacetylene macrocycles with two opposing bipyridine donor sites. Chem Eur J, 2000, 6(13): 2362-2367
    [77] Henze O, Lentz D, Schafer A, et al. Phenylacetylene macrocycles with two opposing bipyridine donor sites: syntheses, X-ray structure determinations, and Ru complexation. Chem Eur J, 2002, 8(2): 357-365
    [78] Grave C, Lentz D, Schafer A, et al. Shape-persistant macrocycles with terpyridine units: synthesis, characterization, and structure in the crystal. J Am Chem Soc, 2003, 125(23): 6907-6918
    [79] Kobayashi S, Yamaguchi Y, Wakamiya T, et al. Shape-persistent cyclyne-type azamacrocycles: synthesis, unusual light-emitting characteristics, and specific recognition of the Sb(V) ion. Tetrahedron Lett, 2003, 44(7): 1469-1472
    [80] Yamaguchi Y, Kobayashi S, Amita N, et al. Creation of nanoscale oxaarenecyclynes and their C~(60) complexes. Tetrahedron Lett, 2002, 43(18): 3277-3280
    [81] Sun S S, Lees A J. Synthesis and photophysical properties of dinuclear organometallic rhenium(I) diimine complexes linked by pyridine-containing macrocyclic phenylacetylene ligands. Organometallics, 2001, 20(11): 2353-2358
    [82] Campbell K, McDonald R, Branda N R, et al. Rigid, cross-conjugated macrocycles: a cyclic alternative to 4'4-bipyridines in supramolecular chemistry. Org Lett, 2001,3(7): 1045-1048
    
    [83] Orita A, An D L, Nakano T, et al. Sulfoximine version of double elimination protocol for synthesis of chiral acetylenic cyclophanes. Chem Eur J, 2002, 8(9):2005-2010
    
    [84] Anderson S, Neidlein U, Diederich F, et al. A new family of chiral binaphthyl-derived cyclophane receptors: complexation of pyranosides. Angew Chem Int Ed, 1995, 34(15): 1596-1600
    
    [85] Heuft M A, Collins S K, Yap G P A, et al. Synthesis of diynes and tetraynes from in situ desilylation/dimerization of acetylenes. Org Lett, 2001, 3(18): 2883-2886
    
    [86] Nakamura K, Okubo H, Yamaguchi M. Synthesis and self-aggregation of cyclic alkynes containing helicene. Org Lett, 2001, 3(8): 1097-1099
    [87] Cahn R S, Ingold C, Prelog V. Specification of molecular chirality. Angew Chem Int Ed, 1966, 5(4): 385-415
    [88] a) Han S, Bond A D, Disch R L, et al. Total syntheses and structures of angular [6]- and [7]phenylene: the first helical phenylenes (heliphenes). Angew Chem Int Ed, 2002, 41(17): 3223-3227
    [89] Katz T J, Liu L, Willmore N D, et al. An efficient synthesis of functionalized helicenes. J Am Chem Soc, 1997, 119(42): 10054-10063
    [90] Rajca A, Wang H, Pink M, et al. Annelated Heptathiophene: A Fragment of a Carbon-Sulfer Helix. Angew Chem Int Ed, 2000, 39(24): 4481-4483
    [91] Meng Y, Williams T, Slaven V, et al. Stepwise synthesis and characterization of oligomers based on 1,1'-binaphthol with 3,3'-acetylene spacer. Tetrahedron: Asymmetry, 1998, 9(20): 3693-3707
    [92] Zarges W, Hall J, Lehn J M. Helicity induction in helicate self-organisaton from chiral tris(bipyridine) ligand strands. Helv Chim Acta, 1991, 74(8): 1843-1852
    [93]Fox J M,Lin D,Itagaki Y,et al.Synthesis of conjugated helical acetylene-bridged polymers and cyclophanes.J Org Chem,1998,63(6):2031-2038
    [94]Marsella M J,Kim I T,Tham F.Toward conjugated double helical ladder polymers:cyclooctatetrathiophene as a highly versatile double helical scaffold.J Am Chem Soc,2000,122(5):974-975
    [95]Orita A,Nakano T,An D L,et al.Metal-assisted assembly of pyridine-containing arylene ethynylene strands to enantiopure double helicates.J Am Chem Soc,2004,126(33):10389-10396
    [96]An D L,Nakano T,Orita A,et al.Enantiopure double-helical alkynyl cyclophanes.Angew Chem Int Ed,2002,41(1):171-173
    [97]Tobe Y,Nakagawa N,Ronald B,et al.Polyyne cyclization to form carbon cages:[16.16.16](1,3,5)cyclophanetetracosayne derivatives C_(60)H_6 and C60C16 as precursors to C_(60)fullerene.Tetrahedron,2001,57(17):3629-3636
    [98]安德烈,罗蜂,彭志鸿.光学活性的2,2′-二取代1,1′-联萘和间吡啶桥构筑的分子内双螺旋化合物的合成.湖南大学学报,2002,29(3):34-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700