用户名: 密码: 验证码:
大鼠疑核调控胃运动及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的形态学和生理学研究证明,调控胃的副交感神经节前纤维主要来自迷走神经背核(DMV),部分来自疑核(NA),这说明NA对胃也具有调控作用。但是NA对胃运动是兴奋作用还是抑制作用,文献报道颇不一致。这提示我们非常有必要就NA对胃运动的调控做进一步研究。本实验室前面的工作用电刺激的方法观察了NA对胃运动的调控作用,结果发现电刺激大鼠NA通过迷走神经对胃运动产生显著的抑制作用,这一结果是由于兴奋了疑核内的神经元胞体所致还是兴奋了过路纤维所致?这是电刺激的方法所不能解决的问题。因此,本实验用神经元胞体兴奋剂L-谷氨酸钠(L-Glu)刺激大鼠的NA观察其对胃运动的影响及其作用机制。初步的研究结果发现,NA内注射L-Glu对胃运动也产生抑制作用。电刺激NA引起的胃运动反应是迷走神经介导的,那么NA内注射L-Glu对胃运动产生的抑制作用是否也是通过迷走神经途径呢?如果预先使胃的收缩活动加强,再在NA内注射神经元胞体兴奋剂L-Glu对胃运动是否仍然产生抑制作用呢?乙酰胆碱(ACh)是调控胃壁平滑肌收缩的一种兴奋性神经递质,因此,我们首先在大鼠腹腔注射ACh使胃的收缩活动加强,再观察NA内注射L-Glu对胃运动的调控作用及其传出神经通路。
     L-Glu是中枢神经系统中一种重要的兴奋性神经递质,它通过作用于配体门控离子通道型受体(离子型受体)和G蛋白偶联受体(代谢型受体)发挥作用;离子型谷氨酸受体是由4~5个亚基组成的多聚体,根据其药理特性和结构的不同又分成3种类型:NMDA、AMPA和KA受体。NA中注射L-Glu对胃运动产生抑制作用,但是,L-Glu是通过何种受体调控胃运动的未见文献报道。中枢神经元之间由L-Glu介导的兴奋性传递主要是通过NMDA受体和AMPA受体,而且L-Glu在NA中对呼吸、心率、食管等的调控也是通过NMDA受体和AMPA受体。因此,本文探讨了NA中L-Glu对胃运动的调控作用是否也是通过NMDA受体和AMPA受体。DMV中注射L-Glu调控胃收缩和胃舒张的副交感节前神经元均是胆碱能神经元。既然DMV和NA均为调控胃的副交感节前中枢,两个核团有某些相似性。因此,我们设想NA中注射L-Glu调控胃舒张的节前神经元也是胆碱能神经元。本研究也就此问题进行了探讨。
     NO是胃肠道非胆碱能非肾上腺素能神经所释放的主要抑制性递质,能够介导胃肠平滑肌舒张。有研究表明,NA中含有一氧化氮合酶能神经元,并且NA内内源性的NO能加强延髓呼吸神经网的输出活动,通过迷走神经控制心率,调节胸腺内T细胞的分化和成熟,调控食道和咽部活动。但尚未见关于NA中NO调控胃机能的文献报道。这提示我们NO是否也参与NA对胃机能的调控呢?如果NO参与NA对胃机能的调控,那么其调控途径是否也是通过迷走神经呢?我们初步的研究显示,大鼠NA内注射NO供体SNP和NO合成原料L-精氨酸均通过迷走途径显著地抑制了胃平滑肌的收缩。我们前面的研究也证实,大鼠NA注射L-Glu是通过兴奋了其节前胆碱能神经元对胃运动产生抑制作用,那么NA内外源性NO是否也是通过NA中的节前胆碱能神经元对胃运动产生抑制呢?本研究也对该问题进行了探讨。
     本研究前期的工作发现,NA中外源性L-Glu和NO均能抑制胃平滑肌收缩,那么这两种递质对胃运动的调控是否存在着某种关联呢?越来越多的研究表明,NMDA受体的激活和NO的合成存在着耦联。有研究报道,向兔DMV注射L-Glu增强了胆囊的运动是通过NMDA receptor-NO-cGMP途径。既然不管是在饮食后还是在饥饿状态下,人类胆囊的运动跟胃肠的运动都非常相似,这就提示我们,NA中注射L-Glu抑制胃平滑肌收缩可能也是通过NMDA receptor-NO途径。因此,本研究也就此问题进行了探讨。
     用胃腔内放置水囊法和二导生理记录仪全程记录注射药物前、后胃的收缩曲线。分别统计大鼠在注药前、后各5min内胃收缩波的幅度、时程、频率以及胃运动指数。在预先腹腔注射ACh组,根据预实验我们分别统计大鼠在注射前后各3 min内胃运动频率、幅度以及“胃的平均静息压”。
     结果发现,L-Glu(5,10 and 20 nmol)被注射进右侧NA后,在注射后的5 min内胃运动均受到极显著性的抑制,而且这种抑制作用具有剂量依赖性;但生理盐水注射到右侧NA前后,胃运动没有明显的改变;预先切断双侧膈下迷走神经完全消除了L-Glu被注射到右侧NA后对胃运动产生的抑制作用。预先腹腔注射ACh增强胃平滑肌的收缩活动后,再在右侧NA注射L-Glu仍然通过迷走神经显著地抑制了胃运动。NA内注射L-Glu对胃运动产生的抑制作用可被预先注射选择性的NMDA受体拮抗剂D-AP5所阻断,而不能被预先注射non-NMDA受体竞争性拮抗剂CNQX所阻断。预先股静脉注射六烃季铵完全消除了右侧NA注射L-Glu对胃运动产生的抑制作用。
     右侧NA注射NO供体硝普钠(SNP)、NO合成前体原料L-精氨酸(L-Arg)均显著性地抑制了胃平滑肌的收缩,而注射一氧化氮合成酶抑制剂L-NAME却极显著地增强了胃平滑肌的收缩。本研究还发现,SNP和L-Arg对胃运动的抑制作用可被切断双侧膈下迷走神经所消除。右侧NA注射SNP对胃运动的抑制作用也被预先股静脉注射六烃季铵所阻断。
     右侧NA预先注射nNOS抑制剂L-NAME并没有完全消除右侧NA注射L-Glu对胃运动产生的抑制作用,但是与NA内仅注射L-Glu组相比对胃运动的抑制程度有所下降。本研究还发现,NMDA受体拮抗剂D-AP5完全消除了右侧NA注射SNP对胃运动产生的抑制作用。
     总之,本研究得出结论,右侧NA注射L-Glu剂量依赖性地抑制胃平滑肌的收缩,是通过作用于NMDA受体兴奋了NA中的节前胆碱能神经元再通过迷走神经途径实现的。右侧NA注射SNP和L-Arg引起NO的释放和生成,NO产生后引起具有NMDA受体的节前胆碱能神经元的兴奋,再通过迷走神经途径抑制了胃平滑肌的收缩。NA中注射L-Glu抑制胃运动部分通过NMDA receptor-NO途径,但该途径不是主要途径,大多数L-Glu直接作用于具有NMDA受体的节前胆碱能神经元引起胃运动的抑制。
Numerous morphologic and physiological studies indicate that the vagal parasympathetic preganglionic neurons innervating the stomach are largely located in dorsal motor nucleus of the vagus (DMV) and partly in the nucleus ambiguus (NA). This suggests the NA is involved in the modulation of gastric functions. However, there are no unanimous standpoints about the effects of NA on the gastric motility up to now. To clarify the effects of excitation of NA on gastric motility, our research group electrically stimulated the NA in the anterior work and found that electrical stimulation of NA inhibited gastric motility significantly and the vagotomy beneath the diaphragm abolished the inhibitory response in rats. Was the result of electrical stimulation due to exciting neuron bodies or the passed fibres? To illuminate this question, we microinjected of L-Glutamate (L-Glu), a neuron body incitant, into NA to further investigate the effect of exciting NA on gastric motility in this paper. Our primary results showed that L-Glu microinjected into the right NA significantly inhibited gastric motility. Since the electrical stimulation of NA inhibited the gastric motility by the vagus nerves, is the vagal pathway involved in this response in rats either? Did microinjection of L-Glu into NA still inhibit gastric motility significantly in the state of stomach contracting strongly. Acetylcholine (ACh) is a neurotransmitter of modulating contraction of gastric smooth muscles. So we further explored the effect and the pathway of microinjection of L-Glu into NA on gastric motility in the state of stomach contracting strongly with intraperitoneal injection ACh.
     L-Glu is a major neurotransmitter of the mammalian central nervous system. It activates two families of receptors: the metabotropic and ionotropic receptors. The ionotropic glutamate receptors are nonselective cation permeable receptor channels that are classified in two subtypes according to their most selective agonist: N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-isoxazole-4-proprionate (AMPA)/kainite (non-NMDA). The Glu-mediated excitability transfer among the central neurons is via the NMDA and AMPA receptors. L-Glu in the NA also regulates respiration, heart rate, oesophagus through NMDA and non-NMDA glutamate receptors. These reports clue to us whether the effect of L-Glu microinjected into NA on gastric motility was also through NMDA and AMPA glutamate receptors in rats. L-Glu caused gastric contraction when it was injected into the rostral part of the DMV and relaxation when it was injected into the caudal part of the DMV by activating cholinergic preganglionic neurons in the DMV. The result suggested whether the effect of L-Glu microinjected into NA on gastric motility was also via activating NA cholinergic preganglionic neurons.
     Nitric oxide (NO) is a nonadrenergic-noncholinergic (NANC) neurotransmitter in the vagus nerve mediating relaxation of the gastrointestinal tract. NO is present in and released from NANC nerves and mediates gastrointestinal relaxation following vagal stimulation. NOS positive neurones and processes were seen in the NA. Endogenous NO may reinforce the output activity of the medullary respiratory network, modulate heart rate by vagus nerves, modulate activity of oesophagus and pharynx. According to these reports we assume whether NO within NA modulates gastrointestinal motility. Is the vagal pathway also involved in the modulation in rats? Our primary results showed that microinjection of sodium nitroprusside (SNP) and L-arginine (L-Arg) into the right NA respectively significantly inhibited gastric motility via vagally mediated pathways. In the previous study we found that microinjection of L-Glu into the right NA significantly inhibited gastric motility by activating the cholinergic preganglionic neurons in the NA. Whether was the effect of NO in the NA on gastric motility also via activating cholinergic preganglionic neurons within NA?
     We have reported that both L-Glu and NO participated in the regulation of gastric relaxation in the right NA. Whether is there some correlation between the L-Glu and NO? More and more evidences indicate the coupling of NMDA receptor activation with the synthesis of NO. Microinjection of L-Glu into dorsal motor nucleus of the vagus excites gallbladder motility through NMDA receptor-nitric oxide-cGMP pathway. There is a close relationship in humans between gallbladder motility and gastrointestinal motility during the fasting state, as well as in the postprandial period. These reports illume us whether microinjection of L-Glu into NA inhibits gastric motility through NMDA receptor-nitric oxide pathway. Therefore, we explored all the questions in this paper.
     A latex balloon connected with a pressure transducer was inserted into the pylorus through the forestomach for continuous recording of the gastric motility. The amplitude, duration, frequency, and motility index of gastric contraction waves within 5 minutes before microinjection and after microinjection were measured. In the intraperitoneal injection ACh group, frequency, amplitude, and average resting intragastric pressure of gastric contraction waves within 3 minutes before microinjection and after microinjection were measured.
     The results showed that L-Glu (5 nmol, 10 nmol and 20 nmol) microinjected into the right NA significantly inhibited gastric motility in a dose-dependent manner, however, microinjection of physiological saline (PS) at the same position and the same volume did not initiate any change of the gastric motility. Bilateral subdiaphragmatic vagotomy abolished the inhibitory effect of microinjection of L-Glu into NA on gastric motility. Microinjection of L-Glu into NA still significantly inhibited gastric motility by vagus nerves with intraperitoneal injection ACh in advance. The pretreatment of D-AP5, the specific NMDA receptor antagonist completely abolished the inhibitory effect of L-Glu on gastric motility. But the pretreatment of CNQX, the non-NMDA receptor antagonist, did not change the inhibitory effect of L-Glu on gastric motility. The pretreatment of intravenous injection hexamethonium bromide abolished the inhibitory effect of L-Glu on gastric motility too.
     Microinjection of SNP and L-Arg into the right NA significantly inhibited gastric motility by vagus nerves, respectively. However, microinjection of L-NAME, the inhibitor of nitric oxide synthase, into the right NA significantly enhanced gastric motility. The pretreatment of intravenous injection hexamethonium bromide abolished the inhibitory effect of SNP on gastric motility too.
     The pretreatment of L-NAME did not abolish the inhibitory effect of microinjection of L-Glu into the right NA on gastric motility completely, but the inhibitory effect was lower than that in the Glu group. We also found that the pretreatment of D-AP5 completely abolished the inhibitory effect of SNP on gastric motility.
     In conclusion, the data of these experiments suggested that microinjection of L-Glu into the right NA inhibited gastric motility through specific NMDA receptor activating the cholinergic preganglionic neurons in the NA and the efferent pathway was the vagal nerves. NO inhibited gastric motility by activating the cholinergic preganglionic neurons including NMDA receptor in the NA and the inhibitory effect was mediated by vagus nerves. Microinjection of L-Glu into NA inhibited gastric motility through NMDA receptor-nitric oxide pathway minorly.
引文
[1] Ter Horst GJ, Luiten PG, Kuiper F. Decsending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat [J]. J. Auton. Nerv. Syst, 1984, 11: 59-75.
    [2] Kostarcayk E, Zhang X, Giesler GJ Jr. Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain [J]. J Neurophsiol, 1997, 77: 435-451.
    [3] Sakanaka M, Shibasaki T, Lederis K. Distribution and efferent projections of corticotropin-releasing factor-like immunoreactivity in the rat amygdaloid complex [J]. Brain Res, 1986, 382: 213-238.
    [4] Jongen-Relo AL, Amaral DG. Evidence for a GABAergic projection from the central nucleus of the amygdale to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study [J]. Eur. J. Neurosci, 1998, 10: 2924-2933.
    [5] Blanks RH. Afferents to the cerebellar flocculus in cat with special reference to pathways conveying vestibular, visual (optokinetic) and oculomotor signals [J]. J. Neurocytol, 1990, 19: 628-642.
    [6] Van Bockataele EJ, Pierbone VA, Aston-Jones G. Diverse afferents converge on the nucleus paragigantocellularis in the rat ventrolateral medulla: retrograde and anterograde tracing studies [J]. J. Comp. Neurol, 1989, 290: 561-584.
    [7] Van Bockstaele EJ, Aston-Jones G, Pieribone VA, Ennis M, Shipley MT. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat [J]. J. Comp. Neurol, 1991, 309: 305-327.
    [8] Chen S, Aston-Jones G. Extensive projections from the midbrain periaqueductal gray to the caudal ventrolateral medulla: A retrograde and anterograde tracing study in the rat [J]. Neuroscience, 1996, 71: 443-459.
    [9] Ennis M, Xu SJ, Rizvi TA. Discrete subregions of the rat midbrain periaqueductal gray project to nucleus ambiguus and periambigual region [J]. Neuroscience, 1997, 80: 829-845.
    [10] Saper CB, Loewy AD. Efferent connections of the parabrachial nucleus in the cat [J]. Brain Res, 1980, 197: 291-317.
    [11] Fulwiler CE, Saper CB. Subnuclear organization of the efferent connections of the parabranchial nucleus in the rat [J]. Brain Res, Rev, 1984, 7: 229-259.
    [12] Stuesse SL, Fish SE. Projections to the cardioinhibitory region of the nucleus ambiguus of rat [J]. J. Comp. Neurol, 1984, 229: 271-278.
    [13] Herbert H, Moga MM, Saper CB. Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat [J]. J. Comp. Neurol, 1990, 293: 540-580.
    [14] Balaban CD. Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on the autonomic nervous system [J]. Exp. Brain Res, 1996, 108: 367-381.
    [15] Porter JD, Balaban CD. Connections between the vestibular nuclei and brain stem regions that mediate autonomic function in the rat [J]. J. Vestib. Res, 1997, 7: 63-76.
    [16] Cunningham ET, Jr Sawchenko PE. A circumscribed projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat: anatomical evidence for somatostatin-28-immunoreactive interneurons subserving reflex control of esophagealmobility [J]. J. Neurosci, 1989, 9: 1668-1682.
    [17] Cunningham ET, Jr Simmons DM, Swanson LW, Sawchenko PE. Enkephalin immunoreactivity and messenger RNA in a discrete projection from the nucleus of the solitary tract to the nucleus ambiguus in the rat [J]. J. Comp. Neurol, 1991, 307: 1-16.
    [18] Bao XM, Wiedner EB, Altschular SM. Transsynaptic localization of pharyngeal premotor neurons in rat [J]. Brain Res, 1995, 696: 246-249.
    [19] Rogers RC, Hermann GE, Travagli RA. Brainstem pathways responsible for oesophageal control of gastric motility and tone in the rat [J]. J. Physiol, 1999, 514: 369-383.
    [20] Caous CA, de Sousa Buck H, Lindsey CJ. Neuronal connections of the paratrigeminal nucleus: a topographic analysis of neurons projecting to bulbar, pontine and thalamic nuclei related to cardiovascular, respiratory and sensory functions [J]. Auton. Neurosci, 2001, 94: 14-24.
    [21] Yu YG, Caous CA, Balan AC, Rae GA, Lindsey CJ. Cardiovascular responses to sciatic nerve stimulation are blocked by paratrigeminal nucleus lesion [J]. Auton. Neurosci, 2002, 98: 70-74.
    [22] Morillo AM, Nunez Abades PA, Gayton SP, Pásaro R. Brainstem projections by axonal collaterals to the rostral and caudal ventral respiratory group in the rat [J]. Brain Res. Bull, 1995, 37: 205-211.
    [23] Chitravanshi VC, Sapru HN. Microinjections of glycine into the pre-Botzinger complex inhibit phrenic nerve activity in the rat [J]. Brain Res, 2002, 47: 25-33.
    [24] VanderHorst VG, Terasawa E, Ralston HJ 3rd. Monosynaptic projections from the nucleus retroambiguus region to laryngeal motoneurons in the rhesus monkey [J]. Neuroscience, 2001, 107: 117-125.
    [25] Ross CA, Ruggiero DA, Reis DJ. Afferent projections to cardiovascular portions of the nucleus of the tractus solitarii in the rat [J]. Brain Res, 1981, 223: 511-534.
    [26] Chen SY, Chai CY. Coexistence of neurons integrating urinary bladder activity and pelvic nerve activity in the same cardiovascular areas of the pontomedulla in cats [J]. Chin. J. Physiol, 2002, 45: 41-50.
    [27] King GW. Topology of ascending brainstem projections to nucleus parabrachialis in the cat [J]. J. Comp. Neurol, 1980, 191: 615-638.
    [28] Rikard-Bell GC, Bystrzycka EK, Nail BS. Brainstem projections to the phrenic nucleus: a HRP study in the cat [J]. Brain Res. Bull, 1984, 12: 469-477.
    [29] Ellenberger HH, Feldman JL. Subnuclear organizaion of the lateral tegmental field of the rat. I. Nucleus ambiguus and ventral respiratory group [J]. J. Comp. Neurol, 1990, 294: 202-211.
    [30] Shintani T, Mori RL, Yates BJ. Locations of neurons with respiratory-related activity in the ferret brainstem [J]. Brain Res, 2003, 974: 236-242.
    [31] Fung ML, Huang Q, Zhou D, St John WM. The morphology and connections of neurons in the gasping centre of adult rats [J]. Neuroscience, 1997,76: 1237-1244.
    [32] Yajima Y, Hayashi Y. Ambiguous respiratory neurons are modulated by GABA(A) receptor-mediated inhibition [J]. Neuroscience, 1999, 90: 249-257.
    [33] Kunibe I, Nonaka S, Katada A, Adachi M, Enomoto K, Harabuchi Y. The neuronal circuit of augmenting effects on intrinsic laryngeal muscle activities induced by nasal air-jet stimulation in decerebrate cats [J]. Brain Res, 2003, 978: 83-90.
    [34] Moore CT, Wilson CG, Mayer CA, Acquah SS, Massari VJ, Haxhiu MA. A GABAergic inhibitory microcircuit controlling cholinergic outflow to the airways [J]. J. Appl. Physiol, 2004, 96: 260-270.
    [35] Akasu T & Nishimura T. Synaptic transmission and function of Parasympathetic ganglia [J]. Prog Neurobiol, 1995: 459-522.
    [36] Coburn RF. Neural coordination of excitation of ferret tra-chealis muscle [J]. Am J Physiol Cell Physiol, 1984, 246: 459-466.
    [37] Myers AC, Undem BJ & Weinreich D. Electrophysiological Properties of neurons in guinea Pig bronchial Parasympathetic ganglia [J]. Am J Physiol Lung Cell Mol Physiol, 1990, 259: 403-409.
    [38] Lawn AM. The localization, in the nucleus ambiguous of the rabbit, of the cell of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration [J]. J. Comp. Neurol, 1966, 127: 293-306.
    [39] Yoshida Y, Miyazaki T, Hirano M, Shin T, Totoki T, Kanaseki T. Localizition of efferent neurons innervating the pharynx constrictor muscles and the cervical esophagus muscle in the cat by means of the horseradish peroxidase method [J]. Neurosci. Lett, 1981, 22: 91-95.
    [40] Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation [J]. Brain Behav. Evol, 1983, 23: 47-62.
    [41] Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus [J]. J. Comp. Neurol, 1987, 262: 546-562.
    [42] Altschuler SM, Bao X, Miselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat [J]. J Comp. Neurol, 1991, 309: 402-414.
    [43] Kitamura S, Nagase Y, Chen K, Shigenaga Y. Nucleus ambiguus of the rabbit: cytoarchitectural subdivsion and myotopical and neurotopic representations [J]. Anat. Rec, 1993, 237: 109-123.
    [44] Hadziefendic S, Haxhiu MA. CNS innervation of vagal preganglionic neurons controlling peripheral airways: a transneuronal labeling study using pseudorabies virus [J]. J. Auton. Nerv. Syst, 1999, 76: 135-145.
    [45] Babic T, Ciriello J. Medullary and spinal cord projections from cardiovascular responsive sites in the rostral ventromedial medulla [J]. J Comp Neurol, 2004, 469: 391-412.
    [46] Barillot JC, Grelot L, Reddad S & Bianehi AL. Diseharge Pattems of Laryngeal motoneurones in the cat: an intracellular study [J]. Brain Res, 1990, 509: 99-106.
    [47] Ono K, Shiba K, Nakazawa K & Shimoyamal. Synaptic origin of the respiratory-modulated activity of laryngeal motoneurons [J]. Neuroscience, 2006, 140: 1079-1088.
    [48] Waldbaum S, Hadziefendie S, Erokwu B, Zaidi SIA & Haxhiu MA. CNS innervation of Posterior cricoarytenoid museles:a transneuronal labeling study [J]. Resp Physiol, 2001,126: 113-125.
    [49] Iwasaki H, Namiki A. Anesthesia and laryngeal muscle, especially intrinsic laryngeal muscles [J]. Masui, 1993, 42: 1124-1131.
    [50] Flint PW, Downs DH, Coltrera MD. Laryngeal synkinesis following reinnervation in the rat.Neuroanatomic and physiologic study using retrograde fluorescent tracers and electromyography [J]. Ann Otol Rhinol Laryngol, 1991, 100: 797-806.
    [51] Haxhiu MA, Jansenb ASP, Chemiaek NS & Loewy AD. CNS innervation of airway-related Parasympathetic Preganglionic neurons:a transneuronal labeling study using pseudorabies virus [J]. Brain Res, 1993, 618: 115-134.
    [52] Yajima Y, Larson CR. Multifunctional properties of ambiguous neurons identified electrophysiologically during vocalization in the awake monkey [J]. J Neurophysiol, 1993, 70: 529-540.
    [53] Okano H, Toyoda KI, Bamba H, Hisa Y, Oomura Y, Imamura T, Furukawa S, Kimura H & Tooyama I. Localization of fibroblast growth factor-1 in Cholinergic neurons innervating the rat larynx [J]. J Histochem Cytochem, 2006, 54: 1061-1071.
    [54] Sun QJ, Berkowitz RG, Pilowsky PM. GABA A mediated inhibition and post-inspiratory pattern of laryngeal constrictor motoneurons in rat [J]. Respir Physiol Neurobiol, 2008, 162: 41-47.
    [55] Hayakawa T, Takanaga A, Maeda S, Ito H & Seki M. Monosynaptic Inputs from the nucleus tracetus solitarii to the laryngeal motoneurons in the Nucleus ambiguous of the rat [J]. Anat Emryol(Berl), 2000, 202: 411-420.
    [56] Wang YH, Ai HB, Zhang YY, Cui XY. Effects and mediated pathway of electrical stimulation of nucleus ambiguus on gastric motility and gastric barrier mucus secretion in rats [J]. The Scandinavian Journal of Clinical and Laboratory Investigation, 2007, 67: 489-497.
    [57] Saji M, Miura M. Evidence that glutamate is the transmitter mediating respiratory drive from medullary premotor neurons to phrenic motoneurons: a double labeling study in the rat [J]. Neurosci Lett, 1990, 115: 177-182.
    [58] Mueller PJ, Buckwalter JB, Clifford PS. Tracheal tone and the role of ionotropic glutamate receptors in the nucleus ambiguus [J]. Brain Res, 2004, 1021: 54-62.
    [59] Hsieh JH, Chang YC, Su CK, Hwang JC, Yen CT, Chai CY. A single minute lesion around the ventral respiratory group in medulla produces fatal apnea in cats [J]. J Auton Nerv Syst, 1998, 73: 7-18.
    [60] Yajima Y, Hayashi Y. GABA(A) receptor-mediated inhibition in the nucleus ambiguus motoneuron [J]. Neuroscience, 1997, 79: 1079-1088.
    [61] Arita H, Ochiishi M. Opposing effects of 5-hydroxytryptamine on two types of medullary inspiratory neurons with distinct firing patterns [J]. J Neurophysiol, 1991, 66: 285-292.
    [62] Hedner J, Mueller RA, Hedner T, McCown TJ, Breese GR. A centrally elicited respiratory stimulant effect by bombesin in the rat [J]. Eur J Pharmacol, 1985, 115: 21-29.
    [63] Paton, J.F., DePaula, P.M., Spyer, K.M., Maehado, B.H. and Bosean, P. Sensory Afferent selective role of P2 receptors in the nucleus tractus solitarii for mediating the cardiac component of the peripheral chemorecepto reflex in rats [J]. J physiol, 2002, 543: 995-1005.
    [64] Yao, S.T. and Lawrence, A.J. Purinergic modulation of cardiovascular function In the rat locus coeruleus [J]. Br J Pharmacol, 2005, 145: 342-352.
    [65]张慧,张明华,李勤,陈廷顺,赵琦,汪慧,于书彦.家兔疑核内P2X受体在急性低氧中的作用[J].山东大学学报(医学版), 2008, 46: 136-139.
    [66] Pasternak GW. Multiple mu opiate receptors: biochemical and pharmacological evidence for multiplicity [J]. Biochem Pharmacol, 1986, 35: 361-364.
    [67] Hassen AH, Feuerstein G, Faden AI. Selective cardiorespiratory effects mediated by mu opioid receptors in the nucleus ambiguus [J]. Neuropharmacology, 1984, 23: 407-415.
    [68] Hassen AH, Feuerstein G, Faden AI. Kappa opioid receptors modulate cardiorespiratory function in hindbrain nuclei of rat [J]. J Neurosci, 1984, 4: 2213-2221.
    [69]朱国运,林福生,王崇铨. OMF对大鼠疑核呼吸相关单位电活动的影响[J].生理学报, 1990, 42: 390-396.
    [70]朱国运,林福生,王崇铨.微电泳U-50488对大鼠疑核呼吸相关单位电活动的影响[J].生理学报, 1991, 43: 199-203.
    [71] LoewyAD, Spyer KM. Central regulation of autonomic function [M]. NewYork: Oxford University Press, 1990:
    [72] Mendelowitz D. Advances in Parasympathetic Control of Heart Rate and Cardiac Function [J]. News Physiol Sci, 1999, 14:155-161.
    [73] Hsieh JH, Chen RF, Wu JJ, Yen CT, Chai CY. Vagal innervation of the gastrointestinal tract arises from dorsal motor nucleus while that of the heart largely from nucleus amibiguus in the cat [J]. J. Auton. Nerv. Syst, 1998, 70: 38-50.
    [74] Cheng Z, Powley TL. Nucleus ambiguus projections to cardiac ganglia of rat atria: an anterograde tracing study [J]. J. Comp. Neurol, 2000, 424: 588-606.
    [75] Cheng ZJ, Zhang H, Guo SZ, Wurster R, Gozal D. Differential Control Over Vagal Efferent Postganglionic Neurons in Rat Intrinsic Cardiac Ganglia by Neurons in the Nucleus Ambiguus and the Dorsal Motor Nucleus of the Vagus: Anatomical Evidence [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2004, 286: 625-633.
    [76] Takanaga A, Hayakawa T, Tanaka K, Kawabata K, Maeda S, Seki M. Immunohistochemical characterization of cardiac vagal preganglionic neurons in the rat [J]. Auton, Neurosci, 2003, 106: 132-137.
    [77] Corbett EK, Batten TF, Kaye JC, Deuchars J, McWilliam PN. Labelling of rat vagal preganglionic neurons by carbocyanine dye DiI applied to the heart [J]. Neuroreport, 1999, 10: 1177-1181.
    [78] Stuesse SL. Origins of cardiac vagal preganglionic fibers: a retrograde transport study [J]. Brain Res, 1982, 236: 15-25.
    [79] Cheng Z, Zhang H, Guo SZ, Wurster R, Gozal D. Differential control over postganglionic neurons in rat cardiac ganglia by NA and DmnX neurons: anatomical evidence [J]. Am J Physiol Regul Integr Comp Physiol, 2004, 286: 625-633.
    [80] Zhang XY, Ai HB, Cui XY. Effects of nucleus ambiguus and dorsal motor nuclei of vagus on gastric H(+) and HCO(3)(-) secretion in rats [J]. World J Gastroenterol, 2006, 12: 3271-3274.
    [81] Willis A, Mihalevieh M, Neff RA, Mendelowitz D. Three types of Postsynaptic glutamatergic receptors are activated in DMNX neurons upon Stimulation of NTS [J]. Am J Physiol, 1996, 271: 1614-1619.
    [82] Neff RA, Mihalevieh M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rate ardiac vagal neurons in the nueleus ambiguus [J]. Brain Res, 1998a, 792: 277-282.
    [83] Mendelowitz D. Nicotine excites cardiac vagal neurons via three sites of action [J]. Clin Exp Pharmacol Physiol, 1998, 25: 453-456.
    [84] Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC,Mendelowitz D. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus [J]. Ann N Y Acad Sci, 2001, 940: 237-246.
    [85] Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, Mendelowitz D. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons [J]. J Neurophysiol, 2003, 89: 2473-2481.
    [86]王继江,陈咏华,李克勇,孙凤艳.迷走神经运动背核内心迷走神经元的能突触前支配受谷氨酸能紧张性调控[J].生理学报, 2005,57: 761-765.
    [87] Wang J, Irnaten M, Venkatesan P, Evans C, Mendelowitz D. Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus [J]. Neuroscience, 2002, 111: 699-705.
    [88] Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Endomorphin-2 inhibits GABAergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus [J]. Neuroscience, 2002, 113: 975-983.
    [89] Venkatesan P, Wang J, Evans C, Irnaten M, Mendelowitz D. Nociceptin inhibits gamma-aminobutyric acidergic inputs to cardiac parasympathetic neurons in the nucleus ambiguus [J]. J Pharmacol Exp Ther, 2002, 300: 78-82.
    [90] Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D. Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin and mu-selective opioids [J]. J Neurophysiol, 2003, 90:1581-1588.
    [91] de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity [J]. Proc Natl Acad Sci U S A, 1998, 95: 322-327.
    [92] Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior [J]. Cell, 1998, 92: 573-585.
    [93] Ciriello J, de Oliveira CV. Cardiac effects of hypocretin-1 in nucleus ambiguus [J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284: 1611-1620.
    [94] Dergacheva O, Wang X, Huang ZG, Bouairi E, Stephens C, Gorini C, Mendelowitz D. Hypocretin-1 (orexin-A) facilitates inhibitory and diminishes excitatory synaptic pathways to cardiac vagal neurons in the nucleus ambiguus [J]. J Pharmacol Exp Ther, 2005, 314: 1322-1327.
    [95] Massari VJ, Johnson TA, Gillis RA, Gatti PJ. What are the roles of substance P and neurokinin-1 receptors in the control of negative chronotropic or negative dromotropic vagal motoneurons? A physiological and ultrastructural analysis [J]. Brain Res, 1996, 715: 197-207.
    [96] Massari VJ, Johnson TA, Llewellyn-Smith IJ, Gatti PJ. Substance P nerve terminals synapse upon negative chronotropic vagal motoneurons [J]. Brain Res, 1994, 660: 275-287.
    [97] Agarwal SK, Calaresu FR. Enkephalins, substance P and acetylcholine microinjected into the nucleus ambiguus elicit vagal bradycardia in rats [J]. Brain Res, 1991, 563: 203-208.
    [98] Steinbusch HW. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals [J]. Neuroscience, 1981, 6: 557-618.
    [99] Sykes RM, Spyer KM, Izzo PN. Central distribution of substance P, calcitonin gene-related peptide and 5-hydroxytryptamine in vagal sensory afferents in the rat dorsal medulla [J]. Neuroscience, 1994, 59: 195-210.
    [100] Izzo PN, Jordan D, Ramage AG. Anatomical and Pharmacological evidence Supporting the involvement of serotonin in the central control of cardiac vagal Motoneurones in the anaesthetized rat [J]. J Physiol(London), 1988, 406:19.
    [101] Izzo PN, Deuchars J, Spyer KM. Localization of cardiac vagal preganglionic motoneurones in the rat: immunocytochemical evidence of synaptic inputs containing 5-hydroxytryptamine [J]. J Comp Neurol, 1993, 327: 572-583.
    [102] Yoshioka M, Goda Y, Ikeda T, Togashi H, Ushiki T, Saito H. Involvement of 5-HT3 receptors in the initiation of pharyngeal reflex [J]. Am. J. Physiol, 1994, 266: 1652-1658.
    [103] Ramage AG, Fozard JR. Evidence that the putative 5-HT1A receptor agonists, 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats [J]. Eur J Pharmacol, 1987,138: 179-191.
    [104] McCall RB, Escandon NA, Harris LT, Clement ME. Tolerance development to the vagal-mediated bradycardia produced by 5-HT1A receptor agonists [J]. J Pharmacol Exp Ther, 1994, 271: 776-781.
    [105] McCall RB, Romero AG, Bienkowski MJ, Harris DW, McGuire JC, Piercey MF, Shuck ME, Smith MW, Svensson KA, Schreur PJ. Characterization of U-92016A as a selective, orally active, high intrinsic activity 5-hydroxytryptamine1A agonist [J]. J Pharmacol Exp Ther, 1994, 271: 875-883.
    [106] Shepheard SL, Jordan D, Ramage AG. Comparison of the effects of IVth ventricular administration of some tryptamine analogues with those of 8-OH-DPAT on autonomic outflow in the anaesthetized cat [J]. Br J Pharmacol, 1994, 111: 616-624.
    [107] Sporton SC, Shepheard SL, Jordan D, Ramage AG. Microinjections of 5-HT1A agonists into the dorsal motor vagal nucleus produce a bradycardia in the atenolol-pretreated anaesthetized rat [J]. Br J Pharmacol, 1991, 104: 466-470.
    [108] Chitravanshi VC, Calaresu FR. Additive effects of dopamine and 8-OH-DPAT microinjected into the nucleus ambiguus in eliciting vagal bradycardia in rats [J]. J Auton Nerv Syst, 1992, 41: 121-127.
    [109] Fay R, Kubin L. Pontomedullary distribution of 5-HT2A receptor-like protein in the rat [J]. J. Comp. Neurol, 2000, 418: 323-345.
    [110] Wang Y, Ramage AG. The role of central 5-HT(1A) receptors in the control of B-fibre cardiac and bronchoconstrictor vagal preganglionic neurones in anaesthetized cats [J]. J Physiol, 2001, 536: 753-767.
    [111] Bogle RG, Pires JG, Ramage AG. Evidence that central 5-HT1A-receptors play a role in the von Bezold-Jarisch reflex in the rat [J]. Br J Pharmacol, 1990, 100: 757-760.
    [112] Skinner MR, Ramage AG, Jordan D. Effect of antagonism of central 5-HT1A receptors on baroreceptor and cardiopulmonary receptor reflexes in anaesthetized rabbits [J]. J Physiol(London), 1998, 531: 85.
    [113] Dando SB, Skinner MR, Jordan D, Ramage AG. Modulation of the vagal bradycardia evoked by stimulation of upper airway receptors by central 5-HT1 receptors in anaesthetized rabbits [J]. Br J Pharmacol, 1998, 125: 409-417.
    [114] Colino A, Halliwell JV. Differential modulation of three separate K-conductances inhippocampal CA1 neurons by serotonin [J]. Nature, 1987, 328: 73-77.
    [115] Melena J, Chidlow G, Osborne NN. Blockade of voltage-sensitive Na(+) channels by the 5-HT(1A) receptor agonist 8-OH-DPAT: possible significance for neuroprotection [J]. Eur J Pharmacol, 2000, 406: 319-324.
    [116] Wang X, DergACheva O, Kamendi H, Gorini C, Mendelowitz D. 5-Hydroxytryptamine 1A/7 and 4alpha receptors differentially prevent opioid-induced inhibition of brain stem cardiorespiratory function [J]. Hypertension, 2007, 50: 368-376.
    [117] Xiong Y, Okada J, Tomizawa S, Takayama K, Miura M. Difference in topology and numbers of barosensitive catecholaminergic and cholinergic neurons in the medulla between SHR and WKY rats [J]. Auton. Nerv. Syst, 1998, 70: 200-208.
    [118] Massari VJ, Dickerson LM, Gray AL, Lauenstein JM, Blinder KJ, Newsome JT, Rodak DJ, Fleming TJ, Gatti PJ, Gillis RA. Neural control of ventricular contractility in the dog heart: synaptic interactions of negative inotropic vagal preganglionic neurons in the nucleus ambiguus with tyrosine hydroxylase immunoreactive terminals [J]. Brain Res, 1998, 802: 205-220.
    [119] Chitravanshi VC, Calaresu FR. Dopamine microinjected into the nucleus ambiguus elicits vagal bradycardia in spinal rats [J]. Brain Res, 1992, 583: 308-311.
    [120] Gurtu S, Sharma DK, Sinha JN, Bhargava KP. Evidence for involvement of alpha 2-adrenoceptors in the nucleus ambiguous in baroreflex-mediated bradycardia [J]. Naunyn Schmiedebergs Arch Pharmacol, 1983, 323: 199-204.
    [121] Nazu M, Thippeswamy T. Nitric oxide signalling system in rat brain stem: immunocytochemical studies [J]. Anat Histol Embryol, 2002, 31: 252-256.
    [122] Osaka T. Nitric oxide mediates noradrenaline-induced hypothermic responses and opposes prostaglandin E2-induced fever in the rostromedial preoptic area. Neuroscience, 2010, 165: 976-983.
    [123] Pierrefiche O, Maniak F, Larnicol N. Rhythmic activity from transverse brainstem slice of neonatal rat is modulated by nitric oxide [J]. Neuropharmacology, 2002, 43: 85-94.
    [124]杜艳霞,南娟,卫竹翠,孙娇,于艳艳,李亘松.疑核注射L-精氨酸和7-硝基吲哚对大鼠心率变异性的影响[J].中西医结合心脑血管病杂志, 2008, 6: 182-184.
    [125] Fletcher J, Moody WE, Chowdhary S, Coote JH. NO - cGMP pathway at ventrolateral medullary cardic inhibitory sites enhances the baroreptor reflex bradycardia in the rat [J]. Brain res, 2006, 1123: 125-134.
    [126] Ruggeri P, Battaglia A, Ermirio R, Grossini E, Molinari C, Mary DA, Vacca G. Role of nitric oxide in the control of the heart rate within the nucleus ambiguus of rats [J]. Neuroreport, 2000, 11: 481-485.
    [127] Kamendi H, DergACheva O, Wang X, Huang ZG, Bouairi E, Gorini C, Mendelowitz D. NO differentially regulates neurotransmission to premotor cardiac vagal neurons in the nucleus ambiguus [J]. Hypertension, 2006, 48: 1137-1142.
    [128] Corbett EK, Saha S, Deuchars J, McWilliam PN, Batten TF. Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurones projecting to the rat heart [J]. Auton Neurosci, 2003, 105: 105-117.
    [129] Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus [J]. Brain Res, 1998, 792: 277-282.
    [130] Ermirio R, Ruggeri P, Cogo CE, Molinari C, Calaresu FR. Neuronal and cardiovascular responses to ANF microinjected into nucleus ambiguous [J]. Am J Physiol, 1991, 260: 1089-1094.
    [131] Willette RN, Barcas PP, Krieger AJ, Sapru HN. Vasopressor and depressor areas in the rat medulla. Identification by microinjection of L-glutamate [J]. Neuropharmacology, 1983, 22: 1071-1079.
    [132] Yan B, Li L, Harden SW, Gozal D, Lin Y, Wead WB, Wurster RD, Cheng ZJ. Chronic intermittent hypoxia impairs heart rate responses to AMPA and NMDA and induces loss of glutamate receptor neurons in nucleus ambiguous of F344 rats [J]. Am J Physiol Regul Integr Comp Physiol, 2009, 296: 299-308.
    [133] Dun NJ, Dun SL, Forstermann U. Nitric oxide synthase immunoreactivity in rat pontine medullary neurons [J]. Neuroscience, 1994, 59: 429-445.
    [134] Dun NJ, Dun SL, Forstermann U. Nitric oxide synthase-containing, peptide-containing, and acetylcholinesterase-positive nerves in the cat lower esophagus [J]. Histochem. J, 1994, 26: 721-733.
    [135]陈良为,饶志仁,施际武.大鼠延髓内脏带的化学神经解剖学.解剖学报, 1996, 27: 386-390.
    [136] Ichikawa T, Shimizu T. Organization of choline acetyltransferase-containing structures in the cranial nerve motor nuclei and spinal cord of the monkey [J]. Brain Res, 1998, 779: 96-103.
    [137] Cassell MD, Yi H, Talman WT. Glycine receptor (gephyrin) immunoreactivity is present on cholinergic neurons in the dorsal vagal complex [J]. Neurosci, 2000, 95: 489-497.
    [138] Kus L, Borys E, Ping Chu Y, Ferguson SM, Blakely RD, Emborg ME, Kordower JH, Levey AI, Mufson EJ. Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system [J]. J. Comp. Neurol, 2003, 463: 341-357.
    [139] Zhang M, Wang YT, Vyas DM, Neuman RS, Bieger D. Nicotinic cholinoceptor-mediated excitatory postsynaptic potentials in rat nucleus ambiguous [J]. Exp. Brain Res, 1993, 96: 83-88.
    [140] Lu W, Zhang M, Neuman RS, Bieger D. Fictive oesophageal peristalsis evoked by activation of muscarinic acetylcholine receptors in rat nucleus tractus solitarii [J]. Neurogastroenterol. Motil, 1997, 9: 247-256.
    [141] Lewis DI. Ventral medullary chemorecpor inputs to neurons within the nucleus ambiguus [J]. Clin. Esp. Pharmacol. Physiol, 1998, 25: 479-482.
    [142] Irnaten M, Wang J, Venkatesan P, Evans C, K Chang KS, Andresen MC, Mendelowitz D. Ketamine inhibits presynaptic and postsynaptic nicotinic excitation of identified cardiac parasympathetic neurons in nucleus ambiguus [J]. Anesthesiol, 2002, 96: 667-674.
    [143] Wang J, Wang X, Irnaten M, Venkatesan P, Evans C, Baxi S, Mendelowitz D. Endogenous acetylcholine and nicotine activation enhances GABAergic and glycinergic inputs to cardiac vagal neurons [J]. J. Neurophysiol, 2003, 89: 2473-2481.
    [144] Gurtu S, Sharma DK, Pant KK, Sinha JN, Bhargava KP. Role of medullary cholinoceptors in baroreflex bradycardia [J]. Clin Exp Hypertens A, 1986, 8: 1063-1079.
    [145] Wang Y, Jordan D, Ramage AG. Both GABAA and GABAB receptors mediate vagal inhibition in nucleus tractus solitarii neurones in anaesthetized rats [J]. Auton Neurosci, 2010, 152: 75-83.
    [146] Wang J, Irnaten M, Neff RA, Venkatesan P, Evans C, Loewy AD, Mettenleiter TC, Mendelowitz D. Synaptic and neurotransmitter activation of cardiac vagal neurons in the nucleus ambiguus [J]. Ann N Y Acad Sci, 2001, 940: 237-246.
    [147] Ermirio R, Ruggeri P, Cogo CE, Molinari C, Calaresu FR. Neuronal and cardiovascular responses to ANF microinjected into nucleus ambiguous [J]. Am J Physiol, 1991, 260: 1089-1094.
    [148] Jameson HS, Pinol RA, Mendelowitz D. Purinergic P2X receptors facilitate inhibitory GABAergic and glycinergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus. Brain Res, 2008, 1224: 53-62.
    [149] Venkatesan P, Baxi S, Evans C, Neff R, Wang X, Mendelowitz D. Glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus are inhibited by nociceptin and mu-selective opioids [J]. J Neurophysiol, 2003, 90: 1581-1588.
    [150] Chitravanshi VC, Sapru HN. Microinjections of glycine into the pre-Botzinger complex inhibit phrenic nerve activity in the rat [J]. Brain Res, 2002, 47: 25-33.
    [151] Wang J, Irnaten M, Venkatesan P, Evans C, Mendelowitz D. Arginine vasopressin enhances GABAergic inhibition of cardiac parasympathetic neurons in the nucleus ambiguus [J]. Neurosci, 2002, 111: 699-705.
    [152] Chitravanshi VC, Agarwal SK, Calaresu FR. Microinjection of glycine into the nucleus ambiguus elicits tachycardia in spinal rats [J]. Brain Res, 1991, 566: 290-294.
    [153] Hsieh JH, Chang YC, Chung JL, et al. The relationship between FTL and NA, DMV or CVLM in central cardiovascular control [J]. Chin. J. Physiol, 2001, 44: 169-179.
    [154] Shaw FZ, Yen CT, Chen RF. Neural and cardiac activities are altered by injection of picomoles of glutamate into the nucleus ambiguus of the rat [J]. Chin. J. Physiol, 2002, 45: 57-62.
    [155] Marchenko V, Sapru HN. Cardiovascular responses to chemical stimulation of the lateral tegmental field and adjacent medullary reticular formation in the rat [J]. Brain Res, 2003, 977: 247-260.
    [156] Kopylov, E.V., Smirnov, S.I.. Changes in the electrical activity of the gastric pyloric area during stimulation of the nucleus ambiguus [J]. Fiziol Zh SSSR Im I M Sechenova, 1991, 77: 91-99.
    [157] Jiao JH, Guyenet PG, Baertschi AJ. Lower brain stem controls cardiac ANF secretion [J]. Am. J. Physiol, 1992, 263: 198-207.
    [158] Irnaten M, Neff RA, Wang J, Loewy AD, Mettenleiter TC, Mendelowitz D. Activity of cardiorespiratory networks revealed by transsynaptic virus [J]. J. Neurophysiol, 2001, 85: 435-438.
    [159] Rentero N, Cividjian A, Trevaks D, Pequignot JM, Quintin L, McAllen RM. Activity patterns of cardiac vagal motoneurons in rat nucleus ambiguus [J]. Am. J. Physiol. Regul. Integr. Comp. Physiol, 2002, 283: 1327-1334.
    [160] Barrett RT, Bao X, Miselis RR, Altschuler SM. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus [J]. Gastroenterology, 1994, 107: 728-737.
    [161] Doty RW, Bosma JF. An electromyographic analysis of reflex deglutition [J]. J Neurophysiol, 1956,19: 44.
    [162] Kobler JB, Datta S, Goyal RK, Benecchi EJ. Innervation of the larynx, pharynx, andupper esophageal sphincter of the rat [J]. J Comp Neurol, 1994, 349: 129-147.
    [163] Armi M, Car A, Jean A. Medullary control of the pontine swallowing neurons in sheep [J]. Exp Brain Res, 1984, 55: 105.
    [164] Altschuler SM, Bao X, M iselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper a lim entary tract in the rat. J Comp Neurol, 1991, 309: 402-414.
    [165] Hayakawa T, Takanaga A, Tanaka K, Maeda S, Seki M. Organization and distribution of the upper and lower esophageal motoneurons in the medulla and the spinal cord of the rat [J]. Okajimas Folia Anat Jpn, 2002, 78: 263-279.
    [166] Sang Q, Goyal RK. Swallowing reflex and brain stem neurons activated by superior laryngeal nerve stimulation in the mouse [J]. Am J Physiol Gastrointest Liver Physiol, 2001, 280: 191-200.
    [167] Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing [J]. Am J Med, 2000, 108: 79-86.
    [168] Richards WG, Sugarbaker DJ. Neuronal control of esophageal function [J]. Chest Surg Clin N Am, 1995, 5: 157-171.
    [169] Jean A. Brainstem organization of the swallowing network [J]. Brain Behav Evol, 1984, 25: 109.
    [170] Kessier JP, Jean A. Identification of the medullary swallowing regions in the rat [J]. Exp Brain Res, 1985, 57: 256.
    [171] Reubi JC, Mazzucchelli L, Laissue JA. Intestinal vessels express a high density of somatostatin receptors in human inflammatory bowel disease [J]. Gastroenterology, 1994, 106: 951-959.
    [172] Richards WG, Sugarbaker DJ. Neuronal control of esophageal function [J]. Chest Surg Clin N Am, 1995, 5: 157-171.
    [173] De León M, Cove?as R, Narváez JA, Tramu G, Aguirre JA, González-Barón S. Distribution of somatostatin-28 (1-12) in the cat brainstem: an immunocytochemical study [J]. Neuropeptides, 1992, 21: 1-11.
    [174]包新民,舒斯云.大鼠咽肌前运动神经元内的生长抑素样神经元分布-PRV和SOM免疫荧光双标记法研究[J].第一军医大学学报, 1996, 16: 183-186.
    [175]包新民,舒斯云.疑核咽肌运动神经元中SOM和NOS的共存--PRV、SOM、NOS三标记法研究[J].中国组织化学与细胞化学杂志, 1997, 6: 365-369.
    [176] Wang YT, Zhang M, Neuman RS, Bieger D. Somatostat in regulates excitatory amino acid receptor-mediated fast excitatory postsynaptic potential components in vagal motoneurons [J]. Neuroscience, 1993, 53: 7-9.
    [177] Christensen J, Fang S. Colocalization of NADPH-diaphorase activity and certain neuropeptides in the esophagus of opossum (Didelph is virginiana) [J]. Cell T issue Res, 1994, 278: 557-562.
    [178] Kessler JP. Involvement of excitatory amino acids in the activity of swallowing-related neurons of the ventro-lateral medulla [J]. Brain Res, 1993, 603: 353-357.
    [179] Kerr FWL. Preserved vagal visceromotor function following destruction of the dorsal motor nucleus [J]. J. Physiology, 1969, 202: 755-769.
    [180] Kerr FWL, Preshaw. Secretomotor function of the dorsal motor nucleus of the vagus [J]. J. Physiology, 1969, 205: 405-415.
    [181] Shapiro RE, Miselis RR. The central organization of the vagus nerve innervating the stomach of the rat [J]. J. Comp. Neurol, 1985, 238: 473-488.
    [182]叶蒙福,宋鹤九,赵林昌等.胃的神经支配-HRP法[J].解剖学杂志, 1993, 16: 39-41.
    [183] Ewart WR, Jones MV, King BF. Central origin of vagal nerve fibres innervating the fundus and corpus of the stomach in rat [J]. J Auton Nerv Syst, 1988, 25: 219-231.
    [184] Hudson LC. The location of extrinsic efferent and afferent nerve cell bodies of the normal canine stomach [J]. J Auton Nerv Syst, 1989, 28: 1-14.
    [185]罗政良,董新文,单红英.大鼠胃的神经支配-荧光双标记法研究[J].解剖学报, 1987, 13: 379-385.
    [186] Coil JD, Norgren R. Cells of origin of motor axons in the subdiaphragmatic vagus of the rat [J]. J Auton Nerv Syst, 1979, 1: 203-210.
    [187] Leslie RA, Gwyn DG, Hopkins DA. The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat [J]. Brain Res Bull, 1982, 8: 37-43.
    [188] Zhang YY, Cao GH, Zhu WX, Cui XY, Ai HB. Comparative study of c-Fos expression in rat dorsal vagal complex and nucleus ambiguus induced by different durations of restraint water-immersion stress [J]. Chin J Physiol, 2009, 52: 143-150.
    [189]程世斌,卢光启.大鼠胃不同部位副交感节前神经元的中枢定位[J].解剖学报, 1993, 24: 51-55.
    [190] Pagani FD, Norman WP, Kasbekar DK, Gillis RA. Effects of stimulation of nucleus ambiguus complex on gastroduodenal function [J]. Am. J. Physiol, 1984, 246: 253-262.
    [191] Kopylov, E.V., Smirnov, S.I.. Changes in the electrical activity of the gastric pyloric area during stimulation of the nucleus ambiguus [J]. Fiziol. Zh. SSSR Im. I. M. Sechenova, 1991, 77: 91-99.
    [192] Neuhuber WL, Raab M, Berthoud HR, W?rl J. Innervation of the mammalian esophagus [J]. Adv Anat Embryol Cell Biol, 2006, 185: 1-73.
    [193] Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function [J]. Science, 1992, 258: 597-603.
    [194] Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S. Molecular cloning and characterization of the rat NMDA receptor [J]. Nature, 1991, 354: 31-37.
    [195] Nakanishi S, Nakajima Y, Masu M, Ueda Y, Nakahara K, Watanabe D, Yamaguchi S, Kawabata S, Okada M. Glutamate receptors: brain function and signal transduction [J]. Brain Res Rev, 1998, 26: 230-235.
    [196] Nakanishi S, Masu M. Molecular diversity and functions of glutamate receptors [J]. Annu Rev Biophys Biomol Struct, 1994, 23: 319-348.
    [197] Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system [J]. Annu Rev Pharmacol Toxicol, 1989, 29: 365-402.
    [198] Masu M, Tanabe Y, Tsuchida K, Shigemoto R, Nakanishi S. Sequence and expression of a metabotropic glutamate receptor [J]. Nature, 1991, 349: 760-765.
    [199] Houamed KM, Kuijper JL, Gilbert TL, Haldeman BA, O'Hara PJ, Mulvihill ER, Almers W, Hagen FS. Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain [J]. Science, 1991, 252: 1318-1321.
    [200] Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. A family of metabotropicglutamate receptors [J]. Neuron, 1992, 8: 169-179.
    [201] Saugstad JA, Kinzie JM, Mulvihill ER, Segerson TP, Westbrook GL. Cloning and expression of a new member of the L-2-amino-4-phosphonobutyric acid-sensitive class of metabotropic glutamate receptors [J]. Mol Pharmacol, 1994, 45: 367-372.
    [202] Nakajima Y, Iwakabe H, Akazawa C, Nawa H, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate [J]. J Biol Chem, 1993, 268: 11868-11873.
    [203] Okamoto N, Hori S, Akazawa C, Hayashi Y, Shigemoto R, Mizuno N, Nakanishi S. Molecular characterization of a new metabotropic glutamate receptor mGluR7 coupled to inhibitory cyclic AMP signal transduction [J]. J Biol Chem, 1994, 269: 1231-1236.
    [204] Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system [J]. Annu Rev Pharmacol Toxicol, 1989, 29: 365-402.
    [205] Neff RA, Mihalevich M, Mendelowitz D. Stimulation of NTS activates NMDA and non-NMDA receptors in rat cardiac vagal neurons in the nucleus ambiguus. Brain Res, 1998, 792: 277-282.
    [206] Hay M, McKenzie H, Lindsley K, Dietz N, Bradley SR, Conn PJ, Hasser EM. Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla oblongata of the rat [J]. J. Comp. Neurol, 1999, 403: 486-501.
    [207] Luthe L, Hausler U, Jurgens U. Neuronal activity in the medulla oblongata during vocalization. A single-unit recording study in the squirrel monkey [J]. Behav. Brain Res, 2000, 116: 197-210.
    [208] Pamidimukkala J, Hoang CJ, Hay M. Expression of metabotropic glutamate receptor 8 in autonomic cell groups of the medulla oblongata of the rat [J]. Brain Res, 2002, 957: 162-173.
    [209] Liu Q, Wong-Riley MT. Postnatal developmental expressions of neurotransmitters and receptors in various brain stem nuclei of rats [J]. J Appl Physiol, 2005, 98: 1442-1457.
    [210] Corbett EK, Saha S, Deuchars J, McWilliam PN, Batten TF. Ionotropic glutamate receptor subunit immunoreactivity of vagal preganglionic neurones projecting to the rat heart [J]. Auton Neurosci, 2003, 105: 105-117.
    [211] Krowicki ZK, Arimura A, Nathan NA, Hornby PJ. Hindbrain effects of PACAP on gastric motor function in the rat [J]. Am J Physiol, 1997, 272: 1221-1229.
    [212] Takahashi T, Owyang C. Vagal control of nitric oxide and vasoactive intestinal polypeptide release in the regulation of gastric relaxation in rat [J]. Am J Physiol, 1995, 484: 481-492.
    [213] Whittle B J R. Nitric oxide in gastrointestinal physiology and pathology. In: Johnson LR, ED. Physiology of the Gastrointestinal Tract [M]. 3rd ed. New York: Raven Press, 1994: 267-296.
    [214] Yamaji R, Sakamoto M, Miyatake K, Nakano Y. Hypoxia inhibits gastric emptying and gastric acid secretion in conscious rats [J]. J Nutr, 1996, 126: 673-680.
    [215] Moneada S, palmer RMJ, Higgs EA. Nitric oxide: Physiology, Pathophysiology and Pharmacology. Pharmacol Rev, 1991, 43: 109-142.
    [216] Sanders KM, Ward SM. Nitric oxide as a mediator of nonadrenergie noncholinergic neurotransmission [J]. Am J Physiol, 1992, 262: 379-392.
    [217] Kuiken SD, Vergeer M, Heisterkamp SH, Tytgat GN, Boeckxstaens GE. Role of nitric oxide in gastric motor and sensory functions in healthy subjects [J]. Gut, 2002, 51: 212-218.
    [218] Irie K, Muraki T, Furukawa K, Nomoto T. L-NG-nitro-arginine inhibits nicotine-induced relaxation of isolated rat duodenum [J]. Eur J Pharmacol, 1991, 202: 285-288.
    [219] Kanada A, Hata F, Suthamnatpong N, Maehara T, Ishii T, Takeuchi T, Yagasaki O. Key roles of nitric oxide and cyclic GMP in nonadrenergic and noncholinergic inhibition in rat ileum [J]. Eur J Pharmacol, 1992, 216: 287-292.
    [220] Feng X, Peeters TL, Tang M. Motilin activates neurons in the rat amygdala and increases gastric motility [J]. Peptides, 2007, 28: 625-631.
    [221] Yokotani K, Murakami Y, Okuma Y, Osumi Y. Centrally applied nitric oxide donors inhibit vagally evoked rat gastric acid secretion: involvement of sympathetic outflow [J] . Jpn J Pharmacol, 1997, 74: 337-340.
    [222] Shapoval LM, Mo?benko OO, SahACh VF, Pobiha?lo LS, Dmytrenko OV. Nitric oxide and reflectory regulation of blood circulation in rats [J]. Fiziol Zh, 2003, 49: 33-41.
    [223] de Vente J, Markerink-van Ittersum M, Axer H, Steinbusch HW. Nitric-oxide-induced cGMP synthesis in cholinergic neurons in the rat brain [J]. Exp Brain Res, 2001, 136: 480-491.
    [224] Csillag A. Large GABA cells of chick ectostriatum: anatomical evidence suggesting a double GABAergic disinhibitory mechanism. An electron microscopic immunocytochemical study [J]. J. Neurocytol, 1991, 20: 518-528.
    [225] Jongen-Relo AL, Amaral DG. Evidence for a GABAergic projection from the central nucleus of the amygdale to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study [J]. Eur. J. Neurosci, 1998, 10: 2924-2933.
    [226] Yajima Y, Hayashi Y. GABA(A) receptor-mediated inhibition in the nucleus ambiguus motoneuron [J]. Neuroscience, 1997, 79: 1078-1088.
    [227] Yajima Y, Hayashi Y. Ambiguus respiratory neurons are modulated by GABA(A) receptor-mediated inhibition [J]. Neuroscience, 1999, 90: 249-257.
    [228] Moore CT, Wilson CG, Mayer CA, Acquah SS, Massari VJ, Haxhiu MA. A GABAergic inhibitory microcircuit controlling cholinergic outflow to the airways [J]. J.Appl.Physiol, 2004, 96: 260-270.
    [229] Shintani T, Mori RL, Yates BJ. Locations of neurons with respiratory-related activity in the ferret brainstem [J]. Brain Res, 2003, 974: 236-242.
    [230] Haxhiu MA, Yamamoto BK, Dreshaj IA, Ferguson DG. Activition of the midbrain periaqueductal gray induces airway smooth muscle relaxation [J]. J. Appl. Physiol, 2002, 93: 440-449.
    [231] Williford DJ, Ormsbee HS 3rd, Norman W, Harmon JW, Garvey TQ 3rd, DiMicco JA, Gillis RA. Hindbrain GABA receptors influence parasympathetic outflow to the stomach [J]. Science, 1981, 214: 193-194.
    [232] Sivarao DV, Krowicki ZK, Hornby PJ. Role of GABAA receptors in rat hindbrain nuclei controlling gastric motor function [J]. Neurogastroenterol Motil, 1998, 10: 305-313.
    [233] Hornby PJ, Rossiter CD, Pineo SV, Norman WP, Friedman EK, Benjamin S, Gillis RA. TRH: immunocytochemical distribution in vagal nuclei of the cat and physiological effects of microinjection [J]. Am J Physiol, 1989, 257: 454-462.
    [234] Ishikawa T, Yang H, TAChe Y. Medullary sites of action of the TRH analogue, RX 77368, for stimulation of gastric acid secretion in the rat [J]. Gastroenterology, 1988, 95: 1470-1476.
    [235] Calza L, Giardino L, Ceccatelli S, Zanni M, Elde R, H?kfelt T. Distribution of thyrotropin-releasing hormone receptor messenger RNA in the rat brain: an in situ hybridization study [J]. Neuroscience, 1992, 51: 891-909.
    [236] Yang H, Stephens RL, Tache Y. TRH analogue microinjected into specific medullary nuclei stimulates gastric serotonin secretion in rats [J]. Am. J. Physiol, 1992, 262: 216-222.
    [237] Garrick T, Stephens R, Ishikawa T, Sierra A, Avidan A, Weiner H, TachéY. Medullary sites for TRH analogue stimulation of gastric contractility in the rat [J]. Am. J. Physiol, 1989, 256: 1011-1015.
    [238] Tache Y, Jr Stephens RL, Ishikawa T. Central nervous system action of TRH to influence gastrointestinal function and ulceration [J]. Ann. N. Y. Acad. Sci, 1989, 553: 269-285.
    [239] Yang H, TachéY. Prepro-TRH-(160-169) potentiates gastric acid secretion stimulated by TRH microinjected into the dorsal motor nucleus of the vagus [J]. Neurosci Lett, 1994, 174: 43-46.
    [240] Johnson SM, Getting PA. Excitatory effects of thyrotropin-releasing hormone on neurons within the nucleus ambiguus of adult guinea pigs [J]. Brain Res, 1992, 590: 1-5.
    [241] Reubi JC, Mazzucchelli L, Laissue A. Intestine vessels express a high density of somatostatin receptors in human inflammatory bowel disease [J]. Gastroenterology, 1994, 106: 951-959.
    [242] Wang YT, Zhang M, Neuman RS, Bieger D. Somatostatin regulates excitatory aminoacid receptor-mediated fast excitatory postsynaptic potential components in vagal motoneurons [J]. Neurosci, 1993, 53: 7-9.
    [243] Krowicki ZK, Nathan NA, Hornby PJ. Opposing effects of vasoactive intestinal polypeptide on gastric motor function in the dorsal vagal complex and the nucleus raphe obscurus of the rat [J]. J Pharmacol Exp Ther, 1997, 282: 14-22.
    [244] Bulloch K, Moore R Y. Innervation of the thymus gland by brain stem and spinal cord in mouse and rat [J]. Am J Anat, 1981, 162: 1572-1661.
    [245]杨海亮,汪定涛,张忠义,鲁柱.支配胸腺的神经纤维起源-HRP逆行传递法[J].解剖学杂志, 1987, 10: 138-140.
    [246]李巨浪,李永田,张玉生.疑核对细胞免疫机能调节作用的研究[J].兽医大学学报, 1988, 8: 228-233.
    [247]柳巨雄,张玉生.外周有关递质对疑核调节细胞免疫机能的影响[J].免疫学杂志, 1992,8: 232-235.
    [248]邱一华,王健鹤.乙酰胆碱对大鼠体液免疫应答的影响[J].免疫学杂志, 1990, 6: 31-34.
    [249]刘文琴,赵建础,朱笛霓.脑室注射密胆碱对针刺调节免疫功能的影响[J].陕西医学杂志, 1989, 18: 53-54.
    [250] Liu JX, Li JP, Zhao CY. The role of some neurons in nucleus ambiguus in regulating cellular immunity of rabbits [J]. Chin. J. Veterinary Sci, 2000, 20: 471-474.
    [251]柳巨雄,李吉平,赵春艳,范振勤,张玉生.疑核内有关神经元在机体细胞免疫调节中的作用[J].中国兽医学报, 2000, 20: 471-474.
    [252] Besedovsky H, del Rey A, Sorkin E, Da Prada M, Burri R, Honegger C. The immune response evokes changes in brainno radrenergic neurons [J]. Science, 1983, 221: 564-566.
    [253] Przew?ocki R, Hassan AH, Lason W, Epplen C, Herz A, Stein C. Gene expression localization of opioid peptides in immune cells of inflamed tissue functional role in antinociception [J]. Neuroscience, 1992, 48: 491-500.
    [254] Dougherty PM, Dafny N. Neuroimmune intercommunication, central opioids, and the immune response to bacterial endotoxin [J]. J Neurosci Res, 1988, 19: 140-148.
    [255] Carr DJ, DeCosta BR, Jacobson AE, Rice KC, Blalock JE. Corticotropin-releasing hormone augments natural killer cell activity through a naloxone-sensitive pathway [J]. J Neuroimmunol, 1990, 28: 53-61.
    [256]苏正昌,张玉生.疑核在中脑导水管周围灰质(PAG)调节细胞免疫机能中的作用[J].免疫学杂志, 1992, 8: 18-22.
    [257]刘树民,张玉生.疑核在下丘脑外侧区调节机体细胞免疫中的作用[J].兽医大学学报, 1992, 12: 140-142.
    [258]张玉生,王澜.疑核在大脑皮层参与免疫过程中的作用[J].兽医大学学报, 1989, 9: 220-222.
    [259]王澜,张玉生.疑核在针刺“足三里”调节机体细胞免疫中的作用[J].兽医大学学报, 1990, 10: 146-148.
    [260]金奎龙,崔尚允.支配胰腺的迷走神经传出纤维起源-HRP逆行追踪法[J].延边医学院学报, 1986, 9: 224-226.
    [261]杨海亮,张忠义,汪定涛,鲁柱.支配甲状腺的神经纤维起源-HRP逆行追踪法[J].解剖学杂志, 1985, 8: 30-32.
    [262] Bereiter DA, Berthoud HR, Brunsmann M, Jeanrenaud B. Nucleus ambiguus stimulation increases plasma insulin levels in the rat [J]. Am J Physiol, 1981, 241: 22-27.
    [263] Sanders VM, Munson AE. Role of alpha adrenoceptor activation in modulating the murine primary antibody response in vitro [J]. J Pharmacol Exp Ther, 1985, 232: 395-400.
    [264] Snow EC. Insulin and growth hormone function as minor growth factors that potentiate lymphocyte activation [J]. J Immunol, 1985, 135: 776-778.
    [265]柳巨雄,张玉生.外周有关递质对疑核调节细胞免疫机能的影响[J].免疫学杂志, 1992, 8: 232-235.
    [266] Luiten PG, ter Horst GJ, Karst H, Steffens AB. The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord [J]. Brain Res, 1985, 329: 374-378.
    [267]黄建珍,李巨浪,邹啸环,张玉生.刺激疑核对胰岛B细胞结构的影响[J].兽医大学学报, 1993, 13: 40-42.
    [268]袁川评,王玮,母连志,杨占清,王贤平,商秀玲,姜艳福,张峰,张雪莉,刘冬,柳巨雄.急性电刺激疑核对TNBS诱导的IBD大鼠IL-6 mRNA表达的影响[J].世界华人消化杂志, 2009, 17: 2566-2570.
    [269]梅英武,杨占清,王玮,尹秀玲,柳巨雄.电刺激大鼠疑核对胸腺中胸腺素和TGF-βmRNA水平的影响[J].吉林农业大学学报, 2008, 30: 184-187.
    [270]梅英武.电刺激大鼠疑核对胸腺素、TGF-β、IL-2、IL-6分泌的影响[D].吉林:吉林大学, 2007:
    [271]张峰.急性电刺激疑核对炎症性肠病大鼠IL-4、IL-10表达的影响[D].吉林:吉林大学, 2009:
    [272]张雪莉.电刺激疑核对炎症性肠病大鼠IL-2、IFN-γ表达的影响[D].吉林:吉林大学, 2009:
    [273] Cansev M, Ilcol YO, Yilmaz MS, Hamurtekin E, Ulus IH. Choline, CDP-choline or phosphocholine increases plasma glucagon in rats: involvement of the peripheral autonomic nervous system [J]. Eur J Pharmacol, 2008, 589: 315-322.
    [274] Ilcol YO, Cansev M, Yilmaz MS, Hamurtekin E, Ulus IH. Peripheral administration of CDP-choline and its cholinergic metabolites increases serum insulin: muscarinic and nicotinic acetylcholine receptors are both involved in their actions [J]. Neurosci Lett, 2008, 431: 71-76.
    [275] Nagano M, Ashidate N, Yamamoto K, Ishimizu Y, Saitoh S, Konishi Y, Koga T, Fukuda H. Excitatory neurotoxic properties of pontamine sky blue make it a useful tool for examining the functions of focal brain parts [J]. Jpn J Physiol, 2004, 54: 61-70.
    [276]黄建华,李鹏,龚茜玲.大鼠中缝隐核增强dPAG诱导的vPAG的c-Fos表达及对vPAG神经元放电的影响[J].生理学报, 1996, 48: 149-156.
    [277]谷瑞民,孙明智,李玉荣等.大鼠尾核微量注射γ-氨基丁酸对尾核痛反应神经元放电的影响[J].生理学报, 1997, 48: 321-326.
    [278] Zimmermann M. Ethical considerations in relation to pain in animal experimentation [J]. Acta Physiol Scand Suppl, 1986, 554: 221-233.
    [279] Paxinos G, Watson C, eds. The rat brain in stereotaxic coordinates. 6th ed. London: Elsevier Inc. Academic Press, 2007: 137-141.
    [280] Davison JS. Innervation of the gastrointestional tract, A Guide to Gastrointestinal Motility. Christensen J. and Wingate D. L(eds), Wright and Sons Ltd. Bristol: 1983, 1sted: l-47.
    [281] Drossman DA, Corazziari E, Talley NJ, Thompson WG, Whitehead WE. The functional gastrointestinal disorders. 2nd. Virginia: Degnon Associates, 2000:
    [282] Shi-Yi Zhou, Yuan-Xu Lu, Hong-Ren Yao, and Chung Owyang. Spatial organization of neurons in the dorsal motor nucleus of the vagus synapsing with intragastric cholinergic and nitric oxide/VIP neurons in the rat [J]. Am J Physiol Gastrointest Liver Physiol, 2008, 294: 1201-1209.
    [283] Browning KN, Travagli RA. Short-term receptor trafficking in the dorsal vagal complex: an overview [J]. Auton Neurosci, 2006, 126-127: 2-8.
    [284] Liu CY, Xie DP, Liu JZ. Microinjection of glutamate into dorsal motor nucleus of the vagus excites gallbladder motility through NMDA receptor-nitric oxide-cGMP pathway [J]. Neurogastroenterol Motil, 2004, 16: 347-353.
    [285] Krowicki KZ, Sivarao VD, Abrahams PT, Hornby JP. Excitation of dorsal motor vagal neurons evokes non-nicotinic receptor-mediated gastric relaxation [J]. J Auton Nerv Syst, 1999, 77: 83-89.
    [286] Banerjee S, Punzi JS, Kreilick K, Abood LG. [3H] mecamylamine binding to rat brain membranes. Studies with mecamylamine and nicotine analogues [J]. Biochem Pharmacol, 1990, 40: 2105-2110.
    [287] Zheng ZL, Rogers RC, Travagli RA. Selective gastric projections of nitric oxide synthase-containing vagal brainstem neurons [J]. Neuroscience, 1999, 90: 685-694.
    [288] Krowicki ZK, Sharkey KA, Serron SC, Nathan NA, Hornby PJ. Distribution of nitric oxide synthase in rat dorsal vagal complex and effects of microinjection of nitric oxide compounds upon gastric motor function [J]. J Comp Neurol, 1997, 377: 49-69.
    [289] Wu M, Majewski M, Wojtkiewicz J, Vanderwinden JM, Adriaensen D, Timmermans JP.Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences [J]. Cell Tissue Res, 2003, 311: 289-297.
    [290] Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism [J]. Annu Rev Physiol, 1995, 57: 707-736.
    [291] Makhlouf GM, Murthy KS. Singal transduction in gastrointestinal smooth muscle [J]. Cell Signal, 1997, 9: 269-276.
    [292] Harnett KM, Cao W, Kim N, Sohn UD, Rich H, Behar J, Biancani P. Signal transduction in esophageal and LES circular muscle contraction [J]. Yale J Biol Med, 1999, 72: 153-168.
    [293] Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle [J]. Nature, 1994, 372: 231-236.
    [294] Hall S, Milne B, Jhamandas K. Excitatory action of N-methyl-D-aspartate on the rat locus coeruleus is medicated by nitric oxide: an in vivo voltammeric study [J]. Brain Res, 1998, 796: 176-186.
    [295] Musleh WY, Shahi K, Baudry M. Further studies concerning the role of nitric oxide in LTP induction and maintenance [J]. Synapse, 1993, 13: 370-375.
    [296] Travagli RA, Gillis RA. Nitric oxide-mediated excitatory effect on neurons of dorsal motor nucleus of vagus [J]. Am J Physiol, 1994, 266: 154-160.
    [297] Garthwaite J, Charles SL, Chess-Willianms R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain [J]. Nature, 1988, 336: 385-388.
    [298] Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endotheliumderived relaxing from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical [J]. Circ Res, 1987, 61: 866-879.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700