用户名: 密码: 验证码:
润滑油类羧酸酯的绿色合成、光降解特性及其对土壤生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业的高速发展,环境污染越来越严重,环境保护引起了人们的高度重视。合成酯类润滑油具有矿物型润滑油无法相比的优良的高温性和低温性,良好的粘温性和热氧化稳定性,良好的润滑性和低挥发性,极好的化学稳定性和耐辐射性,生理无毒,可生物降解等优点,在航空、航天、军事、民用等领域得到广泛的应用。酯类润滑油大量使用中不可回收损失以及传统合成方法给环境带来的污染不可忽视。因此,开展润滑油类酯的绿色合成、光降解特性以及对土壤生态的影响全面、系统的研究具有十分重要的理论和现实意义。
     本文采用微波无溶剂合成和生物合成两种绿色合成方法合成润滑油类多元醇酯、双酯和癸酸十二酯。并选用部分合成产物为代表研究其光解特性和对土壤生态的影响。主要研究结果如下:
     用三甲醇丙烷(TMP)、季戊四醇(PE)和双季戊四醇(di-PE)分别与C_5~C_9直链一元羧酸在无溶剂条件下微波催化合成润滑油羧酸类多元醇酯结果显示:与传统合成方法对比,三甲醇丙烷羧酸三酯反应时间缩短10~15倍,三甲醇丙烷辛酸三酯、三甲醇丙烷壬酸三酯的产率分别提高了11%和13%。季戊四醇羧酸四酯的反应时间缩短为10~11倍,季戊四醇辛酸四酯、季戊四醇壬酸四酯的产率分别提高了12%和10%。优化了微波无溶剂合成条件,三甲醇丙烷羧酸酸三酯微波合成的最佳条件:功率为280 W~320 W,反应时间为6~10min,产率为81%~96%。季戊四醇羧酸四酯微波合成的最佳条件:300 w~320w,反应时间为8.5~11min,产率为85%~98%。探讨了微波辐射下C_5~C_8一元羧酸与双季戊四醇(di-PE)无溶剂合成的最佳条件:C_5~C_8一元羧酸:di-PE的摩尔比为8:1;微波功率为300W~320W;筛择了最佳复合催化剂,其比值范围(浓硫酸:对甲基苯磺酸)为1:2.5~1:3.0;均得93%以上产率,反应时间为5~10 min;用乌氏粘度计测定了产物的粘度。随着羧酸碳原子的递增,其酯化温度和粘度都呈上升趋势。
     用己二酸、壬二酸、葵二酸、邻苯二甲酸分别与异辛醇、正十二醇微波无溶剂合成润滑油类羧酸双酯,研究结果表明:反应最佳微波功率为300 w~320 w。二元羧酸二异辛酯反应时间为8~9 min,产率为91%~95%。二元羧酸二正十二酯的反应时间为4~6 min,产率为95%~97%。首次测定了二元羧酸二正十二酯的结晶点。用~1H NMR、~(13)C NMR和IR光谱对所有多元醇酯和双酯的产物结构进行了表征。测定了它们的色泽、粘度、折射率。
     微波无溶剂合成润滑油类多元醇酯和双酯,与酯交换法和传统工业法相比,具有反应速度加快、能耗少,产率高、原料的利用率高、副反应少,产物颜色好、质量高,减少因有机溶剂带来的环境污染等优点,是一种理想的绿色合成方法,为酯类润滑油的传统合成工艺改进提供新的研究方向。
     研究了乙烯对脂肪酶水解活力的直接作用及其机理。结果表明:低浓度乙烯能使脂肪酶催化三油酸甘油酯的水解活力提高;当乙烯浓度为0.9834 mmol·L~(-1)时,酶活力提高13.0%。高浓度乙烯降低脂肪酶活力;当乙烯浓度为7.9669 mmol·L~(-1)时,酶活力下降24.5%.加入乙烯的酶最适温度向高温偏移10~15℃,而酶的最适pH值不变。在pH=7.9时,乙烯使酶活力升高较大,pH为4.5~7.5,8.5,9.5~11时酶的活力降低。加入乙烯的酶与对照相比,其紫外吸收和荧光发射强度均有较大幅度增加;荧光偏振度、比旋光度和粘度显著下降。DSC分析表明:在低温范围内酶的可逆吸热峰值温度明显高于对照,而热焓变低于对照;在高温范围内酶的不可逆吸热峰值温度和热焓变都低于对照。
     以猪胰腺脂肪酶合成癸酸十二酯为例,研究乙烯对有机溶剂中离体脂肪酶酯化活力和构象的影响,并初步探讨其作用机理。结果表明:低浓度乙烯使脂肪酶的酯化活力提高,当乙烯浓度为247.93 nmol.L~(-1)时酶的酯化活力提高了39.23%。高浓度乙烯降低酶的酯化活力,当乙烯浓度为14644.23 nmol.L~(-1)时酶的酯化活力降低了27.64%。乙烯使环己烷和正己烷溶剂中酶的酯化活力提高,在异辛烷溶剂中降低酶的酯化活力。在乙烯的作用下酶的最适温度向低温方向偏移15℃。乙烯在底物低浓度时对酶有激活作用,在底物高浓度对酶产生抑制作用,这种激活或抑制作用是一个可逆过程。该酯化反应存在双底物抑制现象,反应动力学遵循双底物抑制的乒乓机制。与对照相比,乙烯使酶溶液的粘度、比旋光度、荧光偏振度明显降低;旋光方向改变;荧光发射强度、二阶导数谱的振幅显著增强,且峰位改变。DSC分析显示:加入乙烯的脂肪酶不可逆吸热峰值温度和热焓变均高于对照。
     这些结果表明乙烯对脂肪酶的水解活力、酯化活力以及酶的构象有明显的影响,证实了乙烯可以直接影响酶的微环境和构象。作用机理可能是乙烯通过改变酶的微环境以及嵌入酶分子内部改变酶的构象而引起脂肪酶水解活力和酯化活力的变化。同时也证实了有机气态小分子在酯类化合物的生物合成中有一定的影响,拓宽了生物合成的研究领域,具有非常重要的科学价值。
     以锐钛型纳米TiO_2作为光催化剂研究不同光解因素对双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯的光解效果的影响及双季戊四醇庚酸六酯、三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯的光解动力学规律。不同光解因素研究结果显示:与对照相比,纳米TiO_2对双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯的光降解有显著促进作用。在双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯浓度在纳米TiO_2的浓度分别为1.26 g·L~(-1)和1.24 g·L~(-1)时,光解20 min双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯的光解效果最佳。其光解率分别为93.07%和95.8%,比对照分别提高了61%和48%。pH值对双季戊四醇庚酸六酯的降解影响较大。在强酸性、中性条件下,有利于双季戊四醇庚酸六酯光降解。而在弱酸性、弱碱性条件下对双季戊四醇庚酸六酯的降解效果较差。三甲醇丙烷庚酸三酯在中性至弱碱性条件下,光降解效果最好。不同浓度的H_2O_2对双季戊四醇庚酸六酯的降解有较大影响。在试验条件下,当H_2O_2浓度为2.0mol·L~(-1)~3.0 mol·L~(-1)时,双季戊四醇庚酸六酯的光降解效率急剧上升,产生一个突变,光降解率达到95.92%。和对照相比,其光解率提高了23%。超过3.0 mol·L~(-1)时,光降解率提高幅度不大。三甲醇丙烷庚酸三酯在H_2O_2浓度为3 mol·L~(-1)降解率达到最高。与对照比较,其光解率提高了9%。有机溶剂对双季戊四醇庚酸六酯的光降解效果次序为:异辛烷>丙酮>无水乙醇>二氯甲烷,异辛烷是双季戊四醇庚酸六酯光降解的最佳有机溶剂。而有机溶剂对三甲醇丙烷庚酸三酯的光降解效果次序为:丙酮-醇水溶液>甲醇>异辛烷>二甲苯,三甲醇丙烷庚酸三酯光降解的最佳溶剂为丙酮和醇水溶液。
     光解动力学研究结果表明:纳米TiO_2浓度、pH值、H_2O_2浓度和有机溶剂对双季戊四醇庚酸六酯、三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯的光解动力学均遵循一级反应动力学规律。高浓度的纳米TiO_2对双季戊四醇庚酸六酯、三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯光解动力速率均有一定的抑制作用。双季戊四醇庚酸六酯、三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯分别在纳米TiO_2浓度为1.49 g·L~(-1)、2.98 g·L~(-1)和1.49 g·L~(-1)时,其光降解速率常数最大,半衰期最短。对照相比,其半衰期分别缩短了的3倍、30倍和4倍。双季戊四醇庚酸六酯在酸性条件下,速率常数大。三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯在碱性条件下,光降解速率常数较大。H_2O_2对三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯的光解动力学有双重效应。在H_2O_2浓度为0.65 mol·L~(-1)时,对三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯有强的光敏化,而随着浓度升高,光敏化作用减弱。高浓度H_2O_2有明显的光淬灭作用。对于双季戊四醇庚酸六酯在试验浓度范围内(0~2.61 mol·L~(-1)),随着H_2O_2浓度升高光敏化作用增强。三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯在丙酮溶剂中的光降解速率常数最大,半衰期最短。
     通过双季戊四醇庚酸六酯、三甲醇丙烷庚酸三酯和邻苯二甲酸异辛酯光解产物的紫外吸收光谱和红外光谱初步分析:加入纳米TiO_2和未加入纳米TiO_2两组的光解机理不同,但光解产物中均有氢化过氧化羟基和小分子的过氧物中间体。对于双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯,未加入纳米TiO_2一组的光解机理可能是:酯基先断键,生成醇和羧酸以及少量的含过氧化物的中间体,然后进一步氧化生成含较多过氧键的中间体,最后断键生成小分子的醇和醚类化合物。而加入纳米TiO_2一组的光降解机理可能是:在纳米TiO_2催化下,光解反应物先氧化生成过氧化合物,然后再断过氧键和酯键,生成小分子的过氧化合物和小分子的醇以便进一步降解。对于邻苯二甲酸异辛酯在未加入纳米TiO_2和加入纳米TiO_2两种情况下的降解机理刚好与双季戊四醇庚酸六酯和三甲醇丙烷庚酸三酯相反。
     用纳米ZnO为光催化剂研究不同光解因素对邻苯二甲酸异辛酯和季戊四醇戊酸四酯光解效果的影响及季戊四醇庚酸六酯的光解动力学规律。不同光解因素研究结果表明:纳米ZnO对邻苯二甲酸异辛酯和季戊四醇戊酸四酯的光解有明显光催化效果。从光解率和经济角度考虑,纳米ZnO最佳浓度为14.23 g·L~(-1)。pH对邻苯二甲酸异辛酯和季戊四醇戊酸四酯的光解效果有不同的影响。邻苯二甲酸异辛酯由强酸性至弱酸中性范围,其光解率随pH值得增加而逐渐增高。pH为6.5光解效果最佳。而季戊四醇戊酸四酯随pH增加,光解效果变化规律呈单调递减性,在强酸性条件下其光解率高。H_2O_2对季戊四醇戊酸四酯光解起光敏化效果。当H_2O_2浓度为2.9382 mol·L~(-1)时,季戊四醇戊酸四酯光解率达到最高值,比对照提高了87.9%。而H_2O_2对邻苯二甲酸异辛酯的光解有双重作用。H_2O_2在0.9794 mol·L~(-1)~1.958 mol·L~(-1)浓度范围,产生光敏化效应。当H_2O_2浓度为0.9794 mol·L~(-1)时,其光解率最高,比对照提高了43.96%。当H_2O_2浓度为4.897 mol·L~(-1)时,H_2O_2对邻苯二甲酸异辛酯光解有淬灭作用。光催化剂与光解有机物初浓度达到一个最佳的浓度比时,光解率最高。季戊四醇戊酸四酯在纳米ZnO浓度为11.66g·L~(-1)时,初浓度在668.0 mg·L~(-1)~1002.0 mg·L~(-1)范围的降解率较高。邻苯二甲酸异辛酯在纳米ZnO浓度为11.53 g·L~(-1)时,初浓度在75.2 mg·L~(-1)~150.2 mg·L~(-1)范围出现降解率较高值。随着光照时间的延长,邻苯二甲酸异辛酯和季四戊醇戊酸四酯的降解率逐渐增大。邻苯二甲酸异辛酯光10 min,光解率达到97.3%。季戊四醇戊酸四酯光解时间大20 min时,光解率为35.03%~38.59%,其光解率就趋于平稳。
     季四戊醇戊酸四酯光解动力学研究结果显示:纳米ZnO浓度、pH值、H_2O_2浓度对季四戊醇戊酸四酯的光解动力学均遵循一级反应动力学规律。pH对季四戊醇戊酸四酯光解动力学有明显影响。在酸性条件下,速率常数最大。在碱性条件下,其光降解速率常数小,半衰期比酸性条件下延长了4倍。纳米ZnO浓度对季戊四醇戊酸四酯光降解动力学有明显影响。随着纳米ZnO浓度增加,光降解速率逐渐增大,并大于对照。当纳米ZnO浓度为12.94 g·L~(-1)时,光降解速率常数达到最大值,半衰期最短。浓度H_2O_2对季戊四醇戊酸四酯光降解动力学影响明显。在试验浓度范围内(1.1~5.8 mol.L~(-1)),加入H_2O_2的光解反应速率常数均大于对照。H_2O_2对季戊四醇戊酸四酯光解起到光敏化作用。当H_2O_2浓度为3.2625 mol.L~(-1)时,半衰期最短,比对照缩短约4倍。继续增加H_2O_2浓度,半衰期又延长。
     通过季戊四醇戊酸四酯光解产物的紫外吸收光谱和红外光谱,可以初步看出季戊四醇戊酸四酯没有光催化剂的作用下光解可能途径:在光解反应先氧化生成过氧化合物,然后再断过氧键和酯键,生成小分子的过氧化合物以便进一步降解。
     以润滑油类三甲醇丙烷庚酸三酯为润滑油污染物代表,研究其在矿子黄泥和灰棕紫泥两种土壤中的吸附特征及对钙质紫泥土的微生物数量和微生物生物氮量的影响。吸附动力学和热力学研究结果:矿子黄泥和灰棕紫泥对三甲醇丙烷庚酸三酯的吸附是一个快速过程。吸附过程可分为两个阶段,前20 min为快速反应阶段,吸附量分别达到最大吸附量的75.61%和69.37%;之后为慢速反应阶段,40 min左右基本达到吸附平衡。整个吸附反应达到平衡所需时间短,表明该类润滑油酯进人土壤后,其中一部分能迅速为土壤吸附固定,对其后期的迁移及生物降解转化有着重要的影响。采用Langmuir和Freundlich方程拟合等温吸附曲线,比较结果发现Langmuir方程拟合效果较好,表明矿子黄泥和钙质紫色土对三甲醇丙烷庚酸三酯的等温吸附特征更符合Langmuir吸附规律,其最大吸附量分别为12.99 mg·g~(-1)和17.45 mg·g~(-1)。
     三甲醇丙烷庚酸三酯对钙质紫泥土的微生物数量和微生物生物氮量的影响研究结果表明:三甲醇丙烷庚酸三酯对土壤中微生物数量有显著的影响。不同的处理时间、不同的三甲醇丙烷庚酸三酯浓度对土壤细菌、真菌和放线菌的影响差异大。与对照相比,细菌在前15天,各浓度是随时间增加细菌数量呈现出不同程度的上升趋势。细菌数量随时间的延长,浓度为10.0mg·kg~(-1)的土样,则出现激活-抑制-激活交替性的变化规律。浓度为100 mg·kg~(-1)的土样有一定的抑制作用。浓度为502.0 mg·kg~(-1)的土样,表现出激活作用。处理15天~30天,除了502.0 mg·kg~(-1)浓度继续出现激活、呈上升趋势以外,其余浓度细菌数量均有不同程度的下降。真菌在28天以前,三甲醇丙烷庚酸三酯各浓度对真菌均起抑制作用。特别是前5天,随浓度的增高抑制作用越强。5~30天,随着时间的延长,三甲醇丙烷庚酸三酯各浓度的土壤真菌数量上升速度快。28天~30天,0.0 mg·kg~(-1)和502.0 mg·kg~(-1)浓度的土壤真菌数量高于对照,有激活作用。与对照相比,在15天以前,10.0 mg·kg~(-1)浓度的土样随着时间的增加放线菌数量逐渐增加,先抑制后激活,最高激活率为33.7%。100.0 mg·kg~(-1)浓度的土样则是激活、抑制、再激活的变化。在第1天的激活率最高;第5天的抑制率最大。502.0 mg·kg~(-1)浓度的土样是先抑制后激活,放线菌数量出现先下降后升高的趋势。15~30天,各浓度出现不同程度的激活。三甲醇丙烷庚酸三酯对土壤微生物生物氮量有明显的影响。与对照相比,前15天,除了10.0 mg·kg~(-1)浓度的土样在前2天的微生物氮量高于对照外,其余均低于对照。15天以后,各浓度的微生物氮量均高于对照。
Along with the rapid development of modern industry,the environmental pollution is more and more serious,so people attach highly importance to environmental protection.Compared with mineral lubrication oil,synthesized ester lubrication oil has many excellent properties,i.e.the property of high temperature and low temperature,high viscosity index,heat-oxidation stability,fine lubricant characteristic,low volatility,excellent thermal stability,radiation-resistant characteristic, physiological harmlessness and easy biodegradability in the natural environment,therefore,it is widely used in all kinds of aviation,spaceflight,military affairs and civilian.Environmental pollution isn't ignorable because a great deal of used ester lubrication oil can't be reclaim and conventional synthesis method brings outgrowth and organic solvent.Thereby,the comprehensive systemic studies about green synthesis photodegradation and influence of ester lubrication oil on soil zoology are of vital importance to theory and realism.
     The microwave synthesis of polyol esters,di-esters without organic solvent and the biosynthesis of dodcanol capriate and the photodegradation and influence of them on soil zoology were investigated in the dissertation.
     Under microwave irradiation the polyol esters of lubricating oil were synthesized without organic solvent by the reaction of trimethylolpropane(TMP) or pentaerythritol(PE) or dipentaerythritol(di-PE) with C_5 to C_9 carboxylic acids.By comparing with the conventional synthetic method,the results show that the reaction time under microwave irradiation is largely shortened and the reacting velocity increases ten to fifteen times for TMP tri-ester,and the yields of TMP tri- caprylate and TMP tri- nonanoate are respectively increased 11%and 13%.For PE esters the reaction time under microwave irradiation also is largely shortened and the reacting velocity increases ten to eleven times.The yields of PE quadri-caprylate and PE quadri- nonanoate are respectively increased 12%and 10%.Optimizations of a series of reactions about PE and TMP with C_5-C_9 straight-chain fatty acid were investigated without organic solvent under microwave irradiation.For TMP esters,the best microwave power was between 280 W and 320 W.The reaction time was 6~10 min and the yields were 81%~96%.For PE esters,the best microwave power was 300 W~320 W.The reaction time was 8.5~11 min and the yields were 85%~98%.The best synthetical conditions of di-PE with C_5 to C_8 carboxylic acids were investigated without organic solvent under microwave radiation.The best molar ratio of C_5 to C_8 carboxylic acids vs di-PE was 8: 1.The best microwave power was 300W~320W.The best composite catalyst was selected,and the ratio of composite catalyst(vitriol oil vs p-toluene sulphonic acid) was from 1:2.5 to1:3.0.The yields were at least 93%within 9~10min.Their viscosity coefficients were determined by Ubbelohde viscosimeter.With the increase of carbon atom number of carboxylic acids,their esterifiable temperatures and viscosities gradually went up.
     Under microwave irradiation the di-ester of lubricating oil were synthesized without organic solvent by the reaction of hexane diacid or azelaic acid or sebacic acid or o-phthalic acid with isooctyl alcohol or dodecanol.The results showed that the best microwave power was 300W~3320W,the reaction time of diisooctyl adipate,diisooctyl azelate and diisooctyl sebacate was 8~9 minute and the yields were 91%~95%.The reaction time of didodecyl adipate,didodecyl azelate and didodecyl sebacate was 4~9 minute and the yields were 95%~97%.Their crystal points have been determined first.All structures of di-ester and polyol ester have been characterized by ~1H NMR、~(13)C NMR and IR spectra,and their refractive indexes,viscosity coefficients and colors and luster have been determined.
     In comparison with the conventional and industrial method,microwave-synthesized method has many advantages of fast reacting velocity,high yield,low energy consuming,few outgrowth,good colors and quality and decreasing environmental pollution by reason of organic solvent.Thereby,it is a perfect green synthetical method and it may provide a new research orientation for traditional technology improvement of ester lubricating oil.
     The mechanism and direct effect of ethylene on lipase activity have been studied.The results showed that the lipase activity increased in ethylene of lower concentrations and the highest percent was 13.0%when the ethylene concentration was 0.9834 mmol·L~(-1).The lipase activity decreased in ethylene of higher concentrations and the highest percent was 24.50%when the ethylene concentration was 7.9669 mmol·L~(-1).The optimum temperature of the lipase in the presence of ethylene increased by10~15℃compared to that in the absence of ethylene.The optimum pH of the lipase was 7.5 in the presence or absence of ethylene.When pH was 7.9 the lipase activity in the presence of ethylene increased greater and reduced when pH was 4.5~7.5,8.5 and 9.5~11.To compare with contrast,the UV absorption and fluorescence emission intensities of the lipase in the presence of ethylene were enhanced markedly,and its fluorescence polarization,specific rotatory power at 30℃and the viscosity at 14℃in the presence of ethylene declined obviously.Differential scanning calorimetry was adopted for studying conformational transition of the lipase in the presence or absence of ethylene.The results revealed that the peak temperature of reversible endotherm of the lipase in the presence of ethylene was higher than that of the contrast and the enthalpy was lower than that of the contrast at a lower temperature,and the peak temperature of nonreversible endotherm and the enthalpy in the presence of ethylene were lower than that of the contrast at a higher temperature.
     The mechanism and effect of ethylene on esterifiable activity of lipase and its conformation have been investigated in organic solvents,taking the example of lipase-catalyzed esterification of capric acid and dodcanol.The results showed that the lipase activity increased in the presence of ethylene of lower concentrations and the highest percent was 39.23%when the ethylene concentration was 247.93nmol.L~(-1).The lipase activity decreased in the presence of ethylene of higher concentrations and the highest percent was 27.64%when the ethylene concentration was 14644.23nmol.L~(-1).The lipase activity in cyclohexane and n-hexane increased and decreased in isooctane in the presence of ethylene.The optimum esterifiable temperature of the lipase in the presence of ethylene decreased by 15℃compared to that in the absence of ethylene.The lipase activity was activated by ethylene in lower substrate concentration and inhibited by ethylene in higher substrate concentration.These actions were reversible.The esterification reaction had the inhibition effects of both substrates.The kinetics of the reaction was consistent with the Ping-Ping Bi-Bi mechanism,which is characterized by inhibition by both acid and alcohol.To compare with contrast,the viscosity at 14℃,and specific rotatory power at 25℃and fluorescence polarization of the lipase in the presence of ethylene declined obviously;and its fluorescence emission intensities and the distance between extremum value of ultraviolet second-derivative spectroscopy were enhanced markedly,and their peak locations changed in the presence of ethylene.The DSC revealed that the peak temperature of nonreversible endotherm and its enthalpy of the lipase in the presence of ethylene were higher than that of the contrast.
     These results prove adequately that ethylene can directly influence not only the esterifiable and hydrolytic activity of the lipase but also the microcosmic environment and conformation of the lipase.The mechanism that ethylene acts on the lipase probably is that ethylene changes the microcosmic environment of the lipase and embeds the lipase inside to drive the conformational transition of the lipase.This also prove organic gaseous small molecule can effect on the biosynthesis of ester and extend its study scope.The result is the very significance for chemistry biology science.
     The photodegradation of di-PE hexa-heptylate,TMP tri-heptylate and diisooctyl o-phthalic ester under UV were investigated,using anatase nano-TiO_2 as photocatalyst.The photodegradation results of the concentration of nano-TiO_2 and H_2O_2,PH,organic solvents,and the analysis of reaction kinetics as follows:
     Compared with the comparison,anatase nano-TiO_2 can markedly accelerate the photo -degradation of di-PE hexa-caproate and TMP tri-heptylate.When nano-TiO_2 concentrations were respectively 1.26g·L~(-1) and 1.24 g·L~(-1) and ultraviolet radiation time was 20 min,their degradation effects were the best,and the degradation percents of di-PE hexa-caproate and TMP tri-heptylate were respectively 93.07%and 95.8%and respectively increased about 61%and 48%than their contrasts.Effect of pH on the photodegradation of di-PE hexa-caproate was obvious and was the best in acidity and neutral conditions,but weak acidity and alkaline conditions was not advantageous for its photodegradation.For TMP tri-heptylate,the most suitable pH was neutral and weak alkaline. The effect was the best.Peroxide of hydrogen(H_2O_2) can promote photodegradation of di-PE hexa-caproate and TMP tri-heptylate.When the concentration of H_2O_2 was 2mol·L~(-1)~3 mol·L~(-1),the photodegradation percent sharp rose and reached 95.92%and the photodegradation percent increased about 23%than the contrast.When the concentration of H_2O_2 was higher than 3 mol·L~(-1), the increase of photodegradation percent was slow.For TMP tri-heptylate,when the concentration of H_2O_2 was 3 mol·L~(-1),the degradation effect was the best and the percent increased about 9%by comparing with the contrast.Effect of organic solvent on the photodegradation of di-PE hexa-caproate and TMP tri-heptylate was significantly.For di-PE hexa-caproate,the order of the best photodegradation effect in four organic solvents was:isooctane>acetone>anhydrous ethanol>dichloromethane.Thus,the best solvent of photodegradation was isooctane.For TMP tri-heptylate,the order of the best photodegradation effect in five organic solvents was:acetone ~ alcohol- water solution>methanol>isooctane>xylene>.The best solvents of photodegradation were acetone and alcohol -water solution.
     The experimental results of the dynamics show that the kinetic equation of photodegradation of the concentration of nano-TiO_2 and H_2O_2,PH,organic solvents for di-PE hexa-caproate,TMP tri-heptylate and diisooctyl o-phthalic ester conform to a one-order dynamics rule.Higher concentration of nano-TiO_2 can restrain the photodegradation of di-PE hexa-caproate,TMP tri-heptylate and diisooctyl o-phthalic ester.When the concentrations of nano-TiO_2 respectively were 1.49 g·L~(-1),2.98 g·L~(-1) and 1.49 g·L~(-1),the velocity constants of di-PE hexa-caproate,TMP tri-heptylate and diisooctyl o-phthalic ester were the highest and the half- life were the shortest. Compared with the comparison,their half lifes were respectively shortened three times,thirty times and four times.The velocity constant of dipentaerythritol hexa-caproate was the highest in acidity conditions.The velocity constants of TMP tri-heptylate and diisooctyl o-phthalic ester were the highest in alkaline condition.Peroxide of hydrogen on the photodegradation dynamics of TMP tri-heptylate and diisooctyl o-phthalic ester showed two effects.0.65 mol·L~(-1) H_2O_2 showed a strong photosensitizing effect.But along with the increase of concentration of H_2O_2,the photosensitizing effect showed more and more weak.High concentration of H_2O_2 showed obvious photoquenehing effect.For di-PE hexa-caproate,when the concentration H_2O_2 is in the range of 0~2.61 mol·L~(-1),the photosensitizing effect was more and more strong with the increase of concentration of H_2O_2.The velocity constants of TMP tri-heptylate and diisooctyl o-phthalic ester were the highest in acetone and the half- life were the shortest.
     By the primary analysis of the infrared spectra and the UV absorption spectra of the photodegradation outcomes of di-PE hexa-caproate,TMP tri-heptylate and diisooctyl o-phthalic ester,the mechanisms of their photodegradations with nano-TiO_2 or without nano-TiO_2 were different and there were intermediates of hydroxy hydrogen peroxide and small molecule peroxide in photodegradation outcomes.For di-PE hexa-caproate and TMP tri-heptylate,the photodegradation mechanism without nano-TiO_2 was possibly that the ester bond first cut and became alcohol and carboxyl acid as well as little peroxide intermediate,afterwards,they were oxidized further into a lot of peroxide intermediates,and finally cut the peroxide bond and came into being small molecule alcohol and aether.The photodegradation mechanism with nano-TiO_2 was possibly that the peroxide first was produced,then cut the peroxide bond and the ester bond and became small molecule alcohol and the peroxide so as to be oxidized further into alcohol and aether of low molecular weight. For diisooctyl o-phthalic ester,the photodegradation mechanism with nano-TiO_2 or without nano-TiO_2 was opposite with those of dip-PE hexa-caproate and TMP tri-heptylate with nano-TiO_2 or without nano-TiO_2.
     The photodegradations of PE quadri-valerate and diisooctyl o-phthalic ester under the UV were investigated,using nano-ZnO as photocatalyst.The research results of photocatalytic degradation of the concentration of nano-ZnO and H_2O_2,PH,reaction time,initial concentration of the ester and the analysis of reaction kinetics as follows:
     Compared with the comparison,nano-ZnO can markedly accelerate the photodegradation of pentaerythritol quadri-valerate and diisooctyl o-phthalic ester.Considering degradation percent and the cost,the best concentration of nano-ZnO was 14.23 mol·L~(-1).The photodegradation effect of pH on PE quadri-valerate and diisooctyl o-phthalic ester was different.For diisooctyl o-phthalic ester, the degradation percent increased with pH enhancing from strong acidity to weak acidity and neutral condition.When pH was 6.5,the photodegradation effect was the best.For PE quadri-valerate,the degradation percent monotonously descended with pH enhancing from strong acidity to alkalescence. Thus,the degradation percent was the highest in strong acidity condition.Peroxide of hydrogen on the photodegradation of PE quadri-valerate showed obvious photosensitizing effect.When the concentration of H_2O_2 was 2.9382 mol·L~(-1),the degradation percent was 60.48%and increased 87.9% than the contrast.Moreover,the photodegradation of peroxide hydrogen on diisooctyl o-phthalic ester has two effects.When the concentration of H_2O_2 was in the range of 0.9794 mol·L~(-1)~1.96mol·L~(-1),it showed obvious photosensitizing effect.When the concentration of H_2O_2 was 0.9794 mol·L~(-1),the degradation percent was the highest and increased 43.96%than the contrast. When the concentration of H_2O_2 was 4.897 mol·L~(-1),it showed obvious photoquenehing effect.The best concentration ratio of photocatalyst and reactant could make that the degradation percent was the highest.When the concentration of nano-ZnO was11.66 g·L~(-1) and the concentration of PE quadri-valerate was in the range of 668 mg·L~(-1)~1002.0mg·L~(-1),the degradation percent was the highest.When the concentration of nano-ZnO was11.53 g·L~(-1) and the concentration of diisooctyl o-phthalic ester was in the range of 75.2 mg·L~(-1)~150.2mg·L~(-1),the the degradation percent was the highest Along with the photodegradation time prolonging,the degradation percent of PE quadri-valerate and diisooctyl o-phthalic ester gradually increased.The degradation percent of diisooctyl o-phthalic ester reached 97.35%in 10min.And when the photodegradation time exceeded 20min,the degradation percent of PE quadri-valerate was 35.03%~38.59%and it was reposeful.
     The results of the dynamics show that the kinetic equations of the photodegradation of the concentration of nano-ZnO and H_2O_2,PH for PE quadri-valerate conform to a one-order dynamics rule.Effect of pH on the photodegradation dynamics of PE quadri-valerate was remarkable.The velocity constant in acidity conditions was the highest.The velocity constant in alkaline conditions was small and the half life was prolonged four times than that in acidity conditions.Effect of nano-ZnO concentration on the photodegradation dynamics of PE quadri-valerate was also notable. Along with the increase of nano-ZnO concentration,the velocity constant also increased and it was higher than its contrast.When nano-ZnO concentration was 12.49 g·L~(-1),the velocity constant was the highest and the half life was the shortest.In the testing concentration of 1.1 mol·L~(-1)~5.8 mol·L~(-1) H_2O_2,the velocity constant was higher than its contrast.This indicated that H_2O_2 on the photodegradation of PE quadri-valerate had obvious photosensitizing effect.When the concentration of H_2O_2 was 3.2625 mol·L~(-1),the half life was the shortest and it was shortened four times than the contrast.But going on the increase of H_2O_2 concentration,the half life prolonged.
     By the primary analysis of the infrared spectra and the UV absorption spectra of the photodegradation outcomes of PE quadri-valerate,the mechanisms of their photodegradations without photic-catalyzer was likely to the peroxide first was produced,then cut the peroxide bond and the ester bond and became small molecule alcohol and the peroxide so as to be oxidized further into alcohol and aether of low molecular weight.
     The adsorption properties in mineral flavicant soil and gray-brown purple soil,and the change of soil microbes and microbial biomass nitrogen(MBN) in calcic-purple soil were studied by selecting TMP tri-heptylate as the representative of lubrication oil contamination.Adsorption kinetics and thermodynamic experiments showed that the adsorption in them was a fast process, 75.61%and 69.37%of the maximum adsorption in the two soils were respectively completed in the first twenty minutes,followed by a gradual decline,and an equilibrium was eventually reached in about 40 minutes.Thus the adsorption equilibrium time was short.This revealed that after TMP tri-heptylate went into the soil,the part of TMP tri-heptylate was fleetly fixed on the soil.This adsorption was of vital importance to late transfer and biodegradability.The isothermal adsorption data were fitted by both Freundlich equation and Langmuir equation and the results showed that Langmuir equation described the adsorption characteristics better than the Freundlich equation.The maximum adsorption capacities were obtained from the Langmuir equation,which were 12.99mg.g ~(-1)and 17.45 mg.g~(-1) respectively for flavicant soil and gray-brown purple soil.
     The result of soil microbe quantity and microbial biomass nitrogen(MBN) in calcic-purple soil indicated that the effect of TMP tri-heptylate on soil microbe quantity and MBN was very remarkable.The effect was different with different time and different concentration of TMP tri-heptylate.Compared with the comparison,the bacteria quantity rose with time at each concentration tested before 15 day.Along with test time prolonging,the bacteria quantity in the soil treated with 10.0 mg.kg~(-1) revealed stimulation-inhibition- stimulation effect,while that treated with 100.0mg.kg~(-1) had certain inhibitory effect,and that treated with 502.0mg.kg~(-1) became stimulatory. During 15 day~30 day,exception for that treated with 502.0mg.kg~(-1) keeping the rise and having stimulation effect,the bacteria quantity at the other concentration all descended.Before 28 day tested,the effect of TMP tri-heptylate at each concentration tested on fungi population was inhibition.In particular,before 5 day tested,the inhibitory effect was more and more strong with the concentration increase of TMP tri-heptylate.During 5 day~30 day,the rise speed of fungi population was fast with time prolonging.During 28 day~30 day,fungi population treated with the concentration of 10.0mg.kg~(-1) and 502.0mg.kg~(-1) was higher than its contrast and showed stimulation effect.Compared with the comparison,the actinomyce population treated with 10.0mg.kg~(-1) gradually increased with test time prolonging before 15 day,and the effect was firstly inhibition and then stimulation.The highest percent of stimulation was 33.7%.The effect of TMP tri-heptylate on the soil actinomyce population treated with 100.0mg.kg~(-1) was stimulation-inhibition- stimulation. The stimulation percent was the highest in first day.But the inhibition percent was biggest in fifth day.The effect of treated with 502.0 mg.kg~(-1) was inhibition at the beginning and stimulation later. During 15 day~30 day,the effects at each concentration on actinomyce population were stimulation. Compared with the comparison,exception for that treated with the concentration of 10.0mg.kg~(-1) was higher than its contrast before two days,microbial biomass nitrogen(MBN) at the other concentration tested was lower than its contrast.After 15 day tested,MBN at each tested concentration was higher than its contrast.
引文
[1]颜志光,杨正宇,合成润滑剂[M],北京:中国石化出版社,1996。
    [2]吕刚,解世文,居荫诚,降解型二冲程油的基础油组成及其粘度特性研究[J],润滑与密封,2006,(2):49-51。
    [3]徐敏,季戊四醇酯基础油低温性能与原料酸组成的关系研究[J],润滑油,1999,14(6):56-58。
    [4]孙志强,王毓民,王向中。绿色环保润滑剂研究技术进展[J],润滑与密封,2005,(6):200-203。
    [5]李英勃,王毓民,可生物降解润滑油基础油抗氧化安定性的研究[J],润滑与密封,2003,(5):43-46。
    [6]李久盛,张雁燕,菜籽油环氧化工艺改选和反应条件对粘度影响的研究[J],润滑油,2000,15(6):53-55。
    [7]曹月平,余来贵,磷酸三甲酚酯和亚磷酸二正丁酯添加剂对菜籽油磨擦学性能的影响[J],摩擦学学报,2000,20(20):57-58。
    [8]巩清叶,余来贵,叶承峰,含硫硼酸酯与磷酸三甲酚酯复合添加剂在菜籽油中的协同效应[J],摩擦学学报,2002,22(2):117-121。
    [9]方建波,陈波水,磷氮化改性菜籽油润滑添加剂的制备及其摩擦学性能[J],摩擦学学报,2001,21(5):348-353。
    [10]方建波,陈波水,硼氮化改性菜籽油润滑添加剂的制备及其摩擦学性能[J],润滑与密封,2001,(4):18-20。
    [11]王彬,陶德华,叶斌等,新型可生物降解润滑剂的研制,润滑与密封[J],2004,(6):97-98。
    [12]王彬,陶德华,蒋海珍,可生物降解二聚酸酯类的合成及其摩擦磨损性能研究[J],摩擦学学报,2005,25(5):403。
    [13]叶彬,新型改质植物油和环境友好润滑剂的摩擦学性能和应用性研究[D],上海:上海大学博士学位论文,2002。
    [14]陈忠祥,蒋伟锋,硫磷化改性菜子油润滑剂的制备及其摩擦学性能[J],2005,(4):91-92。
    [15]胡志孟,硼化植物油的摩擦化学研究[J],润滑与密封,1992,(2):57-58。
    [16]胡志孟,党鸿辛,植物油脂肪酸的摩擦特性[J],润滑油,2000,15(4):38-40。
    [17]冯明星,中国润滑油的生产与需求[A],第二届中国润滑油会议文集,1998,北京。
    [18]梅德清,赵卫东,张文利,可生物降解的植物油作为内燃机润滑油的研究与应用[J],2004,33(2):94-98。
    [19]王业耀,孟凡生,石油烃污染地下水原位修复技术研究进展[J],化工环保,2005,25(2):117-120。
    [20]谢中阁,环境中石油污染物的分析技术[M],北京:中国环境科学出版社,1987。
    [21]蒋展鹏,师绍琪,张峰等,有机物好氧生物降解性二氧化碳生成量测试法的研究[J],环 境科学,1996,17(3):11-14。
    [22]崔玉民,孙文中,WO_3/CeO_2对溴酚蓝的光催化降解性能[J],河南科技大学学报:自然科学版,2007,28(3):94-97。
    [23]崔玉民,孙文中,张文保,Y_2O_3/WO_3光催化降解酸性红B[J],北京科技大学学报,2008,30(5):482-486。
    [24]唐建军,袁辉洲,邓爱华,李荣先,Fe(Ⅲ)改性膨润土光催化降解水溶液中的4-氯苯酚[J],中国有色金属学报,2007,17(10):1723-1727。
    [25]张万忠,刘景民,周智敏,纳米TiO_2的研究与应用进展[J],石油化工,2007,36(11):1184-1190。
    [26]石红旗,姜伟,张爱军,衣丹,刘发义,李光友,白地酶脂肪酶选择性酯化分离CLA 异构体的研究[J],中国食品学报,2005,5(1):24-30。
    [27]于艳辉,哈日巴拉,徐传友,宋艳艳,纳米二氧化钛光催化剂研究进展[J],材料导报,2008,22(专辑X):54-57。
    [28]沈迅伟,袁春伟,基于二氧化钛多相光催化的环境净化技术研究及进展[J],东南大学学报(自然科学版),2004,34(6):872-879。
    [29]袁慧诗,潘波,刘文新,张先明,张彦旭,肖扬,戴瀚程,陶澍,多环芳烃在全土及其碱提残余物上的吸附行为[J],环境化学,2006,25(2):154-159。
    [30]李俊国,孙红文,芘在土壤中的长期吸附和解吸行为[J],环境科学,2006,27(1):165-170
    [31]杨仁斌,刘毅华,郭正元,三唑酮的光化学降解研究[J],农业环境科学学报,2005,24(3):494-497。
    [32]徐宝才,岳永德,胡颍蕙,花日茂,多菌灵的光化学降解研究[J],环境科学学报,2000,20(5):616-618。
    [33]欧晓明,任竞,雷满香,王晓光,樊德方,新农药硫肟醚在有机溶剂中的光解[J],环境科学学报,2005,25(10):1379-1385。
    [34]杨曦,王晓书,磺酰脲类除草剂在环境中的光降解研究:水溶液中的光解动力学[J],环境科学,1998,19(6):29-32。
    [35]李霞,嘎日迪,萨嘎拉,照日格图,纳米ZnO的制备及其光催化活性研究[J],内蒙古师范大学学报(自然科学汉文版),2006,35(2):215-218。
    [36]张兆霞,李泳,宋文东,洪鹏志,牡蛎壳粉为载体的纳米ZnO光催化降解甲基橙的研究[J],化学与生物工程,2008,25(6):46-48。
    [37]钟己未,万益群,付敏恭,郭岚,纳米氧化锌光催化降解有机染料性能的研究[J],分析试验室,2006,25(12):30-34。
    [38]潘吉浪,尹荔松,高松华,向成承,李婷,范海陆,闻立时,纳米ZnO光催化降解有机物研究进展[J],纳米材料与应用,2006,3(5):18-21。
    [39]戴竹青,申开莲,林大泉,石油化工厂区土壤中总石油烃分布的研究[J],石油化工环境保护,2000,4:40-44。
    [40]向蓉,黄菊,刘晔,李东辉,纳米ZnO光催化降解溴化乙锭(EB)的初步研究[J],环境化学,2007,26(4):516-518。
    [41]李秀艳,刘平安,曾令可,王慧,税安泽,刘艳春,纳米ZnO光催化降解甲基橙研究[J],分析测试学报[J],2007,26(1):38-41。
    [42]范崇政,消建平,丁延伟,纳米TiO_2的制备与光催化反应研究进展[J],科学通报,2001,46(4):265-273。
    [43]孙振世,杨晔,陈英旭,UV-TiO_2-H_2O悬浮体系光催化降解聚乙烯醇[J],太阳能学报,2004,25(6):760-763。
    [44]王敏欣,李发生,韩梅,朱书全,骆紧郁,异丙草胺在水溶液中的光解动力学[J],环境科学,2003,24(5):125-130。
    [45]朱春媚,陈双全,杨曦等,几种难降解有机废水的光化学处理研究[J],环境科学,1997,18(6):27-23。
    [46]吕锡武,孔青春,紫外-微臭氧处理饮用水中有机优先污染物[J],中国环境科学,1997,17(4):377-380。
    [47]韦朝海,焦向东,陈焕钦,有毒难降解有机污染物治理方法的研究进展[J],重庆环境科学,1998,20(4):22-27。
    [48]丁敦煌,曾冬铭,唐兆麒,杨松青,光催化分解活性染料及其高效催化剂[J],中南工业大学学报,2002,33(5):480-483。
    [49]岳永德,王如意,汤锋,刘坤,毒死蜱在土壤中的光催化降解[J],安徽农业大学学报,2002,29(1):1-3。
    [50]赵先丽,程海涛,吕国红,贾庆宇,土壤微生物生物量研究进展[J],气象与环境学报,2006,22(4):68-72。
    [51]田耀华,冯玉龙,微生物研究在土壤质量评估中的应用[J],应用与环境生物学报,2008,14(1):132-137。
    [52]韩慧龙,汤晶,江皓,张敏莲,刘铮,真菌-细菌修复石油污染土壤的协同作用机制研究[J],环境科学,2008,29(1):189-196。
    [53]杨海君,肖启明,刘安元,土壤微生物多样性及其作用研究进展[J],南华大学学报(自然科学版),2005,19(4):21-26。
    [54]张海燕,张旭东,李军,王冬梅,土壤微生物量测定方法概述[J],微生物学杂志,2005,25(4):95-99。
    [55]金文标,李秀珍,龙风乐,韩中辉,田鲁若,油污土壤微生物生态研究[J],1998,8(3):2-4。
    [56]金文标,宋莉晖,吴东平,范金蔚,油污土壤微生物处理技术[J],环境科学研究,2001,14(1):34-35。
    [57]张小啸,王红旗,刘敬奇,姚治华,陈延君,土壤微生物对苯的降解研究[J]I环境科学,2005,26(6):148-152。
    [58]顾传辉。陈桂珠,石油污染土壤生物修复[J],重庆环境科学,2001,23(2):42-45。
    [59]吴建峰,林先贵,土壤微生物在促进植物生长方面的作用[J],土壤,2003,1:18-21。
    [60]李鱼,伏亚萍,稠油污染土壤微生物强化修复的研究[J],华北电力大学学报,2008,35(5):84-92。
    [61]何品晶,李慧,张颖,王纯利,沈抚灌区石油污染土壤微生物多样性的研究[J],新疆农业大学学报,2008,31(4):33-37。
    [62]李慧,陈冠雄,杨涛,张成刚,沈抚灌区含油污水灌溉对稻田土壤微生物种群及土壤酶活性的影响[J],应用生态学报,2005,16(7):1355-1359。
    [63]刘先斌,廖兰,黄菊,重庆市废润滑油污染状况及改善策略的研究[J],环境科学与技术,2007,30(1):44-46。
    [64]王毓民,汽车燃料、润滑油及其应用[M],北京:人民交通出版社,1994:120-130。
    [65]冯巍荪,汪盂言,唐秀军,润滑油的生物降解性能与其结构及组成的关系[J],石油学报,2000,16(3):48-57。
    [66]王业耀,盂凡生,石油烃污染地下水原位修复技术研究进展[J],化工环保,2005,25(2):117-120。
    [67]吕涯,环境友好润滑剂的发展现状[J],石油化工动态,1999,7(6):15-17。
    [68]中国土壤学会农业化学专业委员会,土壤农业化学分析方法[M],北京:科学出版社,1983:23-185。
    [69]近藤精一,石川达雄,安部郁夫,吸附科学[M],北京:化学工业出版社,2006,115-125。
    [70]顾良萤主编,合成脂肪酸化学及工艺学[M],北京:轻工业出版社,1986,130-131。
    [71]施安荣,合成脂肪酸生产基本知识[M],北京:轻工业出版社,1982,326。
    [72]邹宗柏,1000个实用精细化工产品的制造技术及应用[M],扬州:江苏科学技术出版,1995,326,363。
    [73]沙耀武,董玉毅,韩涛,2,4,6.三(芳基氨基)-1,3,5-三嗪衍生物的合成方法和微波效应研究[J],有机化学,2003,23(4),380-383。
    [74]金钦汉,戴树珊,黄卡玛,微波化学[M],北京:科学出版社,2001,126-127。
    [75]叶霞,张凤秀,张光先,微波辐线催化合成己酸乙酯[J],西南农业大学学报,2002,3,277-280。
    [76]邓斌,章爱华,徐安武,微波辐线下纳米CeO_2催化合成氯乙酸乙酯[J]'合成化学,2008,16(5):586-588。
    [77]朱永进,曹毅,合成润滑剂的现状及发展,合成润滑材料[J],2003,30(2):41-44。
    [78]罗永康,胡大华,酯类合成润滑油[J],合成润滑材料,1994:34-41。
    [79]彭游,陈智勇,陈淑华,微波干法有机合成研究进展[J],化学研究与应用,2004,16(3):302-304。
    [80]张秉智,合成润滑油基础知识(一)[J],合成润滑材料,1997,24(3):26-36。
    [81]冯友建,章晓镜,徐锋,利用微波技术合成4-芳基-5-甲氧羰基-6-甲基-3,4-二氢吡啶-2-酮[J],应用化学,2004,21(4),428-429。
    [82]周维祥,塑料测试技术[M],北京:化学工业出版社,1997,340-343。
    [83]编写组,通用化工产品分析方法手册[M],北京:化学工业出版社,1999,966。
    [84]潘延云,郭毅,赵军峰等,乙烯在植物中的信号转导[J],浙江大学学报(农业与生命科5版)2003,29(4):453-460。
    [85王中凤,应铁进,植物乙烯信号转导研究进展[J],植物生理与分子生物学学报,2004,30(6):601-60。
    [86]韩继成,植物乙烯受体及转基因育种研究进展[J],分子植物育种,2004,2(2):157-160。
    [87]彭立凤,赵汝淇,谭天伟,微生物脂肪酶的应用[J],食品与发酵工业,2000,26(3):68-73。
    [88]赵天涛,高静,张丽杰,全学军,有机相中脂肪酶催化合成乳酸乙酯[J],催化学报,2006,27(6):537-540。
    [89]杨频,生物无机化学导论[M],西安:西安交通大学出版社,1991,99-119。
    [90]张凤秀,张光先,魏世强,乙烯对脂肪酶活力的直接作用及其机理初探[J],化学学报,2008,66(6):639-646。
    [91]赵晶晶,王芳,邓利,谭天伟,酶促棕榈酸鲸蜡酯合成的底物抑制作用[J],北京化工大学学报,2007,34(5):540-543。
    [92]陈惠黎,李文杰,分子酶学[M],北京:人民卫生出版社,1983,232。
    [93]君玉英,刘春蕴,有机化合物分子旋光性理论[M],北京:化学工业出版社,2000,169-179
    [94]黄君礼,鲍治宇,紫外吸收光谱法及其应用[M],西安:中国科学技术出版社,1992,12-35。
    [95]邹承鲁,周筠梅,周海梦,酶活性部位的柔性[M],济南:山东科技出版社,2004,32-85。
    [96]陶慰孙,李惟,姜涌明,蛋白质分子基础[M],北京:高等教育出版社,1995,260-262。
    [97]刘茜,周根余,文启光,拟南芥乙烯信号传递途径[J],植物生理与分子生物学学报,2004,30(3),241-250。
    [98]王中凤,应铁进,张英,鲍碧丽,番茄乙烯受体基因反义表达对果实成熟的影响[J],园艺学报,2006,33(3),518-522。
    [99]彭丽桃,蒋跃明,番茄乙烯受体结构和功能研究进展[J],西北植物学报,2002,22(3),793-729。
    [100]B。施特尔马赫著,钱嘉渊译,酶的测定方法[M],北京:中国轻工业出版社,1992,229-231。
    [101]林琳,陈锡侨,赵福群,唐应武,张复实,尼古丁是脂肪酶的反竞争抑止剂的实验研究[J],化学学报,2004,62(10):1003-1006。
    [102]李庆国,汪和睦,李安之,分子生物物理学[M],北京:高等教育出版社,1992,pp:449-483。
    [103]袁勤生,应用酶学[M],上海:华东理工大学出版社,1994。
    [104]程极济,光生物物理学[M],北京:高等教育出版社,1987,143-145。
    [105]沈淑娟,方绮云,波谱分析的基本原理及应用[M],北京:高等教育出版社,1988,9-22。
    [106]纪红兵,奈远斌,绿色化学化工基本问题的发展与研究[J],化工进展,2007,26,(5):605-614
    [107]熊国华,张强,郝红,没食子酸丙酯合成工艺研究[J],西北大学学报(自然科学版),1994,24(4):353。
    [108]张路,吕小霞,余新武,微波辐线下TiSiW_(12)O_(40)/TiO_2催化合成没食子酸丙酯的研究[J],化工科技,2006,14(2):20-23。
    [109]白林,微波促进取代苯甲酸苄酯类化合物的无溶剂合成[J],甘肃科学学报,2007,19(3):54-56。
    [110]芮汉明,蒋宇飞,整鸡软罐头微波杀菌工艺的研究[J],食品工业科技,2008,6:134-136。
    [111]秦大伟,李树英,孟霞,段洪东,蒋文强,微波预处理提取嘉菊总黄酮的工艺研究[J],中成药,2008,6:845-848。
    [112]陈利华,黄晓君,杨溢,中药外敷配合微波治疗宫颈糜烂30例疗效观察[J],贵州医药,2008,32(4):375-376。
    [113]张凤英,熊建华,周志娥,闵嗣璠,微波加热去花生仁种衣新工艺的研究[J],食品科学,2005,26(3),134-137。
    [114]郭桦 李冰 郭祀远,微波在烘焙食品中的应用技术[J],食品技术,2002,11:20-22。
    [115]郝淑青 刘学聪 乔玉巧 王杰,微波消毒对口腔科石膏模型精确度的影响[J],河北医药,2008,30(6):614-815。
    [116]徐天闻,贾涛,许建和,非水介质中脂肪酶催化的手性拆分研究进展[J],生物加工过程,2005,3(4):1-8。
    [117]艾俊哲,梅平,非水介质中的酶催化反应[J],化学通报,2002,11:752-757。
    [118]邓铭明,于九皋,酶催化脂肪族聚酯的合成[J],高分子通报,2007,3,61-65。
    [119]王仁章,乔晓光,李耀先,刘福安,微波快速合成L-噻唑烷.4.甲酸及其乙酯的研究[J],化学试剂,1996,18(6):357-358。
    [120]孟庆洪,邢贞琦,刘均洪,脂肪酶催化动力学拆分大分子手性化合物的研究进展[J],河南化工,2005,22(5):1-5。
    [121]姚秉华,郑怀礼,杨丽芹,田萍,庞秀芬,CdS/TiO_2/漂珠复合光催化剂制备及其降解高效氯氰菊酯研究[J],光谱学与光谱分析,2007,(275):1010-1014。
    [122]王智宇,郭晓瑞,唐培松,蒋玉龙,苏长胜,La~(3+)离子掺杂对纳米ZnO光催化性能的影响[J],材料导报,2004,18(7):87-89。
    [123]蒋银花,赵琛煊,刘辉,孙岳明,殷恒波,陈蕊,纳米Ti02-ZnO复合光催化剂对阳离子蓝X-GRL的光解脱色研究[J],太阳能学报,2008,29(3):299-306。
    [124]许珂敬,尚超峰,李芳,S掺杂纳米Ti02的可见光响应机制[J],中国有色金属学报,2008,18(5):884-889。
    [125]谢国红,刘国光,孙德智,郑立庆,阴一阳离子表面活性剂对啶虫脒在水溶液中光解的影响[J],环境科学学报,2007,27(12):2001-2004。
    [126]戴友芝,吴兰艳,田凯勋,杨湘政,张良长,超声波/零价铁体系降解五氯酚的机理,环境科学学报[J],2008,28(2):331-335。
    [127]俞慎,李振高,熏蒸提取法测定土壤微生物量研究进展[J],土壤学进展,1994,22(6):42-50。
    [128]曹慧,杨浩,孙波,不同种植时间菜园土壤微生物生物量和酶活性变化特征[J],土壤,2002(4):197-200。
    [129]关松荫,土壤酶及其研究方法[M],北京:农业出版社,1986:3-25。
    [130]马爱军,何任红,蒋新宇,林玉锁,毒死蜱与乙草胺单.污染和复合污染对土壤酶活性及微生物生物量碳的影响[J],生态与农村环境学报,2008,24(2):57-60。
    [131]范昆,王开运,王东,夏晓明,刘振龙,王红艳,1,3一二氯丙烯药剂对土壤微生物数量和酶活性的影响[J],生态学报,2008,28(2):695-701。
    [132]刘惠君,詹秀明,刘维屏,Rac-异丙甲草胺及其S.对映体对土壤微生物量碳、氮的影响[J],土壤学报,2006,43(5):875-878。
    [133]程金香,马俊杰,王伯铎,石油开发工程生态环境影响分析与评价[J],环境科学与技术,2004,27(6):64-65。
    [134]陆秀君,郭书海,孙清等,石油污染土壤的修复技术研究现状及展望[J],沈阳农业大学学报,2003,34(1):63-67。
    [135]张晶,张惠文,张勤,张成刚,长期石油污水灌溉对东北旱田土壤微生物生物量及土壤酶活性的影响[J],中国生态农业学报,2008,16(1):67-70。
    [136]郑威,闫文德,田大伦,朱凡,梁小翠,多环芳烃6'~a-ls)对栾树幼苗生长及其土壤微生物数量的影响[J],中南林业科技大学学报,2008,28(2):19-24。
    [137]单爱琴,韩宝平,王爱宽,杨秀婧,刘敬武,周海霞,四氯化碳污染对土壤酶活性的影响[J],中国矿业大学学报,2008,37(2):207-210。
    [138]魏丽萍,孟会生,李瑞蕊,洪坚平,二苯胺对土壤生物活性的影响[J],安徽农业科学,2008,36(1):239-241。
    [139]杨秀婧,单爱琴,王爱宽,揣小明,刘敬武,三氯甲烷对土壤酶活性影响[J],江苏环境 科技,2007,20(4):11-13。
    [140]滕应,骆永明,李振高,土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J],中国环境科学2008,28(2):147-152。
    [141]须海丽,张爱民,陈栋安,耿广东,辣椒叶浸提液对土壤微生物数量和土壤酶活性的影响[J],长江蔬菜,2008,6b:52-54。
    [142]景佳佳,郑旭煦,微生物技术在污水处理中的应用[J],重庆工商大学学报(自然科学版),2005,22(2):117-122。
    [143]赵景霞,回军,林大泉,许谦,任龙,王位英,絮凝技术在油田废水处理过程中的应用[J],抚顺烃加工技术,2003,(7):7-11。
    [144]马佳彬,李新勇,曲振平,龙江陈永英,纳米二氧化钛的改性及光催化氧化烷烃研究[J],环境污染与防治,2007,29(1):44-49。
    [145]康春莉,李军,包国章,岳贵春,王华,三种环状石油烃光化学降解规律的研究[J],吉林大学学报(理学版),2002,40(2):212-214。
    [146]范崇政,肖建平,丁延伟,纳米Ti02的制备与光催化反应研究[J],科学通报,2001,46(4):265-273。
    [147]宫璇,李培军,张海荣,焦晓光,郭伟,土壤的芘污染与土壤酶活性[J],农村生态环境,2004,20(3):53-55,59。
    [148]宫璇,李培军,张海荣,郭伟,焦晓光,菲对土壤酶活性的影响[J],农业环境科学学报,2004,23(5):981-984。
    [149]谯兴国,李法云,张营,马溪平,李崇,王效举,冻融作用对石油污染土壤酶活性和水溶性碳的影响[J],农业环境科学学报,2008,27(3):914-917。
    [150]王丽平,章明奎,郑顺安,土壤中恩诺沙星的吸附一解吸特性和生物学效应[J],土壤通报,2008,39(2):393-397。
    [151]周世萍,段昌群,刘宏程,氯氰菊酯对土壤蔗糖酶、脲酶活性的影响[J],环境科学导刊,2008,27(4):14-16。
    [152]叶险峰,张凤国,脂肪酸及苯羧酸酯类润滑油[J],化学工程师,2005,114(3):30-32。
    [153]李春山,合成润滑油的生产与发展[J],化工科技,2000,8(4):76-80。
    [154]滕应,骆永明,李振高,土壤重金属复合物对脲酶、磷酸酶及脱氢酶的影响[J],中国环境科学,2008,28(2):147-152。
    [155]王江,张崇邦,常杰,柯世省,张磊,五节芒对重金属污染土壤微生物生物量和呼吸的影响[J],应用生态学报,2008,19(8):1835-1840。
    [156]唐秀军,汪孟言润滑油生物降解能力评定方法[J],石油商技,1999,17(1):24-26。
    [157]王昆,方建华,陈波水,王九,润滑油生物降解性快速测定方法的研究[J],石油学报,2004,20(6):74-78。
    [158]冯微荪,汪孟言,唐秀军,润滑油的生物降解性能与其结构及组成的关系[J],石油学报,2000,16(3):48-57。
    [159]黄靖宇,宋长春,宋艳宇,刘德燕,万忠梅,廖玉静,湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J],环境科学,2008,29(5):1380-1387。
    [160]金发会,李世清,卢红玲,李生秀,石灰性土壤微生物量碳、氮与土壤颗粒组成和氮矿化势的关系[J],应用生态学报,2007,18(12):2739-2746。
    [161]刘守新,陈孝云,陈曦,酸催化水解法制备可见光响应N掺杂纳米TiO_2催化剂[J],催化学报,2006,27(8):697-702。
    [162]左言军,习海玲,张建宏,李志军,周放,TiO_2悬浮体系光催化降解反应动力学模型的建立[J],催化学报,2001,22(2):198-202。
    [163]黄宇,汪思龙,冯宗炜,高洪,王清奎,胡亚林,颜绍馗,不同人工林生态系统林地土壤质量评价[J],应用生态学报,2004,15,(12):2199-2205。
    [164]孙波,张桃林,我国中亚热带缓丘区红粘土红壤肥力的演化:Ⅱ.化学和生物学肥力的演化[J],土壤学报,1999,36(2):203-217。
    [165]夏祖学,刘长军,闫丽萍,杨晓庆,微波化学的应用研究进展[J],化学研究与应用,2004,16(4):441-443。
    [166]杨双春,杨兰英,2008年美国总统绿色化学挑战奖项目介绍[J],精细化工,2008,25(8):729-732。
    [167]孙铁民,王宏亮,谢集照,袁雷,蔡志强,绿色化学在药物合成中的应用[J],精细化工中间体,2008,38(4):1-6。
    [168]陈静仪,诸泉,杨映松,石丽玲,姚志强,卢钟鹤,季戊四醇酯的生物降解评估研究[J],环境科学学报,2001,21(1):120-122。
    [169]区英鸿,塑料手册[M],北京:机械工业出版社,1991,1305。
    [170]唐启义,DPS统计软件简介[J],中国医院统计,2008,15(1):2-2。
    [171]Renela G.,Ortigoza A.L.R.,Landi L.et al.Additive elects ofcopper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose(ED50)[J],Soil Biology and Biochemistry,2003,35(9):1203-1210.
    [172]Leel S.,Kim O.K.,Chang Y.et al.Heavymetal concentrations and enzyme activities in soil from a contaminated Korean shooting range[J].J.Biosci.Bioeng.,2002,94(5):406-411.
    [173]Huang Q.Y.,Shindo H.Comparison of the influence of Cu,Zn,and Cd onthe activity and kinetics of free and immobilized acid phosphatase[J].Soil Sci.Plant Nutr.,2001,47(4):767-772.
    [174]MadejonE,BurgosE Lopez R.et al.Soil enzymatic response to addition of heavy metals with organic residues[J].Bio.Fertil.Soils,2001,34(3):144-150.
    [175]Lorenz N.,I.Iintemarm L.,K.'alnalwa L et al.Response of microbial activity andmi crobial community compositionin soils to long-term arsenic and cadmium exposure[J].Soil Biology and Biochemistry,2006, 38(6):1430-1437.
    [176] Speir T., Schaik A. E., Hunter L. C. Attempts to derive EC50 values for heavy metals from land-applied Cu-, Ni- and Zn-spiked sewage sludge[J].Soil Biology and Biochemistry,2007,39(2):539-549.
    [177]Li S. Q., Li S. X. Study on methods for measuring soil microbial biomass nitrogen in soils[J].Plant Nutrition and Fertilizer Science, 2000, 6(1):75-83.
    [178]Shane M. Powell, Ian Snapeb, John P. Bowmana, Belinda A.W. Thompsona,Jonathan S. Stark, S haree A. McCammon, Martin J. Riddle, A comparison of the short term effects of diesel fuel and lubricant oils on Antarctic benthic microbial communities[J], Journal of Experimental Marine Biology and Ecology , 2005, 322 :53-65.
    [179]Franco I., Contin M., Bragato G.et al.Microbiological resilience of soils contaminated with crude oil[J].Geoderma, 2004, 121(1/2):17-30.
    [180] Ros M, Goberna M, Moreno J. L. et al. Molecular and physiological bacteria diversity of a semi aird soil contaminated with different levels of formulated atrazine [J]. Applied Soil Ecology, 2006, 34: 93-102.
    [181]Alexandre G. S. P., Claudio A. Effect of the pesticide 2, 4- Dmicro- bialactivity of the soil monitored by micocalorimetry[J]. Thermochimica Acta,2000, 349: 17- 22.
    [182]Jose L. Moreno, Asuncion Aliaga, Simon Navarro et al. Effects of atrazine on microbial activity in semiarid soil [J]. Applied Soil Ecology,2007, 35: 120-127.
    [183]Perucci P., Dumontet S., Bufo S. A. et al. Effects of organic amendment and herbicide treatment on soil microbial biomass[J]. Biol Fertil Soil, 2000, 32:17- 23.
    [184]J.K. Adesodun, D.A. Davidson , J.S.C. Mbagwu, Soil faunal activity of an oil-polluted tropical alfisol amended with organic wastes as determined by micromorphological observations[J],applied soil ecology, 2008, 39:4 6-57.
    [185] Li K. B., Cai X. Y., Liu W. P. Influences of single and combined herbicides on soilmicrobial activity[J]. Journal of Agro-Environment Science, 2004, 23(2): 392 - 396.
    [186]Carter M.R., Rennie D. A., Dynamics of soil microbial biomass under zero and shallow tillage for spring wheat, using 15 Nurea[J]. Plant Soil, 1984, 76:157-164.
    [187]Coleman D. C., Reid C. P. P., Cole C.V. Biological strategies of nutrient cycling in soil systems[J].Adv. Ecol. Res., 1983, 13:5 1-55.
    [188] Dalal R.C., Hendemon P.A. Guasby JM.Organic matter andmicrobial biomass in a Vertisol after 20 years of zero-tillage[J].Soil Biol Biochem , 1991, 23:435-441.
    [189]Van Bruggen AHC, Semenov A.M.: In search of biological indicatom for soil health and disease suppression[J].Appl Soil Ecol, 2000, 15:13-24.
    [190] N.S.Battersby.The Biodegradability and M icrobial Toxicity Testing of Lubricant some Recommendations[J].Chemosphere, 2000.(41):1011-1027.
    [191]Takada K., Ishimaru K., Minamisawa K., Kamada, H., Ezura, H. Plant Science[J]. 2005,169(5),935.
    [192]Hans Bisswanger, Enzyme Kinetics: Section[M] 2.6-2.12 , 2008 ,124-193, Wiley-VCH Verlag GmbH & Co. KGaA
    [193]Vulliet E, Emmelin C, Scrano L. Pho tochem ical degradat ion of acifluo rfen in aqueous so lut ion [J]. J. Agric. and Food Chem., 2001, 49 (10): 4795-4800.
    [194]Bames Fainman. Photografting of 2-methacryloyloxyethyl from polydimethylsiloxane:Tunable protein repellency and lubrication property[J]. Lubrication Engineering, 1957, (8):454-458.
    [195]Goyall L. R. et al. Bidegradable lubrieants[J]. Lubrieation Engineering.l998,.54(7):10-17.
    [196]Uosukainen E.,Linko Y.,Lamsa M. et al..Transesterifieation of trimethylol Propane and rapeseed oil methyl ester to environmentally acceptable lubrieants[J].Amer.Oil Chem. Soc.,1998,75:1557-1563.
    [197]Yunus R.,.Fakhru'l-RaziA, Ool T. et al. preparation and Characterization of Trimethylol Propane Esters from Palm Kernel Oil Methyl Esters[J].Jouraal of oil palm research, 2003,15(2):35-41.
    [198] Yunus R, Fakhru'l-RaziA,Ool T. et al. preparation and Characterization of Trimethylol Propane Esters from Palm Kernel Oil Methyl Esters[J].Journal of oil palm research, 2003,15(2):42-49.
    [199]Gryglewiez S.,Piechoeki W.,Gryglewiez G Preparation of Polyol esters based on Vegetable and animal fats[J]. Bioresource Technolog, 2003,87:35-39.
    
    [200]Erhan S. Z. USDA is Designing Vegetable Basestocks[J]. Lub Eng , 1998, 54 (7): 21-23.
    [201]Theo States et al. Environmentally harmless lubricants [J]. NIGI Spokesman, 1993, 57(6):233-239.
    
    [202]Goyan L. R. et al. Biodegradable lubricants[J]. Lub Eng, 1 998, 54(7): 10-17.
    [203]Texaco, Lubricants Division. The need for biodegradable lubricants [J]. Ind Lub and Trib, 1992,44(4): 6-7.
    
    [204]Rebeccal, Goyan. Biodegradable LubricantsfJ]. lubr Eng, 1998, 54(7): 10-17.
    [205]In-Sik R. 21st century military biodegradable greases [A]. NLGI 1999 Annual Meeting [C] 1999. 8-17.
    
    [206]Sturm R. N. Biodegradability of nonionic surfactants [J].J Am Oil Chem Soc, 1973, 50(5): 159.
    [207]Mushy E. M., Zachara J. M., Smith S. C, Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Cornpounds[J]. Environ.Sci.Technol.,1990,24 (10):1507-151.
    [208]Hatzinger P. B., Alexander M. Effect of aging of chemicals in soil on their biodegradability and extractability[J], Environ.Sei.Technol., 1995, 29(2):537-545.
    [209]Shu H. and Chang M., Decolorization and mineralization of a phthalocyanine dye C.I. Direct Blue 199 using UV/H_2O_2 process[ J]. Hazard Mater. 2005, B 125 , 96-101.
    [210]Sanz A., Sensio J., Plaza M. M., Martinez Soria M.T. Study of pho.todegradation of the pesticideeth iofencarb in Porcino M. E., Stenken J. A., Corelli J. C. et al. Degradation of monochlorobenzene by ionizing radiation [J]. Hazardous and Ind ustrial Waste, 1999: 137-146.
    [211]KANG Huimin, KANG Xihu.The Investigation on Photocatalytic Treatment of Waste Water Containing Phenol Over ZnO [J].Transactions of Tianjin University, 1996,11(2):2..
    [212]Shao Z. B., Wang C. Y., Geng S. D. et al. Fabrication of Nanometer-Sized Zinc Oxide at Low Decomposing Temperature [J]. Journal of Materials Processing Technology.2006, 178:247-250
    [213]Fujishima A. ,Honda K. Electrochemical potolysis of water at a semiconductor electrode[J]. Nature, 1972, 238:38-45.
    [214]Garey J. H. , Lawrence J.,Tosine H. M. Photodechloination of PCB'S in the presence of titanium dioxide in aqueous suspensions [J]. Bull Environ Contam Toxical,1976,16:697-706.
    [215]Wyness P., Fklansner J. F., Gaswamid Y. et al. Performance of nonconcentrating solar photocatalytic oxidation reactor of Flatplate Configuration [J]. Journal of Solar Energy Engineering, 1994,116(6):2-7.
    [216]Tatsuma et al. Remote Bleaching of Methlene Blue by UV-Irradiated TiO_2 in the Gas Phase[J].Phys. Chem.:B, 1999,103(38):8033-8035.
    [217]Steven N. Frank, Allen J. Bard. Semiconductor electrodes Photoassisted oxidations and photoelectrosynthesis at polycrystalline TiO_2 electrodes[J].Am. Chem. Soc, 1977,99(14):4667-4675.
    [218]Zeep R. G, Faust B.C. et al. Photo-Fenton process as an efficient alternative to the treatment of land fill Teachates[J].Environ.Sci.Technol.,1992, 26:313.
    [219]Rerald R., Repert B. Advanced oxidation of the polycyclic musk fragrances with using UVprocesses[J]. Chemosphere,1994, 28(8):1447.
    [220]Beltran F. J., Gomde M., Alvarez P. Aqueous UV radiation and UV/H_2O_2 oxidation of atrazine first degradation products:deethylatratra zine and deispropylatrazine[J].Environ Toxicol Chem, 1996,15(6): 866-872.
    [221] Hideki Kawaguchi. Photooxidation of phenol in aqueous solution in the presence of hydrogen peroxide[J]. Chemosphere,1992, 24(12):1707-1712.
    [222]Hideki Kawaguchi,Tuhkanen T., Kalliokoski P. Evaulation of a field scale UV/H_2O_2 oxidation system for the purification of groundwater contam inated with PCE[J]. Environ Technol, 1998,19(8):821.
    [223]Mihael I. Stefan James R. Bolton. Reinvestigation of the acetone degradation mechanism in dilute solution by the UV/H_2O_2 process [J].Environ. Sci. Technol.,1999,(33):870-873
    [224]S.A.Andrews, P.M.Huck, A J Chute et al. water Quality Technoloagy Conference[C],1995
    [225]Yiqi Yang, DavidTravis wyatt et al. Some sorption characteristics of poly(trimethylene terephthalate) with disperse dyes[J].Textile chemist and colorist,1998,30(4):27-35
    [226]Jenkinson D.S., Powlson D.S.The effects of biocidal treatments on metabolism in soil-V.A method for measuring soil biomass [J].Soil Biol.& Biochem., 1976, 8:189-202.
    [227]Brookes P.C., Landman A., Pmden G. et al.Chloroform fumigation and the relea se of soil nitrogen:a rapid direct extractionmethod to measure microbial biomass nitrogen in soil[J].Soil Biol.& Biochem. 1985,17:837-842.
    [228]Brokes P.C., Powlson D.S., Jenkinson D.S. Measurement of microbial biomass phosphorus in soil[J].Soil Bio & Biochem. 1982,14:319-329.
    [229]Anderson J. P. E., Domsch KH.A. physiologucal method for the quantitative measurement of microbial biomass in soils[J]. Soil Boil.& Biochem., 1978, 10:215-221.
    [230]Alef K., Kleiner D. Arginine ammonification, a simple method to estimate microbial activity potential in soil[J].Soil Biol.& Biochem., 1986, 18:233-235.
    [231] Jenkinson D.S., Oades J.M. A method for measuring adenosine triphosphate in soil[J].Soil Biol.& Biochem., 1979,11:193-199.
    [232]Jenkinson D.S., Davidson S.A., Powlson DS Adenosine triphosphate and microbial biomass in soil[J] ,Soil Biol.& Biochem.,1979,11:521- 527.
    [233]Nunan N, Morgan MA, Herlihy M.Ultraviolet absorbance (280nm)of compounds released form soil during chloroform fumigation as an estimate of microbial biomas[J].Soil Biol. &Bio chem., 1998, 30:1599-1603.
    [234]Martin Pet.NP_2-fixing bacteria in the rhizospere Quantification and hormonal effects on root development[J]. Pflanzenemr Bodend, 1989, 152: 237-245.
    
    [235]Goyan R L. Biodegradable Lubricants[J]. Lubrication Engineering, 1998, 54(7):10-17.
    [236]Mang T., Fuchs Petrolub A. G., Mannheim et al.Environmentally Harmless Lubricants[J].NIGI Spokesman, 1993, 57(6):9-15.
    [237]Erhan S. Z. USDA is Designing Vegetable Basestocks[J]. Lubrication Engineering, 1998, 54(7):21-23.
    [238]Szymula M. , Marczewski A. W. Adsorption of Asphaltenes from Toluene on Typical Soils of Lublin Region[J].Applied surfaces science, 2002, 196:301- 311.
    [239]Pernyeszi T., Patzkod, Berkesi O. et al. Asphaltene Adsorption on Clays and Crude oil Reservoir:Rocks[J], Colloids and Surfaces, 1998,137:373- 384.
    [240] Walter J. ,Weber, J. r. And Weilin Huang, A Distributed Reactivity Model for Sorption by Soils and Sediments. 4. Intraparticle Heterogeneity and Phase Distribution Relationships under Nonequilibrium Conditions. Environ. Sci. Technol., 1996,30:881~888.
    
    [241]Pradubmook T., O'Hayer J. H., Malakul P. et al.Effect of pH on Adsolubilization of Toluene and Acetophenone into Adsorbed Surfactant on Precipitated Silica[J].Colloids and Surfaces, 2003, 224:93-98.
    [242]Asvapathanagul P., Malakul P., O'Haver J.Adsolubilization of Toluene and Acetophenone as a Functien of SurfactantAdsorption[J]. Journal of Colloid and Interface Science, 2005, 292:305-311.
    [243]Adam G., Gamoh K., Morris D. G. et al.Effect of Alcohol Addition on the Movement of Petroleum Hydrocarbon Fuels in Soils[J], The Science of the Total Environment, 2002,286:15-25.
    [244]Aelion C. M. Impact of Aquifer Sediment Grain Size on Petroleum Hydrocarbon Distribution and Biodegradation[J], Journal of Contaminant Hydrology, 1996, 22:109 121.
    [245]Lin G; Lin W. Tetrahedron Lett[J]. 1998,39(24), 4333.
    [246]Reddy,GV.,Rao,GV.,Iyenngar,D.S. Synth.Commun[J]. 1999,29 (23),4071.
    [247]Sharma,U.;Ahmed,S.B.;Boruah,R.C. Tetrahedron Lett. [J] 2000,41(18), 3493.
    [248 Danks,T.N. Tetrahedron Lett[J]. 1999, 40, 3957.
    [249]Kol wzan B.,Gryglewicz S., Synthesis and biodegradability of some adipic and sebacic esters [J]. Synth.Lubr., 2003,20:99-107.
    [250]A. Adhvaryu, S. Z. Erhan and J. M. Perez,Tribological studies of thermally and chemically modified vegetable oils for use as environmentally friendly lubricants [J], Wear, 2004, 257(3-4):359-367
    [251]S.Gryglewicz, Rapeseed oil methyl esters preparation using heterogeneous catalysts[J], Bioresource Technology ,2000,70 (3):249-253.
    [252]S.Gryglewicz, Alkaline-earth metal compounds as alcoholysis catalysts for ester oils synthesis[J], Applied Catalysis A: General,2000,192 (1):23-28.
    [253]S. Gryglewicz, Stanislaw, Synthesis of dicarboxylic and complex esters by transesterification, Journal of Synthetic Lubrication,, 2000, 17(3): 191-200.
    
    [254]Helena Wagner, Rolf Luther,Theo Mang, Lubricant base fluids based on renewable raw materials their catalytic manufacture and modification[J],Applied Catalysis A:General ,2001, 221: 429-442.
    [255]Paolo De Filippis, Marco Scarsella, Carlo Borgianni et al .Production of Dimethyl Carbonate via Alkylene Carbonate Transesterification Catalyzed by Basic Salts[J], Energy Fuels, 2006,20 (1), 17-20.
    [256]S.Gryglewicz, W.Piechocki, GGryglewicz, Preparation of polyol esters based on vegetable and animal fats[J].Bioresource Technology ,2003,87:35-39.
    [257]Schuchardt U., Sercheli R.,Vargas R.M. Transesterification of vegetable oils :a review[J]. Braz. Chem.Soc.,1998,9:199-210.
    
    [258]Standard oil dev co , Synthetic ester lubricant, european ,GB699402,1953-11-04
    [259]S. Gryglewicz. Enzyme catalysed synthesis of some adipic esters[J], Journal of Molecular Catalysis B: Enzymatic[J], 2001,15,1-3,9-13.
    [260]S. Gryglewicz, M .Stankiewicz, F. A.Oko, I.Surawska, Esters of dicarboxylic acids as additives for lubricating oils[J],Tribology International xx[J] ,2005,1-5.
    [261]S. Gryglewicz, W. Piechocki, G. Gryglewicz, Preparation of polyol esters based on vegetable and animal fats[J], Bioresource Technology,2003, 87:35-39
    [262]Bleecker A .B., Kende H.Ethylene:A gaseous signalmolecule in plants[J].Annu Revf. Dev Biol.2000,16:1-18.
    [263]Guzman P. and Ecker J.R. Exploiting the triple response of Arabidopsis to identify ethylene related mutants[J], Plant Cell. 1990, 2: 513-523.
    [264]Kieber J.J. The ethylene response pathway in Arabidopsis[J], Annu. Rev.Plant, Physiol.Plant Mol.Bid. 1997,48:277-296.
    
    [265]Ecker J.R. The ethylene signal transduction pathway in plants[J],Science,1995, 268: 667-675.
    [266]S. Hari Krishna, A.P. Sattur, N.G. Karanth , Lipae-catalyzed synthesis of isoamyl isobutyrate optimization using a central composite rotatable design[J],Process Biochemistry, 2001,37: 9- 16.
    [267]D. Coulon, A. Ismail, M. Girardin, M. Ghoul, Enzymatic synthesis of alkylglycoside fatty acid esters catalyzed by an immobilized lipase[J], Journal of Molecular Catalysis B: Enzymatic .1998, 5:45-48.
    [268]Guang ji Li, Dahu Yao, Minhua Zong, Lipase-catalyzed synthesis of biodegradable copolymer containing malic acid units in solvent-free system[J], European Polymer Journal, 2008,44: 1123-1129.
    [269]Victor H. Perez, Grazielle S. da Silva, Fabrício M. Gomes. et al. Influence of the functional activating agent on the biochemical and kinetic properties of Candida rugosa lipase immobilized on chemically modified cellulignin [J], Biochemical Engineering Journal, 2007,34 (1):13-19.
    
    [270] Kei A., Hyun-Ju K., Mitsuru H. et al. Ca~(2+).-induced folding of a family I.3 -lipase with repetitive Ca~(2+). binding motifs at the C-terminus[J], FEBS Letters, 2001, 509:17-21.
    [271] Kuroda, S.,Hirose, Y., Shiraishi, M., Davies, E., Abe, S. Plant Physiology and Biochemistry 2004, 42(9), 745.
    
    [272] Edward, C. S. Biotechnol. Advan.[J]. 2006, 24(4), 357.
    [273]Anastas P. T., Warner J. C. Green Chemistry : Theory and Practice[M]. New York : Oxford University Press Inc. 1998.
    [274]Pelle Lidstrom, Jason Tierney, Bernard Wathey, Jacob Westman, microwave assisted organic synthesis -a view[J],Tetrahedron,2001,57(45):9225-9283.
    
    [275]Laurence Perreux and Andre Loupy , A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations, Tetrahedron ,2001, 57(45):9199-9223.
    
    [276]D.R.Baghurst and D,M.P.Mingoes [J], J.Org.Chem.,1990, 384, C57.
    [277] Gedye R., Smith F.,Westaway K. G The rapid synthesis of organic compounds in microwave ovens [J],Can.J.Chem.l988, 66,17-26.
    [278]Giguere R.I., Bray T.L., DunCan S.M., Majectich G Application of commercial microwave ovens to organic synthesis [J]. Tetrahedron Lett. 1986, 27(41), 4945-4948.
    [279] Wang J., Jiang F.C. Chin. J.Org.Chem [J] ,2002,22(3):212-219.
    [280]A. Kumar, R.A. Gross, "Lipase-Catalyzed Transesterification: New Synthetic Routes To Copolyesters" [J], J. Am. Chem. Soc. 2000,122,11767-11770.
    [281]Jin Ling CHAI, Shou Qing WANG , Gan Zuo LI , Qing X , Yah Hong GAO, Kinetics of the Esterification Reaction Catalyzed by Lipase in W / O Microemulsions of Alkyl Polyglucoside, Chinese Chemical Letter [J], 2004,15(6): 699-702.
    [282]Elke Marten, Rolf-Joachim Miiller and Wolf-Dieter Deckwer, Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic-aromatic copolyesters [J], polymer degradation and stability, 2005,88(3):371-381.
    [283]Indra K. Varma, Ann-Christine Albertsson, Ritimoni Rajkhowa, Rajiv K. Srivastava, Enzyme catalyzed synthesis of polyesters [J], progress in polymer science, 2005,30(10):949-981.
    [284]Yu-Yen Liuko, Zhuo-Lin Wang, Jukka SeppPlii, Lipase-catalyzed linear aliphatic polyester synthesis in organic solvent [J], Enzyme and Microbial Technology,1995,17:506-511.
    [285]Anna E. V. Petersson, Linda M. Gustafsson, Mathias Nordblad, P(?)l B(O|¨)rjesson,Bo Mattiasson ,Patrick Adlercreutz,Wax esters produced by solvent-free energy-efficient enzymatic synthesis and their applicability as wood coatings [J], Green Chem., 2005, 7, 837-843.
    [286]A.Marty,W.Chulalaksananukul,R.M.Willemot,J.S.Condoret,Kinetics of lipase-catalyzed esterification in supercritical CO_2[J],Biotehnology and Bioengineering,2005,39(3):273-280.
    [287]Okazaki M.,Takeshi S.,Shigera S.et al.Isotope Enrichment by Electron Spin Resonance Transition of the Intermedediate Radical Pair[J],Phys.Chem.,1988,92(6):1402.
    [288]Ishibashi K.I.,Fujishima A.,Watanabe T.et al.Quanturn Yields of Active Oxidative Species Formed on TiO_2 Photocatalyst[J].J.Photochem.Photobio.A:Chem.,2000.134:139.
    [289]Assabane A.,Yahia A.I.,Tahiri H.et al.Photocatalytic Degradation of Polycarboxylic Benzoic Acids in UV-irradiated Aqueous Suspensions of Titania:Identificationof Intermediates and Reaction Pathway of the Photomineralization of Trimellitic Acid(1,2,4-benzene Tricarboxylic Acid)[J],Appl.Catal.B:Environ.,2000,24:71.
    [290]Wilson S.C.,Jones K.V.,Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons(PAHs):A review[J],Environ.Poilu.,1993,81:229-249.
    [291]Maliszewska-Kordybach,B.Sources,Concentrations,Fate and Effects of Polycyclic Aromatic Hydrocarbons(PAHs)in the Environment.Part A:PAHs in Air Polish[J].Journal of Environmental Studies,1999,8(3):131-136.
    [292]R Gedye,F Smith,K Westaway,H.Ali,L.Baldisera,L.Laberge and J.Ronsell.The use of microwave ovens for rapid organic synthesis[J].Tetrahedron Lett,1986,27(3):279-282.
    [293]Fatima H.Abdullah,M.A.Rauf,S.Salman Ashraf,Photolytic oxidation of Safranin-O with H_2O_2[J],Dyes and Pigments,2007,72,349-352.
    [294]Gopal K.Mor,Oomman K.Varghese,Maggie Paulose,Karthik Shankar,Craig A.Grimes.A review on highly ordered,vertically oriented TiO_2 nanotube arrays:Fabrication,material properties,and solar energy applications[J],Solar Energy Materials & Solar Cells,2006,90:2011-2075.
    [295]Mao Liqun,Li Qingli,Dang Hongxin,et al.Synthesis of Nanocrystalline TiO_2 with High Photoactivity and Large Specific Surface Area by Sol- Gel Method[J].M ater Res Bull,2005,40(2):201-208.
    [296]Yan Maocheng,Chen Feng,Zhang Jinlong,et al.Preparation of Controllable Crystalline Titan ia and Study on the Photocatalytic Properties[J].J.Phys.Chem.B.,2005,109(18):8673-8678.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700