用户名: 密码: 验证码:
纸页干燥过程传热传质数学模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以节能减排作为出发点,概述了国内外造纸工业的节能研究现状和相关的节能技术,包括已有商业化节能技术与新兴节能技术;探讨了造纸工业中常用的能效对标与能源审计等节能潜力评估方法,并对其应用做了综述;就此还以某造纸企业为例开展了全面的能源审计,找出了约14%的节能潜力。分析发现纸页干燥是造纸流程中脱水量最少,但能耗与成本却最高,且节能机会最多的单元操作之一,纸页干燥过程性能的优劣对于造纸过程的总能效水平有极大影响,故以纸页干燥过程作为本论文研究的主要落脚点。
     首先,本论文对纸机干燥部能量系统进行了诊断分析,应用本课题组设计的系统分析方法以及关键状态参数测试方法,以某瓦楞纸机为例,对其干燥部的运行现状进行了综合分析,诊断出了影响干燥能耗的主要问题所在,提出了有效的节能改造建议。另外,还探讨了能量分析与分析相结合的纸机热回收系统分析方法,以某涂布纸机热回收系统为研究对象,基于分析结果提出了余热联合利用的节能措施,预计可使能源利用率提高7.3%。干燥过程节能诊断与热回收系统分析方法以及相应的应用实例对于指导纸机干燥部节能降耗有一定的借鉴意义。
     其次,基于质量与能量守恒原则,以烘缸组为建模单元,采用序贯模块法构建了符合纸页干燥工艺规程的静态能量模型和模拟系统。该模拟系统共由八个基本功能模块构成,包含了干燥部各子系统之间的相互关系。以某新闻纸机为例,根据其工艺规程搭建了干燥静态能量模型和模拟系统,并在MATLAB上实现了静态模拟,模拟结果显示该模型可以较准确的仿真实际纸页干燥过程。此外,还模拟了进纸温度和干度、送风温度、排风湿度以及环境温湿度对干燥性能的影响,仿真结果与工程经验基本相符。该静态模拟系统不仅可以从宏观上模拟干燥过程的物流和能流信息,还可用来分析某些关键操作参数对纸页干燥性能的影响,有助于加深对纸页干燥全过程的认识和理解,且对于指导实际纸机干燥过程中的节能优化具有一定的参考价值。
     随后,根据纸页中水分的不同存在形态及其各自的蒸发机制,分别给出了描述自由水和吸着水传质速率的基本方程。选取纸页接触干燥为研究对象,探索了其传热传质解析性数学模型的建立,并采用数值技术开展了干燥动力学模拟,得到了纸页温度与含水率以及蒸发速率随干燥时间的变化规律,模拟结果基本符合文献中对纸页理论干燥过程的定性描述。此外,还数值研究了初始纸页干度、热源温度与空气流速对干燥速率和能耗的影响,结果表明:提高初始纸页干度可降低干燥时间和能耗;提高热源温度不仅会降低干燥时间和能耗,还会改善干燥效率;而空气流速的增加除令干燥时间缩短外,可能会影响干燥效率。该解析数学模型以及所提出的纸页干燥数值研究方法可以作为对现行纸页理论干燥曲线定性描述的补充,且对于进一步开发实际纸机干燥过程的传热传质机理数学模型具有重要的理论指导意义。
     最后,基于静态能量模型对干燥部的整体性理解以及纸页接触干燥传热传质模型对干燥机理的描述,对纸页在纸机干燥过程的传热传质解析性数学模型进行了探索性研究与初步模拟。对此,分别选取纸页微元体和与其耦合的烘缸微元体作为建模单元,由局部到整体地建立了描述纸页干燥全过程的较为完整的解析数学模型。根据纸页在贴缸干燥区与对流干燥区以及纤维饱和点前后截然不同的传热传质机理对纸页质量和能量方程中的自由项进行了逐一论述,并考虑了不同情况下烘缸能量方程的边界条件。该解析数学模型对纸页干燥过程的描述最终表现为一个常微分方程初值问题与一个偏微分方程边值问题相耦合的问题。对此问题涉及的计算区域,采用数值方法进行了网格划分,并对纸页和烘缸控制方程及其边界条件进行了离散化处理,得到了纸页运行方向上和烘缸弦向与径向上各离散单元的有限差分格式。然后,在利用MATLAB编程对构成所有节点的差分方程组采用迭代法逐一节点进行了数值求解,得到了整个纸页干燥计算域内的数值解。模拟结果显示:计算得到的干燥过程曲线与理论过程和实际经验趋势基本吻合,尤其是在干燥的前端和末端,但还需深入完善该模型及其计算过程,尤其是模型所涉及的各类传热传质系数和过渡区不同形态水分同时蒸发的机理,才能使其更加接近于工程实际,以达到为实际生产提供理论指导的终极目标。
With a focus on energy saving and emissions reduction, this study presents an overviewof the current energy related research status for both domestic and international paper industry,outlines commercialized and emerging energy-efficiency technologies. It also discusses thecommonly applied energy-saving potential assessment methods, e.g. energy-efficiencybenchmarking and energy auditing. As an application, a plant-wide energy audit is conductedfor a paper mill, the results identified14%total energy-saving potentials. From above analysis,we found the paper drying process dehydrated the smallest amount of water with the largestamount of energy use and cost. It is also found that paper drying process has the highestenergy-saving opportunities among the papermaking processes. In addition, it has asignificant implication on the overall energy efficiency of the whole papermaking process.Therefore, we finally choose the paper drying process as the main research object for thefollowing studies.
     Initially, with the purpose of having a full picture about the current operational status andthe drying performance of paper machine, we conducted a diagnostic analysis on the energysystem of a corrugated paper machine dryer section. A completed test and analysis methodsthat focused on the key operation parameters is also presented. The comprehensive analysis isfound to be a useful assistant tool for help understanding the current drying performance. Themain energy-saving opportunities is recommended based on the dominant issues that affectedthe drying energy consumption. As part of the dryer section, the heat recovery system is alsoanalyzed combined energy and exergy analysis methods. Based on the results of a coatedpaper machine, a new waste heat integrated proposal is expected which could increase theenergy utilization by7.3%. The proposed energy diagnosis method of dryer section and thecombined analysis methods of heat recovery systems, as well as the corresponding casestudies, could have a significant meanings for reducing the energy use of paper machine dryersection.
     Next, a static energy model and related modeling system of the paper drying process isdeveloped using sequential modular approach based on the principle of mass and energy conservation. The developed static model is composed of eight basic functional blocks, whichalso considering the relationship between each subsystems. As the case study, the static modeland system of a newsprint machine is then constructed according to its specific drying processand conditions. The MATLAB simulation result shows that it could be used to simulate theactual newsprint drying process correctly. A series of simulations are also performed toinvestigate the influences of some key operating parameters on the drying performance, e.g.initial paper dryness and its temperature, supply air temperature, exhaust air humidity, andambient conditions. The simulated results indicate that the consistency of the static modelwith experimental results and experience is reasonable. Some commonly important results arepresented in this chapter. Not only could the static model simulate the mass and energy flowinformation of the drying process at a macro level, it could also be used to analyze howoperating parameters affected the drying performance. The static model could also helpdeepen awareness and understanding of the whole paper drying process thoroughly. Inaddition, it could provides some constructive advice to guide energy saving and processoptimization for the practical paper drying process.
     Subsequently, this study focus on the various water existing status within paper web andrelated evaporation mechanisms. The basic mass transfer equations of free water andhygroscopic water are presented at the beginning. To investigate the performance of contactpaper drying process, we established a mathematical model on the basis of heat and masstransfer theory, then the drying kinetics for this process was studied with numericaltechnology. The simulation result shows that the predicted paper temperature, moisturecontent and evaporation rate, varying with drying time, is basically fit in with the qualitativedescriptions about the theoretical paper drying process cited in the literatures. Additionally,the initial paper dryness, hot wall temperature, and air velocity were quantitatively examinedto study their impacts on drying rate and energy consumption. The results from this studypresented that increasing initial sheet dryness could reduce drying time and energy use.Increasing heat-wall temperature could improve drying efficiency besides reducing dryingtime and energy use. Increasing air velocity could also help to reduce the drying time, butmay influence drying efficiency negatively at some ranges. It was found the contact paperdrying model and the numerical research methods for theoretical paper drying process could be acted as a qualitative supplement to the current available theoretical paper drying curves.This research also has some instructive significance for further developing some moreaccurate paper drying mathematical model for paper machine drying process.
     Finally, we developed a original and innovative paper drying model based on the heatand mass transfer theories with the intention of conducting some exploratory studies andpreliminary simulations for paper machine dryer section according to its drying state of the art.This model coverers the holistic understanding of the dryer section reflected by the staticenergy model and the quantitative description of the drying mechanism revealed by abovecontact drying model. It was constructed from the viewpoint of heat and mass transferaccording to the relationship of the local and the entire drying process. The basic paperelement and coupled cylinder element were chosen as the basic modeling unit, respectively.Then the governing equations for paper moisture content, paper temperature and cylindertemperature were deduced step by step, including the detailed description of the relatedboundary conditions under different circumstances and the physical properties of materials formodeling the actual paper drying process. The free-term presented in the paper and cylindergoverning equations were paid more attention to describe considering the different heat andmass transfer mechanisms between the contact drying zone and the convective drying zone.Besides, the influence of the fiber saturation point on drying process was also always kept inmind. The paper drying mathematical model was ultimately presented as an ordinarydifferential equations initial value problem coupled with a partial differential equationsboundary value problem. Next, we solving this coupled problem using finite differencemethod based on the distributed computational grids and the differential governing equationsas well as its boundary conditions. After that, all the distributed algebraic equations alone thewhole calculated domains for each node were automatically solved using iterative methodswith MATLAB. The modeling results imply that the predicted drying curves are basically inaccordance with the theoretical drying process and practical engineering experience. However,the developed drying model and the simulation process, particularly the involved heat andmass transfer coefficients and evaporation mechanism in the transition drying zone, still need further study to improve the predicted results in order to make it more closely represent theactual paper drying process.
引文
[1] FAO. ForesSTAT-Forest products production, import and export statistics[EB/OL].http://faostat.fao.org/site/630/Forestry.aspx, Food and Agricultural Organization of theUnited Nations (FAO-UN),2013
    [2] IEA. Energy Technology Transitions for Industry-Strategies for the Next IndustrialRevolution[R]. Paris, France: International Energy Agency (IEA),2009
    [3] IEA. Energy Technology Perspectives-Scenarios and Strategies to2050[R]. Paris,France: International Energy Agency (IEA),2010
    [4] UNIDO. Global Industrial Energy Efficiency Benchmarking-An Energy PolicyTool[R]. United Nations Industrial Development Organization (UNIDO),2010
    [5] Zafeiris T. Global CO2abatement potential in the pulp and paper industry up to2030[D]. Utrecht University, The Netherlands,2010
    [6] Laurijssen J.,Faaij A.,Worrell E. Energy conversion strategies in the European paperindustry–A case study in three countries[J]. Applied Energy,2012,98(0):102-113
    [7] Worrell E. The Next Frontier to Realize Industrial Energy Efficiency[C]//WorldRenewable Energy Congress, Keynote Presentation. Link ping, Sweden: Link pingUniversity Electronic Press,2011
    [8]国家发展和改革委员会.造纸产业发展政策[R].2007
    [9]国家发展和改革委员会.工业节能“十二五”规划[EB/OL].http://www.miit.gov.cn/n11293472/n11293832/n12843926/n13917012/14476058.html,2011
    [10] Martin N..Anglani N..Einstein D., et al. Opportunities to Improve Energy Efficiencyand Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry[R].Berkeley, California: Lawrence Berkeley National Laboratory, LBNL-46141,2000
    [11] Jaccard M. Industrial Energy End-Use Analysis&Conservation Potential in Six MajorIndustries in Canada, Chapter3-Pulp and Paper[R]. Ottawa, Canada: Prepared forNatural Resources Canada. Prepared by MK Jaccard and Associates&Willis EnergyServices Ltd,1996
    [12] Francis D.W.,Towers M.T.,Browne T.C. Energy Cost Reduction in the Pulp and PaperIndustry-An Energy Benchmarking Perspective[R]. Pulp and Paper Research Instituteof Canada (Paprican),2002
    [13] Thollander P.,Ottosson M. An energy efficient Swedish pulp and paper industry–exploring barriers to and driving forces for cost-effective energy efficiencyinvestments[J]. Energy Efficiency,2008,1(1):21-34
    [14] Raiski T. CO2emissions-Mineral carbonation and the Finnish pulp and paperindustry[D]. Helsinki University of Technology, Department of Forest ProductsTechnology,2004
    [15] Fleiter T.,Fehrenbach D.,Worrell E., et al. Energy efficiency in the German pulp andpaper industry–A model-based assessment of saving potentials[J]. Energy,2012,40(1):84-99
    [16] Fracaro G.,Vakkilainen E.,Hamaguchi M., et al. Energy efficiency in the Brazilianpulp and paper industry[J]. Energies,2012,5(9):3550-3572
    [17] Schumacher K.,Sathaye J. India's Pulp and Paper Industry: Productivity and EnergyEfficiency[R]. Berkeley, Carlifornia: Lawrence Berkeley National Laboratory,LBNL-41843,1999
    [18] Jain D.K.,Mora J.C. Cogeneration potential in the Indian pulp and paper industries[J].Energy,1992,17(12):1249-1254
    [19] Hong G.-B..Ma C.-M..Chen H.-W., et al. Energy flow analysis in pulp and paperindustry[J]. Energy,2011,36(5):3063-3068
    [20]中国造纸学会.中国造纸年鉴2010[M].北京:中国轻工业出版社,2011
    [21]国家统计局能源司.中国能源统计年鉴2010[M].北京:中国统计出版社,2011
    [22]国家发展和改革委员会.节能中长期专项规划[R].2004
    [23] EIPPCB. Best Available Techniques (BAT) Reference Docement for Production ofPulp Paper, and Board (Final Draft)[R]. Brussels: European Integrated PollutionPrevention and Control Bureau (EIPPCB),2013
    [24]国家发展和改革委员会.造纸工业发展“十二五”规划[EB/OL].http://www.ndrc.gov.cn/zcfb/zcfbtz/2011tz/t20120109_455383.htm,2011
    [25] Ren X. Cleaner production in China's pulp and paper industry[J]. Journal of CleanerProduction,1998,6(3-4):349-355
    [26] Li Z. Current Energy Efficiency in the Pulp&Paper Industry of China[C]//IEA-WBCSD Workshop on Energy Efficient Technologies and CO2ReductionPotentials in the Pulp and Paper Industry. Paris, France,2006
    [27] ACCA21. Pulp and Paper-A Reference Book for the Industry: Promotion ofBenchmarking Tools for Energy Conservation in Energy Intensive Industries inChina[R]. The Administrative Centre for China's Agenda21(ACCA21), TheEU-China Energy and Environment Programme (EuropeAid/123870/D/SER/CN),2009
    [28]刘焕彬,李继庚.造纸工业节能关键共性技术的研发与应用[C]//中日节能环保合作论坛(广东).广州,2008:27-33
    [29]刘焕彬.低碳经济视角下的造纸工业节能减排[J].中华纸业,2009,30(12):10-12
    [30]孔令波,刘焕彬,李继庚,等.造纸过程节能潜力分析与节能技术应用[J].中国造纸,2011,30(8):55-62
    [31]李威灵.我国造纸工业的能耗状况和节能降耗措施[J].中国造纸,2011,30(3):61-64
    [32]刘秉钺.我国造纸工业能耗的发展变化与现状分析[J].中国造纸,2010,29(10):64-70
    [33]张辉.节能促低碳,中国纸业依然任重道远[J].中华纸业,2010,31(1):14-21
    [34]顾民达.造纸工业节能减排现状及政策[J].中华纸业,2009,30(2):6-10
    [35]刘焕彬.发展生态造纸工业的几点思考[J].中华纸业,2006,27(3):14-19
    [36]刘焕彬,李继庚,陶劲松.发展低碳造纸工业的几点思考[J].中国造纸,2011,30(1):51-56
    [37]余贻骥.造纸产业的低碳发展之路[J].纸和造纸,2010,29(7):1-4
    [38]詹怀宇.实现循环经济,促进广东造纸工业可持续发展[J].中华纸业,2008,29(13):22-25
    [39]赵铨,李忠正.中国纸业在低碳经济发展中的社会责任.[J].中华纸业,2010,31(1):10-13
    [40] Kramer K.J.,Masanet E.,Xu T., et al. Energy Efficiency Improvement and Cost SavingOpportunities for the Pulp and Paper Industry, An ENERGY STAR Guide for Energyand Plant Managers[R]. Berkeley, California: Lawrence Berkeley National Laboratory,LBNL-2268E,2009
    [41] Kramer K.J.,Masanet E.,Worrell E. Energy Efficiency Opportunities in the U.S. Pulpand Paper Industry[J]. Energy Engineering,2010,107(1):21-50
    [42] Agenda2020. Forest Products Industry Technology Roadmap[R]. Agenda2020Technology Alliance,2010
    [43] ECCJ. Directory of Energy Conservation Technology in Japan[M]. New Energy andIndustrial Technology Development Organization, The Energy Conservation Center,Japan (ECCJ),1999
    [44] NEDO. Japanese Technologies for Energy Savings/GHG Emissions Reduction (2008Revised Edition)[R]. New Energy and Industrial Technology DevelopmentOrganization (NEDO),2008:157-169
    [45] CII. National&International Pulp&Paper Industry Best Practices Manual[R].Confederation of Indian Industry (CII),2010
    [46]刘秉钺,曹光锐.制浆造纸节能技术[M].北京:中国轻工业出版社,1999
    [47]刘秉钺.热工基础与造纸节能[M].第2版.北京:中国轻工业出版社,2010
    [48]平清伟,刘秉钺.制浆造纸节能新技术[M].北京:中国轻工业出版社,2010
    [49]何北海,林鹿,刘秉钺等.造纸工业清洁生产原理与技术[M].北京:中国轻工业出版社,2007
    [50]张承武,段永成.造纸车间技术管理的优化及技术支持[M].北京:中国轻工业出版社,2009
    [51]陈克复,杨旭.现代造纸机的节能与降耗[J].中国工程科学,2012,(07):4-8
    [52]邝仕均.制浆造纸工业的节能技术[J].中国造纸,2010,(10):56-63
    [53]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(Ⅰ)——造纸企业“三环节”能量结构模型的建立[J].造纸科学与技术,2004,23(1):25-30
    [54]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(Ⅱ)——造纸企业能量系统用能分析与评价[J].造纸科学与技术,2004,23(2):32-37
    [55]解新安,刘焕彬,邓毅,等.造纸企业能量系统“三环节”模型的建立及应用探讨(Ⅲ)——造纸企业能量系统改进措施研究[J].造纸科学与技术,2004,23(6):6-10
    [56]陶劲松.李继庚.孔令波,等.造纸过程“三环节”能量系统及诊断案例分析[J].造纸科学与技术,2009,28(6):24-30
    [57] Tao J.,Li J.,Liu H., et al. Energy and Exergy Measurement for PapermakingProcesses[J]. Measurement&Control,2010,43(4):116-119
    [58]李继庚.刘焕彬.尹勇军,等.一种造纸厂热电联产能量系统优化系统及其工作方法[P].中国,2010
    [59]李继庚,刘焕彬,孔令波,等.一种造纸机干燥部能量系统优化控制系统.发明专利,专利号: ZL201010132493.6[P].中国,2011
    [60]徐柱天.造纸机烘干部的通风系统(续)[J].中国造纸,1983,(3):42-53
    [61]徐国忠.纸机干部辅助装置对提高纸机热效率及节能的作用[J].中国造纸,1986,(5):29-36
    [62]阎尔平.节能效益显著的造纸厂纸页干燥的热泵供热系统[C]//全国暖通空调制冷1990年学术年会.中国北京,1990:5
    [63]阎尔平.热泵供热系统对纸页干燥的节能分析[J].现代节能,1990,(02):23-26
    [64]阎尔平.造纸机热泵干燥技术的研究[J].中国造纸,1994,(06):47-52
    [65]阎尔平.热泵技术应用及节能评价[C]//造纸工业能源效率论坛.中国北京,2011:19
    [66]张秀文.纸机干燥部余热回收技术与设备[J].中国造纸,2012,(05):56-62
    [67]张秀文.纸机干燥部余热回收技术与设备(续)[J].中国造纸,2012,(06):62-67
    [68]王洪平,王艳.造纸企业电机节能降耗技术和方法[J].中华纸业,2008,29(10):58-61
    [69]胡庆喜,田晶.制浆造纸企业用泵的节能[J].中华纸业,2009,30(12):65-67
    [70] Kong L.,Hasanbeigi A.,Price L. Emerging Energy-efficiency and Greenhouse GasMitigation Technologies for the Pulp and Paper Industry[R]. Berkeley, California:Lawrence Berkeley National Laboratory, LBNL-5956E,2012
    [71] Worrell E.,Price L.,Neelis M., et al. World Best Practice Energy Intensity Values forSelected Industrial Sectors[R]. Berkeley, California: Lawrence Berkeley NationalLaboratory, LBNL-62806Rev.2,2008
    [72] EIPPCB. Reference Document on Best Available Techniques in the Pulp and PaperIndustry[R]. Brussels: European Integrated Pollution Prevention and Control Bureau(EIPPCB),2001
    [73] Kinstrey R.B.,White D. Pulp and Paper Industry Energy Bandwidth Study[R]. Atlanta,Georgia: Report for the American Institute of Chemical Engineers (AIChE). Preparedby: Jacobs Engineering, Greenville, South Carolina&Institute of Paper Science andTechnology (IPST) at Georgia Institute of Technology, Atlanta,2006
    [74] Bruce D.M. Benchmarking energy consumption and identifying opportunities forconservation[J]. Pulp&Paper Canada,2000,101(11):35-38
    [75] CIPEC. Benchmarking Energy Use in Canadian Pulp and Paper Mills[R]. CanadianIndustry Program for Energy Conservation (CIPEC),2006
    [76] Klugman S.,Karlsson M.,Moshfegh B. A Scandinavian chemical wood pulp mill. Part1. Energy audit aiming at efficiency measures[J]. Applied Energy,2007,84(3):326-339
    [77] Klugman S.,Karlsson M.,Moshfegh B. A Scandinavian chemical wood-pulp mill. Part2. International and model mills comparison[J]. Applied Energy,2007,84(3):340-350
    [78] Laurijssen J.,Faaij A.,Worrell E. Benchmarking energy use in the paper industry: Abenchmarking study on process unit level[J]. Energy Efficiency,2013,6(1):49-63
    [79]尹洪超.企业能源审计与节能技术[M].大连:大连理工大学出版社,2006
    [80] Afshar P..Brown M..Austin P., et al. Sequential modelling of thermal energy: Newpotential for energy optimisation in papermaking[J]. Applied Energy,2012,89(1):97-105
    [81] Chen H.-W.,Hsu C.-H.,Hong G.-B. The case study of energy flow analysis andstrategy in pulp and paper industry[J]. Energy Policy,2012,43(0):448-455
    [82] Reese D. New Paper Machine Energy Scorecard System[C]//2008PaperConConference. Dallas, TX: TAPPI,2008
    [83] Reese D., Improve Paper Machine Energy Performance, Personal Communication.2012, Dick Reese and Associates, Inc.
    [84] Kong L.,Price L.,Hasanbeigi A., et al. Potential for reducing paper mill energy use andcarbon dioxide emissions through plant-wide energy audits: A case study in China[J].Applied Energy,2013,102:1334-1342
    [85]卢谦和.造纸原理与工程[M].第二版.北京:中国轻工业出版社,2006
    [86] Siitonen S.,Ahtila P. Possibilities of reducing CO2emissions in the Finnish forestindustry[R]. Helsinki, Finland: Finnish Forest Industries Federation,2002
    [87] Karlsson M.,Timofeev O.,Paavola P.M., A., et al. Analysis of performance of amulticylinder dryer, using computer model and experimental data[J]. Appita,1995,48(2):143-146
    [88] Wilhelmsson B..Stenstrom S..Nilsson L., et al. Modeling multicylinder paperdrying-validation of a new simulation program[J]. TAPPI,1996,79(4):157-167
    [89] Sl tteke O. Steam and condensate system control in paper making[D]. Lund, Sweden:Lund Institute of Technology, Department of Automatic Control,2003
    [90] Yaroslav C.,Aleksander K.,Lester S. Laboratory development of a high capacitygas-fired paper dryer[R]. Des Plaines, IL: Gas Technology Institute-Energy UtilizationCenter,2004
    [91] Chance J.L. Overview of the dryer section[C]//Practical Aspects of Pressing andDrying Course. Atlanta: TAPPI,1990
    [92]隆言泉.造纸原理与工程[M].北京:中国轻工业出版社,2000
    [93]潘永康,王喜忠,刘相东.现代干燥技术[M].第二版.北京:化学工业出版社,2006
    [94] Lindell K. Strategies for reduced energy use and cost in pulp and paper mills byenergy integration of the paper drying process[D]. Lund, Sweden Lund University,Department of Chemical Engineering,2007
    [95] Austin P.C..Mack J..McEwan M., et al., Improved Energy Efficiency in Paper MakingThrough Reducing Dryer Steam Consumption Using Advanced Process Control, in2011PaperCon Conference.2011: Covington, Kentucky
    [96] Urbas J.C. Uniform drying: the effects and importance of air in the process[J]. Pulpand Paper,1966,40(26):26-30,39
    [97] Reese R.A. Energy conservation opportunities in papermaking[J]. Pulp&PaperCanada,1988,89(10):97-100
    [98] Wicks L.D. Press design review[C]//Practical Aspects of Pressing and Drying Course.Atlanta: TAPPI,1990
    [99] TAPPI, TIP0404-63Paper machine energy conservation[S]. TAPPI, Atlanta,2006
    [100] Karlsson M. Papermaking Part2, Drying[M]//Gullichsen J.,Paulapuro H.Papermaking Science and Technology. Helsinki, Finland: Fapet Oy,2000
    [101] Sherwood T.K. The drying of solids—III Mechanism of the drying of pulp andpaper[J]. Industrial&Engineering Chemistry,1930,22(2):132-136
    [102] Nissan A.H.,Kaye W.G. An analytical approach to the problem of drying of thinfibrous sheets on multicylinder machines[J]. TAPPI,1955,38(7):385-398
    [103] Nissan A.H.,Hansen D. Fundamentals of drying porous materials[J]. TAPPI,1961,44(8):529-534
    [104] Nissan A.H.,Hansen D. Heat and mass transfer transients in cylinder drying: Part I.Unfelted cyclinders[J]. AIChE Journal,1960,6(4):606-611
    [105] Nissan A.H.,George H.H. Heat and mass transfer transients in cylinder drying: Part II.Felted cylinders[J]. AIChE Journal,1961,7(4):635-641
    [106] Dreshfield A.C.,Han S.T. The drying of paper[J]. TAPPI,1956,39(7):449-455
    [107] Gardner T.A. A theory of drying with air [J]. TAPPI,1960,43(9):796-800
    [108] Burgess B.W. The drying of web materials[J]. Pulp&Paper Canada,1961,62(6):T303-309
    [109] Burgess B.W. Future trends in drying[J]. Paper Technology,1971,12(6):459-472
    [110] Attwood D. The mechanism of drying paper on heated cylinders[J]. Pulp and PaperMagazine of Canada,1964,65(12): T533-T536
    [111] Han S.T. Heat and msss transfer in hot-surface drying of fiber mats[J]. Pulp and PaperMagazine of Canada,1964,65(12): T537-T549
    [112] Han S.T. Vapor transport in fiber mats during drying[J]. TAPPI,1966,49(1):1-4
    [113] Han S.T. Drying of paper[J]. TAPPI,1970,53(6):1034-1046
    [114]郭广源.纸幅接触干燥的机理[J].中国造纸,1982,2:43-51
    [115] Н.А.巴拉诺夫,Л.С.达布洛弗里斯基.造纸工艺学[M].魏钟,方书雄译.北京:轻工业出版社,1956
    [116]天津大学等.制浆造纸工艺学[M].北京:中国财政经济出版社,1961
    [117]北京轻工业学院.造纸工艺学[M].北京:中国财政经济出版社,1963
    [118] H.H.波各亚弗林斯基.造纸工艺学(下册)[M].单乃礼译.北京:轻工业出版社,1959
    [119] Higgins J.J. The air drying of paper[J]. TAPPI,1952,35(3):93-99
    [120] Gardner T. Air systems and yankee drying[J]. TAPPI,1964,47(4):210-214
    [121] Gardner T.A. PV system improves web profile[J]. Pulp and Paper,1971,45(11):89-97
    [122] Metcalfe W.K. What pocket ventilation systems can do-and what they cannot[J]. Pulpand Paper,1970,44(Feb.):95-97
    [123] Walker D. Ventilation and air systems[J]. Paper Technology,1971,12(5):392-397
    [124] Villalobos J.A. Paper machine hoods, pocket ventilation, heat recovery andthru-dryers[C]//Practical aspects of pressing and drying. Atlanta: TAPPI,1990
    [125] Maltais D. Heat recovery on a paper machine hood[J]. Pulp&Paper Canada,1993,94(12):113-117
    [126] Soininen M. Dimensioning of Paper Machine Heat Recovery Recuperators[J]. DryingTechnology,1995,13(4):867-896
    [127] Milosavljevic N.,Malinen P.,Heikkil P., et al. Experimental and theoreticalinvestigations for the design of scrubbers in heat recovery from paper machines[J].Applied Thermal Engineering,1997,17(6):569-581
    [128] Sundqvist H. Dryer section ventilation and heat recovery. In Papermaking Part2,Drying; Karlsson M., Eds.; Papermaking Science and Technology; Helsinki,Finland,2000:6-12
    [129] Kilponen L.,Ahtila P.,Taimisto M. Improvement of dryer section heat recovery inexisting paper machines during operation[C]//1stInternational Conference onSustainable Energy Technologies. Porto, Portugal,2002: Paper EES3
    [130] S derman J.,Pettersson F. Influence of variations in cost factors in structuraloptimisation of heat recovery systems with moist air streams[J]. Applied ThermalEngineering,2003,23(14):1807-1818
    [131] Sivill L.,Ahtila P.,Taimisto M. Thermodynamic simulation of dryer section heatrecovery in paper machines[J]. Applied Thermal Engineering,2005,25(8-9):1273-1292
    [132] Zvolinschi A.,Johannessen E.,Kjelstrup S. The second-law optimal operation of apaper drying machine[J]. Chemical Engineering Science,2006,61(11):3653-3662
    [133] Pettersson F.,S derman J. Design of robust heat recovery systems in papermachines[J]. Chemical Engineering and Processing,2007,46(10):910-917
    [134] Pulat E.,Etemoglu A.B.,Can M. Waste-heat recovery potential in Turkish textileindustry: Case study for city of Bursa[J]. Renewable and Sustainable Energy Reviews,2009,13(3):663-672
    [135] Sivill L.,Ahtila P. Energy efficiency improvement of dryer section heat recoverysystems in paper machines-A case study[J]. Applied Thermal Engineering,2009,29(17-18):3663-3668
    [136] Polley G.T.,Picón-Nú ez M.,López-Maciel J.d.J. Design of water and heat recoverynetworks for the simultaneous minimisation of water and energy consumption[J].Applied Thermal Engineering,2010,30(16):2290-2299
    [137] Urbas J.C. Closed hoods and internal air behaviour[J]. Pulp&Paper Canada,1964,65(7): T307-308
    [138] MacGregor H.D. Totally enclosed hoods on paper machines[J]. Appita1967,20(5):xvii-xxi
    [139] Marshall H. Dryer hoods and ventilation-How they affect costs and paper quality[J].Paper Trade Journal,1970,154(43):48-53
    [140] Young D.A. New developments in hoods and pocket ventilation systems[J]. Pulp&Paper Canada,1987,89(9):64-66
    [141] Reese J.R. High-humidity hoods conserve energy and improve runnability[J]. TAPPI,1989,72(4):87-90
    [142] Tanaka H. Recent paper dryer enclosed hood-high dew point enclosed hood andmachine room ventilation system[J]. Japan TAPPI Journal,2005,59(6):858-864
    [143] Hatogai T. High Dew Point Type of Totally Enclosed Hood System for Large&High-speed Paper Machines[J]. Japan TAPPI Journal,2010,64(10):16-20
    [144] White D.L. Closing up the hood[J]. Paper Technology,1982,23(5):148-149,158
    [145]徐柱天.造纸机烘干部的通风系统[J].中国造纸,1983,(2):57-61
    [146] Meisel R.M. Analog computer simulation of paper drying[J]. TAPPI,1977,60(1):160-162
    [147] Eskelinen P.J. How to improve paper machine performance by combining dryersection survey and computer simulation[J]. Drying Technology,1985,3(2):255-269
    [148] Wilhelmsson B.,Nilsson L.,Stenstr m S., et al. Simulation models of multi-cylinderpaper drying[J]. Drying Technology,1993,11(6):1177-1203
    [149] Wilhelmsson B.,Stenstr m S. Heat and mass transfer coefficients in computersimulation of paper drying[J]. Drying Technology,1995,13(4):959-975
    [150] Ghosh A.K. Drysim: A combined audit and simulation tool to improve overall dry endefficiency[J]. Appita,1998,51(4):274-280
    [151] Ghosh A.K. A Systematic Approach to Optimise Dryer Performance and EnergySavings-Case Studies[C]//PaperCon'09Conference. St. Louis, Missouri: TAPPI,2009
    [152] Chow D.K. Conditions for minimizing energy consumption while drying paper[J].TAPPI,1982,65(9):130-132
    [153] Young D.A. A guide to energy-efficient mill air systems[J]. Pulp&Paper Canada,1988,89(11):78-80
    [154] Lindell K.,Stenstr m S. Assement of different paper drying processes to reduce thetotal energy costs from a mill perspective[J]. Proceedings of14th International DryingSymposium,2004, B:1233-1240
    [155] Deshanais J.,Bastien C.,Tsuzuno H. Comprehensive Approach to Optimize Dryer Part-From Drying Energy Saving to Sheet Stabilization[J]. Japan TAPPI Journal,2010,64(9):13-18
    [156] Laurijssen J.,De Gram F.J.,Worrell E., et al. Optimizing the energy efficiency ofconventional multi-cylinder dryers in the paper industry[J]. Energy,2010,35(9):3738-3750
    [157] Reese D. Low-cost dryer upgrade opportunities offer efficiency gains, energysavings[J]. Pulp&Paper,2005,79(3):54
    [158] Reese R.A. Paper Machine Energy Considerations[C]//2006PaperCon Conference.Atlanta, GA: TAPPI,2006
    [159] Hill K.C. Five rules for energy efficiency to improve dryer operations[J]. Pulp andPaper,2006,80(9):52-57
    [160] Wedel G.L. Opportunities for energy conservation in paper drying[C]//2006TAPPIPapermaker's Conference. Atlanta, Georgia: TAPPI,2006
    [161] Chaloux J. Save energy in the dryer section[J]. Paper360o,2009:20-23
    [162] Wedel G.L.,Chaloux J. Paper drying energy tips[J]. Paper Age,2012, July/August:20-22
    [163] Smith J. Energy optimization in the dryer section[J]. Paper Age,2008,September/October:24-28
    [164] Wilhelmsson B. An experimental and theoretical study of multicylinder paperdrying[D]. Lund, Sweden: Lund Institute of Technology, Department of ChemicalEngineering,1995
    [165] Nilsson L. Some studies of the transport coefficients of pulp and paper[D]. Lund,Sweden: Lund University, Department of Chemical Engineering,1996
    [166] Persson H. Dynamic modeling and simulation of multi-cylinder paper dryers[D]. Lund,Sweden: Lund Institute of Technology, Department of Chemical Engineering,1998
    [167] Pettersson M. Heat transfer and energy efficiency in infrared paper dryers[D]. Lund,Sweden: Lund University, Department of Chemical Engineering,1999
    [168] Wingren A. Development of a simplified dynamic model for multi-cylinder paperdryers[D]. Lund, Sweden: Lund University, Department of Chemical Engineering,1999
    [169] Pontremoli A. Modeling and control of a paper dryer section using ModelicaTM[D].Lund, Sweden: Lund University, Department of Automatic Control,2000
    [170] Baggerud E. Modelling of mass and heat transport in paper-Evaluation ofmechanisms and shrinkage[D]. Lund, Sweden: Lund University, Department ofChemical Engineering,2004
    [171] Ekvall J. Dryer section control in paper machines during web breaks[D]. Lund,Sweden: Lund Institute of Technology, Department of Automatic Control,2004
    [172] Karlsson M. Static and dynamic modelling of the drying section of a papermachine[D]. Lund, Sweden: Lund University, Department of Chemical Engineering,2005
    [173] Martinsson J. Energy optimization of paper drying at Munksj Paper[D]. Lund,Sweden: Lund Institute of Technology, Department of Chemical Engineering,2005
    [174] Sl tteke O. Modeling and control of the paper machine drying section[D]. Lund,Sweden: Lund University, Department of Automatic Control,2006
    [175] Windahl J. Modelling and parameter estimation of a paper machine drying sectionusing Modelica[D]. Lund, Sweden: Lund University, Department of AutomaticControl,2006
    [176] kesson J. Languages and tools for optimization of large-scale systems[D]. Lund,Sweden: Lund University, Department of Automatic Control,2007
    [177] kesson J.,Sl tteke O. A Modelica Library for Paper Machine Dryer SectionModeling-DryLib-and applications[R]. Sweden: Lund University,2006
    [178] str m K.J. Computer Control of a Paper Machine—An Application of LinearStochastic Control Theory[J]. IBM Journal of Research and Development,1967,11(4):389-405
    [179] Nilsson L. Heat and mass transfer in multicylinder drying: PartⅠ. Analysis ofmachine data[J]. Chemical Engineering and Processing,2004,43(12):1547-1553
    [180] Nilsson L. Heat and mass transfer in multicylinder drying: PartⅡ. Analysis of internaland external transport resistances[J]. Chemical Engineering and Processing,2004,43(12):1555-1560
    [181] Gaillemard C. Modelling the moisture content of multi-ply paperboard in the papermachine drying section[D]. Stockholm, Sweden: KTH, Departement of Mathematics,2006
    [182] Heikkil P. A study on the drying process of pigment coated paper webs[D]. bo,Finland: bo Akademi, Department of Chemical Engineering,1993
    [183] Berg C.-G. Heat and mass transfer in turbulent moist air drying processes[D]. boAkademi University1999
    [184] Berg C.G.A. Heat and mass transfer in turbulent drying processes-Experimental andtheoretical work[J]. Drying Technology,2000,18(3):625-648
    [185] Berg C.G., kerholm J.,Karlsson M.A. An experimental evaluation of the governingmoisture movement pheonomena in the paper coating process. I. Theoreticalaspects[J]. Drying Technology,2001,19(10):2389-2406
    [186] kerholm J.,Berg C.G.,Kirstil V. An experimental evaluation of the governingmoisture movement pheonomena in the paper coating process. II. Experimental[J].Drying Technology,2001,19(10):2407-2419
    [187] S derman J.,Heikkil P. Calculation of the heat transfer coefficients with condensationin heat recovery systems, Report2001-1[R]. bo, Finland: bo Akademi University,Heat Engineering Laboratory,2001
    [188] S derman J.,Pettersson F. Comparison of solutions with varying cost factors instructural optimisation of paper machine heat recovery systems, Report2001-3[R].bo, Finland: bo Akademi University, Heat Engineering Laboratory,2001
    [189] Maloney T.C.,Johansson T.,Paulapurp H. Removal of water from the cell wall duringdrying[J]. Paper Technology,1998,39(6):39-47
    [190] Maloney T.C. On the pore structure and dewatering properties of the pulp fiber cellwall[D]. Espoo, Finland: Helsinki University of Technology, Department of ForestProducts Technology,2000
    [191] Paltakari J.T. Internal and external factors affecting the paper drying process[D].Espoo, Finland: Helsinki University of Technology,2000
    [192] Kilponen L. Improvment of heat recovery in existing paper machines[D]. Espoo:Helsinki University of Technology, Department of Mechanical Engineering,2002
    [193] Ker nen J. Increasing the drying efficiency of cylinder drying[D]. Jyv skl, Finland:University of Jyv skyl, Department of Physics,2011
    [194] Prahl J.M. Thermodynamics of paper fiber and water mixtures[D]. Cambridge,Massachusetts: Harvard University, Division of Engineering and Applied Physics,1968
    [195] Ramaswamy S. Analysis of heat and mass transfer during drying of paper/board underconventional and high intensity conditions[D]. New York: State University of NewYork, Faculty of Paper Science and Engineering,1990
    [196] Ramaswamy S.,Holm R.A. Analysis of heat and mass transfer during drying ofpaper/board[J]. Drying Technology,1999,17(1):50-72
    [197] Barber V.A. Dynamic modeling of paper machine system using Matlab withSimulink[D]. New York: State University of New York, Faculty of Paper ScienceEngineering,2003
    [198] Park S. Drying behavior of cellulose fibers characterized by thermal analysis[D].Raleigh: North Carolina State University, Department of Wood and Paper Science,2006
    [199] Park S.,Venditti R.A.,Jameel H., et al. Hard-to-remove water in cellulose fiberscharacterized by thermal analysis: A model for the drying of wood-based fibers[J].TAPPI,2007,6(7):10-16
    [200] Cul W.K.,Douglas W.J.M.,Mujumdar A.S. Impingment steam drying of paper[J].Drying Technology,1985,3(2):307-320
    [201] Hashemi S.J.,Douglas W.J.M. Paper drying: A strategy for higher machine speed I.Through air drying for hybrid dryer sections[J]. Drying Technology,2001,19(10):2487-2507
    [202] Hashemi S.J.,Sidwall S.,Douglas W.J.M. Paper drying: A strategy for higher machinespeed II, Impingment air drying for hybrid dryer sections[J]. Drying Technology,2001,19(10):2509-2530
    [203] Kumar P.,Mujumdar A.S.,Koran Z. Microwave drying: Effects on paper properties[J].Drying Technology,1990,8(5):1061-1087
    [204] Roonprasang K. Thermal analysis of multi-cylinder drying section with variantgeometry[D]. Dresden, Germany: Technical University of Dresden, Department ofProcessing Machine and Processing Technology,2008
    [205] Yeo Y.-K.,Hwang K.-S.,Yi S.C., et al. Modeling of the drying process in paperplants[J]. Korean Journal of Chemical Engineering,2004,21(4):761-766
    [206] Huh C.H.,Yeo Y.-K. Dynamic modeling of the steam supply system for a paper dryingcylinder[J]. Korean Journal of Chemical Engineering,2010,27(5):1384-1390
    [207] Heo C.,Cho H.,Yeo Y.-K. Dynamic modeling of paper drying processes[J]. KoreanJournal of Chemical Engineering,2011,28(8):1651-1657
    [208]刘焕彬,刘明旭.造纸机干燥部耗热量与通风量的模拟设计和管理[J].中国造纸,1991,(04):25-31
    [209]方奕文.造纸机干燥部计算机模拟软件的开发与应用[D].广州:华南理工大学,1993
    [210]刘金星.造纸过程仿真与过程参数辨识方法研究[D].广州:华南理工大学,2008
    [211]李玉刚.多烘缸造纸机干燥部能量系统分析建模与优化研究[D].广州:华南理工大学,2011
    [212]张鼎华.基于多Agent技术的造纸过程节能优化建模的研究[D].广州:华南理工大学,2011
    [213]周艳明.集成物能流分析的造纸过程建模与在线仿真研究[D].广州:华南理工大学,2012
    [214]林治作.纸页干燥过程建模研究[D].广州:华南理工大学,2012
    [215]张程.蒸汽喷射式热泵在纸机干燥部的应用与分析[D].大连:大连理工大学,2004
    [216]沈胜强,李素芬.纸机干燥部多段通汽系统中喷射式热泵的性能分析[J].中国造纸,2000,(02):38-42
    [217]卢涛.毛细多孔介质干燥过程中传热传质模型研究及应用[D].大连:大连理工大学,建设工程学部,2003
    [218]卢涛,沈胜强,李素芬.纸页干燥过程的数值模拟与参数分析[J].中国造纸学报,2003,18(1):119-122
    [219]沈胜强,卢涛,李素芬.纸页干燥过程计算模型[J].中国造纸,2003,22(4):22-25
    [220]卢涛,沈胜强,刘晓华.多孔介质对流干燥过程数值模拟[J].大连理工大学学报,2005,45(4):541-546
    [221] Lu T.,Shen S.Q. Numerical and experimental investigation of paper drying: Heat andmass transfer with phase change in porous media[J]. Applied Thermal Engineering,2007,27(8–9):1248-1258
    [222]宫振祥,刘振义,李生谦,等.纸页干燥过程热质传递的初步理论分析[J].天津造纸,1993,(1):11-14
    [223]宫振祥,刘振义,李生谦,等.纸机干燥部热平衡及其计算机辅助计算[J].中国造纸,1993,(3):31-35
    [224]田临林,李生谦,苗德华.长网纸机干燥部能量与通风系统的计算[J].天津造纸,1995,(2):2-8
    [225] Gong Z.-X.,Stanovsky J.,Mujumdar A.S. Energy audit of a fiberboard dryingproduction line using simprosys software[J]. Drying Technology,2011,29(4):408-418
    [226]董继先,欧阳玉霞,王孟效.造纸机干燥部的研究与发展[J].陕西科技大学学报,2005,23(3):105-110
    [227]董继先,任雪鸿,闫永志.孔板在纸机干燥部热泵供热系统的应用[J].中国造纸,2006,(10):43-46
    [228]周强,韩九强.基于遗传算法的烘缸干燥曲线的参数优化[J].中国造纸学报,2007,22(1):80-83
    [229]张艳华,董继先.烘缸干燥过程计算模型的建立[J].湖南造纸,2007,(3):17-19
    [230]董继先,张艳华.双热泵供热系统在纸机干燥部的应用研究[J].陕西科技大学学报,2007,(04):64-67
    [231]党睿.纸机干燥部热力系统的分析与研究[D].陕西科技大学,2009
    [232]董继先,张震.蒸汽喷射式热泵供热系统热力学分析[J].中华纸业,2010,(22):17-21
    [233]汤伟,李蕊.纸机干燥部蒸汽冷凝水系统热力平衡计算[J].纸和造纸,2011,(09):22-25
    [234]李蕊.基于可调热泵的蒸汽冷凝水热力系统研究[D].陕西科技大学,2012
    [235]姚新跃,张辉.大型纸机干燥部温湿参数动态特征及热能节约原理的研究[J].中国造纸学报,2009,(04):81-86
    [236]姚新跃.造纸机干燥部热风交换系统节能控制的研究[D].南京:南京林业大学,2010
    [237] Hill K.C. Paper drying[M]//Thorp B.A.,Kocurek M.J. Pulp and paper manufacture,3rded., Volume7, Paper machine operations. Atlanta: TAPPI,1991
    [238] Lang I. Effect of the dryer fabric on energy consumption in the drying section[J]. Pulp&Paper Canada,2009,110(5):33-37
    [239]孔令波.节能减排是我国造纸工业发展低碳经济的抓手[R].华南理工大学研究生课程论文,2010
    [240] Swema. Cylinder temperature sensor[EB/OL]. http://www.swema.com,2011
    [241]王忠厚.制浆造纸工业计算手册(上册)[M].北京:中国轻工业出版社,1994
    [242] TAPPI. TIP0404-07Paper machine drying rate[J]. TAPPI Technical InformationPaper,2010,
    [243] TAPPI, Dryer section performance monitoring, TIP0404-33[S].2012
    [244]赵冠春,钱立伦.分析及其应用[M].北京:高等教育出版社,1984
    [245]朱明善.能量系统的分析[M].北京:清华大学出版社,1988
    [246]项新耀.工程分析方法[M].北京:石油工业出版社,1990
    [247]傅秦生.能量系统的热力学分析方法[M].西安:西安交通大学出版社,2005
    [248] Gemci T., ztürk A. Exergy analysis of a sulphide-pulp preparation process in the pulpand paper industry[J]. Energy Conversion and Management,1998,39(16-18):1811-1820
    [249] Gong M. Exergy analysis of a pulp and paper mill[J]. International Journal of EnergyResearch,2005,29(1):79-93
    [250] Dincer I.,Sahin A.Z. A new model for thermodynamic analysis of a drying process[J].International Journal of Heat and Mass Transfer,2004,47(4):645-652
    [251] Sayegh N.N.,Pikulik I.I.,Simonsen H.I. Survey of Canadian newsprint dryer sections:Part Ⅱ-Energy consumption and drying rate[J]. Pulp and Paper Canada,1988,89(1):127-131
    [252] Urbas J.C. Steam consumption and dryer performance on Canadian newsprintmachines[J]. Pulp and Paper Magazine of Canada,1962,63(2): T87-T92
    [253] Clontz W.R. Determination of drying improvements in a dryer section[J]. TAPPI,1971,54(10):1714-1715
    [254] Reardon S.A.,Davis M.R.,Doe P.E. Computational modelling of paper dryingmachines[J]. TAPPI,2000,83(9):58-79
    [255] Nilsson L.J.,Larson E.D.,Gilbreath K., et al. Energy efficiency and the pulp and paperindustry[R]. Washington, D.C.:1996
    [256] De Beer J.,Worrell E.,Blok K. Long-term energy-efficiency improvements in the paperand board industry[J]. Energy,1998,23(1):21-42
    [257] De Beer J. Potential for industrial energy-efficiency improvement in the long term[D].Utrecht, Netherlands: Utrecht University, Department of Science, Technology andSociety,1998
    [258] Kudra T. Energy aspects in drying[J]. Drying Technology,2004,22(5):917-932
    [259] Menshutina N.V.,Gordienko M.G.,Voynovskiy A.A., et al. Dynamic analysis of dryingenergy consumption[J]. Drying Technology,2004,22(10):2281-2290
    [260]曾明,龚时雨,李希平.序贯模块法用于化工仿真培训[J].化工进展,1997,(04):39-42
    [261]杨友麒,项曙光.化工过程模拟与优化[M].北京:化学工业出版社,2006
    [262]王雅琳,黎良伟,桂卫华,等.序贯模块法在选矿流程模拟中的应用与实现[J].计算机工程与应用,2009,(07):224-226,243
    [263]奥齐西克M.N.热传导[M].俞昌铭译.北京:高等教育出版社,1983
    [264]杨世铭,陶文铨.传热学[M].第四版.北京:高等教育出版社,2006
    [265] Incropera F.P.,Dewitt D.P.,Bergman T.L., et al. Fundamentals of Heat and MassTransfer[M].6thed. New York: John Wiley&Sons, Inc.,2007
    [266] Holman J.P. Heat Transfer[M].10thed. New York: McGraw-Hill,2009
    [267] Lienhard IV J.H.,Lienhard V J.H. A Heat Transfer TextBook[M].4thed. Cambridge,Massachusetts: Phalgiston Press,2011
    [268]徐有明.木材学[M].北京:中国林业出版社,2006
    [269]王喜明.木材干燥学[M].第3版.北京:中国林业出版社,2007
    [270]俞昌铭.生物质材料(纸页)干燥原理探讨[R].华南理工大学讲座提纲,2013
    [271]傅献彩,沈文霞,姚天扬,等.物理化学(下册)[M].第5版.北京:高等教育出版社,2006
    [272] Weise U.,Maloney T.,Paulapuro H. Quantification of water in different states ofinteraction with wood pulp fibres[J]. Cellulose,1996,3(1):189-202
    [273] Heikkinen S.,Alvila L.,Pakkanen T.T., et al. NMR imaging and differential scanningcalorimetry study on drying of pine, birch, and reed pulps and their mixtures[J].Journal of Applied Polymer Science,2006,100(2):937-945
    [274] Stenstr m S. Product engineering by paper dryer[C]//Drying2004-Proceedings ofthe14th International Drying Symposium (IDS2004). S o Paulo, Brazil,2004:89-98
    [275]俞昌铭.多孔材料传热传质及其数值分析[M].北京:清华大学出版社,2011
    [276] Lewis W.K. The rate of drying of solid materials[J]. Journal of Industrial&Engineering Chemistry,1921,13(5):427-432
    [277] Bergman T.L.,Lavine A.S.,Incropera F.P., et al. Fundamentals of Heat and MassTransfer[M].7thed. New York: John Wiley&Sons, Inc,2011
    [278]杨淑蕙.植物纤维化学[M].第三版.北京:中国轻工业出版社,2001
    [279] Mujumdar A.S. Handbook of Industrial Drying[M].3rded. New York: CRC Press,2006
    [280] Britt K.W. Handbook of Pulp and Paper Technology[M]. New York: Van NostrandReinhold,1970
    [281] Macdonald R.G. Pulp and Paper Manufacture: Vol3. Papermaking and PaperboardMaking[M].2nded. New York: McGraw-Hill,1970
    [282]斯穆克G.A.制浆造纸工程大全[M].曹邦威译.北京:中国轻工业出版社,2001
    [283]绍帕B.A.最新纸机抄造工艺[M].曹邦威译.北京:中国轻工业出版社,1999
    [284]陶文铨.数值传热学[M].第2版.西安:西安交通大学出版社,2001
    [285] Kerekes R.J. A simple method for determining the thermal conductivity and contactresistance of paper[J]. TAPPI,1980,63(9):137-140
    [286] Reardon S.A.,Davis M.R.,Doe P.E. Construction of an analytical model of paperdrying[J]. Drying Technology,1999,17(4):655-690
    [287] Baehr H.D.,Stephan K. Heat and Mass Transfer[M].2nded. Heidelberg, Germany:Springer,2006
    [288] Bejan A.,Kraus A.D. Heat Transfer Handbook[M]. Hoboken, New Jersey: John Wiley&Sons, Inc.,2003
    [289] Wilhelmsson B.,Stenstr m S. Experimental and computational evaluation of masstransfer resistance of paper dryer fabrics[J]. Nordic Pulp and Paper Research Journal,1995,3(10):174-182
    [290] Pulkowski J.H.,Wedel G.L. The effect of spoiler bars on dryer heat transfer[J]. Pulp&Paper Canada,1988,89(8):61-66
    [291] Wedel G.L.,Timm G.L. Heat transfer performance with dryer bars[R]. Three Rivers,Michigan: Kadant Johnson Inc.,2005
    [292] kesson J.,Ekvall J., Parameter optimization of a paper machine model, in Reglerm te:Stockholm, Sweden,2006
    [293] Wilhelmsson B.,Fagerholm L.,Nilsson L., et al. An experimental study of contactcoefficients in paper drying[J]. TAPPI,1994,77(5):159-168
    [294] Welty J.R.,Wicks C.E.,Wilson R.E., et al. Fundamentals of Momentum, Heat, andMass Transfer[M].4thed. New York: John Wiley&Sons, Inc.,2001
    [295] Kartovaara I.,Rajala R.,Luukkala M., et al. Conduction of heat in paper, papermakingraw materials[C]//Transactions of the8th Fundamental Research Symposium. Oxford,1985:381-412
    [296] Karlsson M.,Stenstr m S. Static and dynamic modeling of cardboard drying Part1:Theoretical model[J]. Drying Technology,2005,23(1):143-163
    [297] Karlsson M.,Stenstr m S. Static and dynamic modeling of cardboard drying Part2:Simulations and experimental results[J]. Drying Technology,2005,23(1):165-186
    [298] Nederveen C.J.,Van Schaik-van Hoek A.L.,Dijkstra J.J.F.M. Present theories onmulti-cylinder paper drying[J]. Paper Technology,1991,32(11):30-35
    [299]俞昌铭.热传导及其数值分析[M].北京:清华大学出版社,1982
    [300] Chapra S. Applied Numerical Methods with MATLAB for Engineers andScientists[M].3rded. New York: McGraw-Hill,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700