用户名: 密码: 验证码:
企业能量管理与节能技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能是我国经济和社会发展的一项长远战略方针,电力节能是国家节能战略的重要组成部分,是节能产业的重中之重。而我国企业电能损失逐年增加,随着钢铁、有色、石化等行业飞速发展,企业电气节能形势很紧迫。我国高耗能企业众多,能源消耗总量大,有效利用率低,使我国的可持续发展面临巨大压力。因而开展企业电气节能的研究具有重大意义,不仅可以提高电能利用率,而且还可以提高企业配电网电能质量和供电可靠性。
     本论文以国家863计划和湖南省科技重大专项节能减排专项为依托,以钢铁、有色金属、电气化铁道等行业配电网的动态谐波治理、无功补偿和负序电流不平衡需求为背景,对企业配电网谐波治理、无功动态补偿、负序电流补偿以及电能管理技术进行了深入的研究,主要研究了大型企业电气节能关键技术和成套装备。实现对大型企业配电网的无功、谐波和负序电流的集中管理、优化补偿,达到节能降耗的目的。
     本文重点选择了冶炼、制造、化工三个行业进行调研,每个行业选择一家代表性企业,从谐波和无功问题、变频节能问题及电能量管理和优化节能问题三个方面展开分析讨论,从而得出企业电气节能需求,为企业配电网实现“全方位、多方面”的综合电气节能降耗提供有益的解决思路。
     针对常规高电压等级电网谐波电能损耗问题,提出了一种集谐波滤波和无功补偿为一体的新型并联混合有源电力滤波器(Novel Shunt Hybrid Active Power Filter, NSHAPF)。分析了拓扑结构,从理论上给出了滤波原理,尤其给出了NSHAPF在高次谐波治理上的仿真研究。还从电网单相接地、电网相间短路、电网三相短路、电网电压突变、电网电压聚升和骤降方面通过仿真分析了NSHAPF的稳定性。随后,提出了新型并联混合有源电力滤波器直流侧电压的控制方法和谐波电流的双闭环控制策略。最后,给出了实例分析,结果表明NSHAPF能够满足高电压等级场合谐波抑制和无功补偿的需求,达到了预期的设计目标。
     针对静止无功补偿器(Static Var Compensator, SVC)对配电网负荷引起的电压波动、功率因数较低和负序电流的补偿问题,提出一种多目标统一控制器,主要由功率因数闭环-负序电流补偿前馈控制支路和SVC安装点电压闭环-负序电流补偿前馈控制支路组成。可以依据负荷不同运行状态所引起的电能质量问题,来进行两条控制支路之间的切换。其中对功率因数闭环-负序电流补偿前馈控制支路设计了模糊PI控制算法,可以依据滞环环宽对功率因数进行“粗调”及“细调”;对SVC安装点电压闭环-负序电流补偿前馈控制支路设计了非线性PI控制算法,同时采用改进的单纯形加速算法(simplex method, SPX)对非线性PI控制器的比例和积分参数进行调整。仿真及工业应用结果表明控制方法的正确性和有效性。
     目前,专门针对大型企业电气节能的系列化关键技术与成套装备在国内外尚属空白,大多只是单一技术的研发与应用,节能效果有限。因此本文提出了一种基于多智能体遗传优化算法的配电网节能降耗综合管理系统,通过结合遗传算法和多智能体系统技术构造了一种多智能体遗传优化算法(Genetic Algorithm Based Multi-Agent System, GA-MAS)算法,能得出各个节能设备的最佳调节力度,使节能设备以最小的调节代价获得最大的节能效益,实现配电网“全方位、多方面”的综合节能降耗。首先给出了综合管理系统的结构、各节能设备智能体结构模型和多智能体系结构模型。接着着重介绍了其管理层的两个系统:综合自动化系统和能量管理系统。综合自动化系统主要利用微机实时技术将保护、监视、控制、远动等功能统一协调,建立综合的微机保护与监控系统。能量管理系统主要从管理节能和装备优化节能两方面入手,降低企业电能损耗,减少生产成本,提高企业生产效率和电能管理水平。
     最后,将本文研究的节能技术应用于企业,提出了工程应用总体框架,介绍了上述研究的NSHAPF和SVC的工程设计和工程应用效果,搭建了综合自动化系统硬件平台,给出了具体的节能效益分析,节能效果明显。
In our country, energy conservation, which refers to efforts made to reduce energy consumption, is a long-term policy for the development of economy and society. Furthermore, the electric power conservation is the most important part of the national tactic of energy conservation. However, with the rapid development of various industries such as the steel-smelting, the nonferrous metallic and the petrochemistry, it is urgent for these industries to reduce the cost of electric power. In addition, it also introduces stress on the national policy of continuous development because there exists numerous high energy consumption industries in China. These enterprises are not only of high cost of energy but also with low efficiency. Therefore, it is of special significance to start the research on the electric power conservation for enterprises, by which can raise the usage factor of the electric power and can improve the quality of the power grid as well as the reliability of the power supply.
     This thesis is supported by the national high technology research and development of china 863 program and the scientific research plan of hunan provincial science. For modern industries such as the steel-smelting, the nonferrous metallic and the electric railway, they all have technical requirements for reactive compensation and suppression of dynamic harmonics and unbalanced negative-sequence currents. Thus, the technics for solving these problems as well as the technic for electric power management are deeply investigated in this thesis. As a result, the key technologies of electric power conservation and corresponding equipment technology are studied for the requirement of enterprises. Finally, the centralized management and optimal compensation for reactive power, harmonics and negative-sequence currents in the enterprise grid are realized while the purpose to reduce the power cost is also achieved.
     Three enterprises corresponding to the industries of smelting, manufacture and chemistry are selected for investigation, respectively. Firstly, the demand of the electric power conservation of enterprises is derived by analyzing three main problems such as the suppression of harmonics and reactive power, the energy conservation by using frequency variation and the electric power management and optimization. Finally, some useful solutions for realizing the synthesized electric power conservation of the enterprise grid are introduced.
     A novel shunt hybrid active power filter (NSHAPF) for compensating the harmonics and reactive power is proposed, which is for solving the problem of electric power loss caused by the harmonics in the high grade grid. The corresponding topology structure is analyzed, and the filtering principle is introduced theoretically. The suppression of high order harmonics by using NSHAPF is investigated by simulation. In addition, the stability of NSHAPF is analyzed by simulating the faults in the grid such as the single phase earthing, the short circuit between phases, the short circuit of three phases, the voltage leap, the voltage swell and sags. The control scheme for the DC-link voltage of NSHAPF and the control strategy for harmonic currents by using the double close-loop are proposed then. The experimental analysis is introduced at last, which shows that the proposed NSHAPF can satisfy the requirement of the suppression of harmonics in the high grade grid.
     Due to the voltage fluctuation, low power factor and negative phase sequence (NPS) current caused by loads of distribution network, at where the static var compensator (SVC) is used to solve those power quality problems. A multiple objects unified controller is proposed. The proposed control method is composed of two control parts:one control branch is closed-loop control of power factor and NPS current compensation feedforward control, another control branch is closed-loop control of bus voltage at the point of common coupling (PCC) and NPS current compensation feedforward control. The two branches could be automatically switched following the variation of electric power qualities corresponding to different load conditions. In addition, a fuzzy-PI controller is designed for closed-loop control of power factor, which can coarsely adjust or finely adjust the power factor by hysteresis loop width. A nonlinear PI controller is proposed for the closed-loop control of PCC voltage, whose PI constants are adjusted by an improved accelerate simplex method. The correctness and effectiveness of proposed methods are verified by industrial applications and simulations.
     At present, there is no report about the key technologies and the complete set of equipment for electric power conservation of enterprises while most of the existing researches and applications only focus on the single aspect of this technology and show limited effectiveness in energy conservation. Thus, a synthesized management system based on genetic algorithm based multi-agent system (GA-MAS) for the electric power conservation of grid is proposed in this thesis. The GA-MAS is based on the combination of genetic algorithm and multi-agent system technology, which can be used to calculate the optimal adjustment of energy-saving equipment. With GA-MAS, the benefit of energy-saving equipment can be maximized while the cost of equipment adjustment is minimized, and the synthesized energy conservation of grid can be achieved. At first, the structure models of systems such as the synthesized management system, the agent structure models of all the energy-saving equipment and the structure model of the multi-agent system are introduced. The two subsystems of the management layer, viz. synthesized automatic system and power management system, are introduced then. The synthesized automatic system, which is mainly based on the real-time control technology of the micro-controller, can coordinate the functions such as protection, monitoring, control and motion control. Furthermore, it can establish a synthesized micro-controller based protection/monitoring system. The power management system mainly focuses on two aspects for energy conservation, viz. management and equipment optimization. For enterprises, it can be effective in reducing the costs of electric power and manufacturing and raising the production efficiency and the level of electric power management simultaneously.
     Finally, these t proposed echnologies for energy conservation in this thesis are employed in enterprises and the whole structure of related engineering applications is introduced. The design and related application of the proposed NSHAPF and SVC in engineering are also presented. The hardware platform of the synthesized automatic system is established and the analysis on the efficiency of energy conservation is introduced, which shows good performance in power conservation.
引文
[1]《电力节能技术丛书》编委会.配电系统节能技术.北京:中国电力出版社,2008,13-18.
    [2]“十一五”重点节能工程政策实施意见,2006,12-19.
    [3]张文亮,刘壮志,王明俊,等.智能电网的研究进展及发展趋势.电网技术,2009,33(13):1-11.
    [4]王兆安,杨君,刘进军.谐波抑制与无功功率补偿.北京:机械工业出版社,1998:35-55.
    [5]苑舜,韩水.配电网无功优化及无功补偿装置.北京:中国电力出版社,2003,23-36.
    [6]Corasaniti V F, Barbieri M B, Arnera P L, et al. Hybrid Power Filter to Enhance Power Quality in a Medium-Voltage Distribution Network. IEEE Transactions on Industrial Electronics,2009,56(8):2885-2893.
    [7]Akagi H, Fujita H. A New Power Line Conditioner for Harmonic Compensation in Power Systems. IEEE Transactions on Power Delivery,1995,10(3): 1570-1575.
    [8]Peng F Z, Akagi H, Nahae A. A new approach to harmonic compensation in power systems. IEEE/INS Ann. Meeting Conference,1988,874-880.
    [9]Bhim Singh, Kamal Al-Haddad, Ambrish Chandra. A review of active filters for power quality improvement. IEEE Transactions on Industrial Electronics,1999, 46(5):960-971.
    [10]王宇.电力系统谐波及其抑制技术的研究:[硕士论文].哈尔滨理工大学,2009,26-28.
    [11]梁时远.我国工业节能形势及其对策.中外能源,2009,14(1):2-5.
    [12]Mishra M K, Karthikeyan K. An Investigation on Design and Switching Dynamics of a Voltage Source Inverter to Compensate Unbalanced and Nonlinear Loads. IEEE Transactions on Industrial Electronics,2009,56(8): 2802-2810.
    [13]WeiNan Chang, ChiJui Wu. Developing static reactive power compensators in a power system simulator for power education. IEEE Transactions on Power Systems,1995,10(4):1734-1741.
    [14]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006, 45-78.
    [15]程浩忠.电力系统无功与电压稳定性.北京:中国电力出版社,2004,21-29.
    [16]Sumi Y, Harumoto Y, Hasegawa T, et al. New Static Var Control Using Force-Commutated Inverters. IEEE Transactions on Apparatus and Systems, 1981, PAS-100(9):4216-4224.
    [17]Das J C. Passive filters-potentialities and limitations. IEEE Transactions Industry Applications,2004,40(1):232-241.
    [18]Li D, Chen Q, Jia Z, et al. A high-power active filtering system with fundamental magnetic flux compensation. IEEE Transactions on Power Delivery, 2006,21(2):823-830.
    [19]EL-Kholy E E, EL-Sabbe A, El-Hefnawy A, et al. Three-phase active power filter based on current controlled voltage source inverter. International journal of Electrical Power and Energy Systems,2006,28(8):537-547.
    [20]胡铭,陈珩.有源滤波技术及其应用.电力系统自动化,2000,(2):66-70.
    [21]Nakajima K, Oku J. Nishidai, et al. Development of active filter with series resonant circuit. Power Electronics Specialists Conference,1988. PESC'88 Record.,19th Annual IEEE,1988, (2):1168-1173.
    [22]肖湘宁.电能质量分析与控制.北京:中国电力出版社,2004,32-39.
    [23]Domijan A, Heydt J T. APS Meliopoulos. Directions of research on electric power quality. IEEE Transactions on Power Delivery,1993,8(1):429-436.
    [24]赵逸众,肖湘宁,姜旭.现代电能质量监测技术的发展动态.电气技术,2006,(1):13-17.
    [25]刘军成.电能质量监测系统及其发展瓶颈.电力设备,2008,10(9):24-27.
    [26]Luo Z Shuai, Zhu W, et al. Combined System for Harmonic Suppression and Reactive Power Compensation. IEEE Transactions on Industrial Electronics, 2009,56(2):418-428.
    [27]Corasaniti V F, Barbieri M B, Arnera P L, et al. Hybrid Active Filter for Reactive and Harmonics Compensation in a Distribution Network. IEEE Transactions on Industrial Electronics,2009,56(3):670-677.
    [28]Xiaoming Yuan, Willi Merk, Herbert Stemmler, et al. Stationary-Frame Generalized Integrators for Current Control of Active Power Filters With Zero Steady-State Error for Current Harmonics of Concern Under Unbalanced and Distorted Operating Conditions. IEEE Transactions on Industry Applications, 2002,38(2):523-532.
    [29]宋良瑜.直流侧混合有源电力滤波器谐波补偿控制研究:[硕士论文].天津 大学,2004,12-15.
    [30]Hurng-Liahng Jou, Jinn-Chang Wu, Kuen-Der Wu, et al. A hybrid compensation system comprising hybrid power filter and AC power capacitor. International Journal of Electrical Power and Energy Systems,2006,28(7):448-458.
    [31]Asiminoaei L, Aeloiza E, Enjeti P N, et al. Shunt Active-Power-Filter Topology Based on Parallel Interleaved Inverters. IEEE Transactions on Industrial Electronics,2008,55(3):1175-1189.
    [32]Marks J H, Green T C. Predictive Transient-following Control of Shunt and Series Active Power Filters, IEEE Transactions on Power Electronics,2002, 17(4):574-584.
    [33]An Luo, Ci Tang, Zhikang Shuai, et al. Fuzzy-PI-based Direct Output Voltage Control Strategy for the STATCOM Used in Utility Distribution Systems. IEEE Transactions on Industrial Electronics,2009,56(7):2401-2411.
    [34]林庆农,刘学松,姜正豪.新一代能量管理系统设计.电力系统自动化,1999,23(17):45-47.
    [35]Bricker S, Gonen T, Rubin L. Substation automation technologies and advantages. IEEE Computer Applications in Power,2001,14(3):31-37.
    [36]Bhim Singh, Vishal Verma. An improved hybrid filter for compensation of current and voltage harmonics for varying rectifier loads. International Journal of Electrical Power and Energy Systems,2007,29(4):312-321.
    [37]李跃飞.一种混合型有源电力滤波器的仿真研究:[硕士论文].西安科技大学,2010,9-11.
    [38]Lucian Asiminoaei, Pedro Rodriguez, Frede Blaabjerg, Application of Discontinuous PWM Modulation in Active Power Filters. IEEE Transactions on Power Electronics,2008,23(4):1692-1706.
    [39]凌季平.基于单位功率因数检测方法的有源电力滤波器的研究:[硕士论文].北京交通大学,2007,12-16.
    [40]Lin C E, Tsai M T, Shiao Y S, et al. An active filter for reactive and harmonic compensation using voltage source inverter, IEE International Conference on Advances in Power System Control, Operation and Management, Hong Kong, 1991,(2):588-593.
    [41]Patricio Salmer'on and Salvador P. Litr'an. A Control Strategy for Hybrid Power Filter to Compensate Four-Wires Three-Phase Systems. IEEE Transactions on Power Electronics,2010,25(7):1923-1931.
    [42]周莉.三电平有源电力滤波器的研究:[硕士论文].重庆大学,2005,28-29.
    [43]Wang Z, Wang Q, Yao W, et al. A series active power filter adopting hybrid control approach. IEEE Transactions on Power Electronics,2001,16(3): 301-310.
    [44]Yang J, Wang Y, Wang Z. A DSP controlled hybrid power filter used to compensate the harmonics and reactive power caused by electrical traction loads. IEEE Power Engineering Society General Meeting,2003, (3):1615-1622.
    [45]李琼林,刘会金,孙建军,等.大容量有源滤波器的拓扑结构分析.高电压技术,2006,32(2):70-74.
    [46]Luigi Malesani, Paolo Mattavelli, Paolo Tomasin. High-performance hysteresis modulation technique for active Filters. IEEE Transactions on Power Electronics,1997,12(5):876-884.
    [47]徐万方.基于DSP的新型混合有源滤波器SRTHAF研制:[硕士论文].中南大学,2010,18-22.
    [48]吴昌哲.有源电力滤波器数字控制系统的研究:[硕士论文].北京:华北电力大学,2003,26-29.
    [49]Mekri F, Mazari B, Machmoum M. Control and optimization of shunt active power filter parameters by fuzzy logic. Electrical and Computer Engineering, 2006,31(3):127-134.
    [50]Taotao Jin, Keyue Ma Smedley. Operation of One-Cycle Controlled Three-Phase Active Power Filter With Unbalanced Source and Load. IEEE Transactions on Power Electronics,2006,21(5):1403-1412.
    [51]Rowan T M, Kerkman R J. A new synchronous current regulator and an analysis of current-regulated PWM inverters. IEEE Transactions on Industry Applications,1986, IA-22(4):678-690.
    [52]刘魏宏,朱建林,邓文浪等.基于交-直-交型矩阵变换器的多驱动系统的控制策略.中国电机工程学报,2006,26(6):111-115.
    [53]Koteswara Rao Uyyuru, Mahesh K. Mishra, Arindam Ghosh. An Optimization-Based Algorithm for Shunt Active Filter Under Distorted Supply Voltages. IEEE Transactions on Power Electronics,2009,24(5):1223-1232.
    [54]邓礼宽,姜新建,朱东启,等.APF和SVC的联合运行稳定控制.电力系统自动化,2005,29(18):29-32.
    [55]粟时平,刘桂英.静止无功功率补偿技术.北京:中国电力出版社,2006,19-23.
    [56]Shi Hanji. Symmetrical reactive power compensation for unbalanced three phase load. Power System Technology,1998,22(2):40-43.
    [57]韩民晓,尤勇,刘昊.线电压补偿型动态电压调节器(DVR)的原理与实现.中国电机工程学报,2003,23(12):49-53.
    [58]Lee S Y, Wu C J. Reactive Power Compensation and Load Balancing for Unbalanced Three-Phase Four-Wire System by a Combined System of an SVC and a Series Active Filter. IEE Proceeding Electric Power Applications,2000, 147(6):563-568.
    [59]黄舜,李胜,徐永海等.静止无功补偿器光电触发与监测系统设计与仿真.现代电力,2006,23(1):29-33.
    [60]曾光,柯敏倩,张静刚.用于静止无功补偿器的模糊-PID控制方法研究.电力电子技术,2005,39(5):112-114.
    [61]王本颉,张桂娥,刘克勤.国外开放式能量管理系统.电力情报,1994,(4):5-9.
    [62]于尔铿,周京阳,刘广一等.能量管理系统(EMS)的技术发展.中国电力,1997,30(8):3-5.
    [63]Humphreys S. Substation automation systems in review. IEEE Computer Applications in Power,1998,11(2):24-30.
    [64]李艳,阮新波,杨东.一种新的双输入直流变换器.电工技术学报,2008,23(6):77-82.
    [65]Dirk Detjen, Joep Jacobs, De Doncker, et al. A new hybrid filter to dampen resonances and compensate harmonic currents in industrial power systems with power factor correction equipment. IEEE Transactions on Power Electronics, 2001,16(6):821-827.
    [66]周雒维,张东,杜维.一种新型的串联有源电力滤波器.中国电机工程报,2005,25(14):41-45.
    [67]Hideaki Fujita, Takahiro Yamasaki, Hirofumi Akagi. A hybrid active filter for damping of harmonic resonance in industrial power systems. IEEE Transactions on Power Electronics,2000,15(2):215-222.
    [68]刘飞,邹云屏,李辉.C型混合有源电力滤波器.中国电机工程学报,2005,25(6):75-80.
    [69]谭甜源,罗安,唐欣,等.大功率并联混合型有源电力滤波器.中国电机工程学报,2004,24(3):41-45.
    [70]Pan C T, Chang T Y. An improved hysteresis current controller for reducing switching frequency. IEEE Transactions on Power Electronics,1994,9(1): 97-104.
    [71]Nishida K, Konishi Y, Nakaoka M. Current control implementation with deadbeat algorithm for three-phase current-source active power filter. IEE Proceeding of Electric Power Applications,2002,149(4):275-282.
    [72]唐欣,罗安,涂春鸣.基于递推积分PI的混合型有源电力滤波器电流控制.中国电机工程学报,2003,23(10):38-41.
    [73]涂春鸣,罗安.基于广义积分迭代算法的有源滤波器三重变结构控制.电工电能新技术,2004,23(1):34-38.
    [74]唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19(11):50-60.
    [75]Luo An, Fu Qing, Wang Lina, et al. High-capacity Hybrid Power Filter for Harmonic Suppression and Reactive Power Compensation in the Power Substation. Proceedings of the CSEE,2004,24(9):115-123.
    [76]罗安,章兢,付青.新型注入式并联混合型有源电力滤波器.电工技术学报,2005,20(2):51-55.
    [77]杜雄,彭礼明,周雒维.N+1混合无功补偿系统的研究.电网技术,2008,32(14):39-43.
    [78]Woo-Cheol Lee, Taeck-Kie Lee, Dong-Seok Hyun. A three-phase parallel active power filter operating with PCC voltage compensation with consideration for an unbalanced load. IEEE Transactions On Power Electronics,2002,17(5): 807-814.
    [79]徐永海,肖湘宁,杨以涵等.基于d-q变换和ANN的电能质量扰动辨识.电力系统自动化,2001,25(14):24-28.
    [80]Belanger J, Scott G, Anderson T, et al. Gain supervisor for thyristor controlled shunt compensators. International Conference on Large High Voltage Electric Systems,1984,29-39.
    [81]彭建春,黄纯,王耀南.静止无功补偿器的智能自适应PID控制器设计.湖南大学学报(自然科学版),1999,26(5):50-55.
    [82]付俊,赵军,乔治·迪米罗夫斯基.静态无功补偿器鲁棒控制的一种新自适应逆推方法.中国电机工程学报,2006,26(10):7-12.
    [83]曾光,苏彦民,柯敏倩等.用于无功静补系统的模糊-PID控制方法.电工技术学报,2006,21(6):40-43.
    [84]Song Y H, Agganval R K, Johns A T. Nonlinear thyristor-controlled SVC control for power system stability enhancement. IEEE TENCON'93,1993: 19-22.
    [85]盘宏斌,罗安,赵伟,等.基于DSP的不平衡补偿和单纯形优化的静止无功补偿器.电力自动化设备,2009,29(3):51-55.
    [86]盘宏斌,罗安,涂春鸣,等.蚁群优化PI控制器在静止无功补偿器电压控制中的应用.电网技术,2008,32(18):41-46.
    [87]罗安,李涓,漆铭钧.智能型无功最优补偿及装置.电力系统自动化,1999,23(3):45-46.
    [88]纪飞峰,周荔丹,姚刚等.基于同步对称分量法的静止无功补偿装置.中国电机工程学报,2005,25(6):24-29.
    [89]李鹏,石新春,梁志瑞.对电弧炉平衡化补偿实用公式推导及验证.电工技术学报,2001,16(1):77-80.
    [90]唐杰,罗安,涂春鸣等.配电静止同步补偿器的补偿电流检测方法.中国电机工程学报,2008,28(28):108-112.
    [91]徐先勇,罗安,方璐等.静止无功补偿器的新型最优非线性比例积分电压控制.中国电机工程学报,2009,29(1):80-86.
    [92]Wen Jinyu, Liu Pei, Cheng Shijie. Genetic algorithm and its applications to power systems. Automation of Electric Power Systems,1996,20:56-65.
    [93]巩敦卫,郝国生,周勇等.交互式遗传算法原理及其应用.北京:国防工业出版社,2007,35-39.
    [94]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法.中国电机工程学报,2005,25(5):1-7.
    [95]孟红云,刘三阳.求解多目标优化问题的多智能体遗传算法.西北大学学报(自然科学版),2005,35(1):13-16.
    [96]ZXLZY ErkengDept. The Strategy of Distribution Capacitor Scheme Based on Tabu Search. Power System Technology,1998, (22):33-36.
    [97]张勇军,任震,钟红梅等.实时无功优化调度中的邻域搜索改进遗传算法.电网技术,2003,27(1):22-25.
    [98]赵传霖,吴文传,张伯明.基于多Agent的能量管理系统支持平台.电力系统自动化,2009,33(13):47-52.
    [99]牛东晓,曹树华,赵磊等.电力负荷预测技术及其应用.第一版.北京:中国电力出版社,1998,45-48.
    [100]刘晨晖.电力系统负荷预报理论与方法.第一版.哈尔滨:哈尔滨工业大学出版社,1987,23-29.
    [101]唐涛,诸伟楠,杨仪松等.发电厂与变电站自动化技术及其应用.北京:中国电力出版社,2005,23-26.
    [102]屠强.变电所自动化实用技术及应用指南.第一版.北京:中国电力出版社,2004,31-35.
    [103]Pritty D W, Malone J R, Smeed D N, et al. Real-time upgrade for Ethernet based factory networking. IEEE IECON 21st International Conference on Industrial Electronics, Control, and Instrumentation,1995, (2):1631-1637.
    [104]雷振.工矿企业电气监控及电能量管理系统的研制:[硕士论文].湖南大学,2009,31-33.
    [105]张勇军,任震.无功电压动态控制的分布式协同优化.中国电机工程学报,2004,24(4):34-38.
    [106]Liu W H, Papalexopoulos A D, Tinney W F. Discrete shunt controls in a newton optimal power flow. IEEE Transactions on Power Systems,1992,7(4): 1509-1518.
    [107]胡景生.变压器经济运行.北京:中国电力出版社,1999,22-26.
    [108]吴芳慈.石化企业电气节能关键技术及应用的研制:[硕士论文].湖南大学,2010,41-45.
    [109]刘思锋.灰色系统理论及其应用.第一版.北京:科学出版社,2000,32-35.
    [110]Sun Ji-hu. Forecasting model of coal requirement quantity based on grey system theory. Journal of China University of Mining & Technology,2001(2):192-195.
    [111]Margareta Soismaa. A note on efficient solutions for the linear bilevel programming problem. European Journal of Operational Research,1999,112(2): 427-431.
    [112]Lee H, Pinto J M, Grossmann I E, et al. Mixed integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Industrial & Engineering Chemistry Research,1996,35(5): 1630-1641.
    [113]Pinto J M, Joly M, Moro L F L. Planning and scheduling models for refinery operations. Computers and Chemical Engineering,2000,2(4):2259-2276.
    [114]He N, Xu D, Huang L. The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design. IEEE Transactions on Industrial Electronics,2009,56(8):2841-2851.
    [115]Peng F Z. Application Issues of Active Power Filters. IEEE Industry Applications Magazine,1998,4(5):21-30.
    [116]Qiongq Chen, Z. Chenl, Malcolm McCotmick. The application and optimization of C-type filter in a combined harmonic power filter.2004 IEEE 35th Annul Power Electronics Specialists Conference Aachen,2004, (2):1041-1045.
    [117]Changzheng Zhang, Qiaofu Chen, Youbin Zhao, et al. A Novel Active Power Filter for High-Voltage Power Distribution Systems Application. IEEE Transactions on Power Delivery,2007,22(2):911-918.
    [118]罗安,汤赐,贾煜,等.参数优化设计系统软件.登记号:2006SR09593.
    [119]李升.变电站电压无功控制理论与设计.北京:中国水利水电出版社,2009,25-30.
    [120]Cheng Ying, Liu Mingbo. Nonlinear Primal-dual Interior Point Algorithm for Discrete Reactive Power Optimization. Automation of Electric Power Systems, 2001,25(9):23-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700