用户名: 密码: 验证码:
纳米量子点系统中的超慢光与超快光效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在近100多年来,对于光是如何通过色散介质的问题已经有了广泛而深入的研究。最近这20年的研究主要集中在那些强色散,同时光脉冲不会变形的介质。电磁诱导透明效应(Electromagnetically Induced Transparency, EIT)做为一种可以在减少吸收的同时保持强色散的技术,受到了广泛的关注。在本文中,我们讨论了量子点系统中一种可以产生慢光的方法—声子诱导透明(Phonon Induced Transparency,PIT)。由于激子-声子相互作用量子点系统中同样可以得到透明现象,同时还能够得到远强于一般系统的巨克尔效应。PIT不同于普通的三能级中的EIT,如果没有了声子的作用,就没有透明效应。我们同时研究了双量子点系统,使用电压调控量子点间的电子跃迁,可以使克尔系数在正值与负值之间变化。这样,对于实验上比较成熟的量子点系统,包括单量子点、双量子点,都有了理论研究。本文还研究了有机分子薄膜中的线性光学系数,在强泵浦光和弱信号光作用下,讨论了由于电荷转移激子而产生的超快光现象。由于有机分子薄膜易于制备,相信对于今后进一步研究有所帮助。量子计算受环境影响而产生退相干,一直是很棘手的问题。在本文中还讨论了使用磁场来延长自旋-轨道耦合寿命,这对于如何有效遏制退相干和退纠缠指明了方向。
     (1)研究了量子点系统中的超慢光现象,量子点中激子类似于二能级系统。结果表明,量子点系统中由于强激子-声子相互作用,能够产生类似于EIT的透明效应,信号光可以穿过介质而不被吸收。同时计算结果显示了信号光的群速度可以被减慢103数量级。在这一系统中,如果没有声子的作用,系统中就不可能产生透明效应,因此我们称为声子诱导透明。我们同时研究了量子点系统中的三阶克尔效应和非线性吸收系数。数学计算表明了,当信号光与激子的失谐为LO声子频率时,比较强的光克尔效应会在系统中产生。
     (2)理论上研究了局域场效应对于量子点系统中超慢光效应的影响。我们用光学布洛赫方程求解了含局域场的哈密顿量,并且与不含局域场的结果进行比较。结果显示了,在有局域场的的情况下,透明窗口被展宽,而速度减慢的效果被抵消。随着局域场的增强,群速度减慢的效果会被抵消。我们选择了一些特定参数,发现在这些参数情况下会产生超快光的现象。我们同时研究了克尔效应,在有局域场的情况下,量子点系统中同样存在强的克尔系数。
     (3)研究了非对称双量子点中的克尔效应,我们使用外加电场来调控两个量子点之间的电子隧穿,计算结果显示了系统中的克尔系数会随着外加电场大小变化而变化,克尔系数的值可以在正值到负值之间变化。当信号光、耦合光都处于非共振时,计算得到的克尔系数的峰值也比普通系统中要大许多。
     (4)我们研究了自旋-声子作用对Debald和Emary提出的量子点系统中的自旋-轨道驱动耦合振荡的影响。结果显示了衰减率和磁场强度、量子点大小以及耦合常数有密切的关系。随着磁场加大,衰减率能够减小到零。计算结果表明选取的量子点尺寸比较大时,衰减率同样会很小。
     (5)理论研究了电荷转移激子系统中的线性光学系数,我们发现在这样的系统中信号光的吸收为负值,表明信号光没有被吸收而被放大了。同时,计算得到的折射率斜率以及群速度系数均为负值,表明在这里有超光速的现象。
     本文主要在以下基金资助下完成的:国家自然科学基金(No.10274051和No.10774101),上海自然科学基金(No.03ZR14060),上海市教委曙光计划和教育部高等学校博士点基金,教育部长江学者和创新团队发展计划创新团队计划(IRT0524)。
For over 100 years, the problem of how a wave travels through a dispersive material is one that has been studied in great detail. Recent interest in this problem has been sparked by the discovery of systems that have high dispersion, yet allow a pulse to propagate relatively undistorted. Electromagnetically induced transparency, which can reduce absorption while retaining strong dispersion, has attracted more interests. In this thesis, we first propose Phonon Induced Transparency concept. Due to strong phonon-exciton interaction, transparency effect can occur in quantum dot system. This is different from normal there-level system. If there is no phonon interaction, there would be no transparency. We can also get giant Kerr effect which is larger than normal system. We theoretically study the double quantum dot systems, which also existing giant Kerr effect. We use voltage instead of light field to manipulate tunneling, and Kerr effect could change from positive value to negative value with voltages changing. So we have investigated mature QD system, including single QD and double QDs. We also propose to use magnetic field to decrease decay rate of spin-orbit interaction. We are sure our theoretical theory would shed light on how to efficiently suppress decoherence and distanglement. In this thesis, we have made a deep investigation on the optical effect in polymers. With strong pump field and weak probe field, we first investigate superluminal light in polymers. Because polymers are easy to prepare, we hope our work could provide some help for future experiment.
     (1) We study slow light effect in quantum dot systems where exciton behaves as a two-level system. It is shown that due to strong exciton–phonon coupling, slow light effect can occur in such a quantum dot system and signal light can propagate without absorption. The nonlinear optical absorption and Kerr coefficient based are also calculated. The numerical results show that giant nonlinear optical effects can be obtained while the frequency of the signal field differs only by an amount of LO phonon frequency from the exciton frequency in quantum dot systems.
     (2)We study theoretically the influence of local field effects on phonon-induced transparency (PIT) in quantum-dot systems embedded in a semiconductor matrix. As compared with our previous work without local field effects, we present analytical and numerical results from solution of the generalized optical Bloch equations including the local field effects. It is shown that the local field effects broaden the transparency window due to PIT and reduce the group velocity of light. For some specific parameters of the light and quantum dots, fast light can be obtained in such systems. The results also demonstrate that Kerr nonlinearity is enhanced greatly due to the local field effects.
     (3) We study Kerr nonlinearity in an asymmetric double quantum-dot systems coupling with voltage. It is found that, by proper tuning of two light beams and tunneling via a bias voltage, the Kerr nonlinearity can be enhanced and varied from positive value to negative value.
     (4) The effect of direct spin-phonon interactions on spin-orbit-driven coherent oscillations in a single quantum dot which proposed by Debald and Emary is investigated theoretically in terms of the perturbation treatment based on a unitary transformation. It is shown that the decoherence rate induced by acoustic phonons strongly depends on the spin-orbit coupling strength, the magnetic field strength and quantum dot size. By increasing the magnetic field, the decay rate can be reduced to zero. Numerical results show that if quantum dot size is large enough, decay rate would be suppressed.
     (5) We consider the linear optical property in charge-transfer excitons systems where light pulse would not be absorbed but be amplified. We calculate the linear susceptibility and obtain an abnormal slope in refractive curve which means superluminal propagation can exist in this system.
引文
[1.1] B. J. Dalton and P. L. Knight, Population trapping and ultranarrow Raman lineshapes induced by phase-fluctuating fields , Opt.Commun.42, 11 (1982)
    [1.2] E. Arimondo, Coherent Population Trapping in Laser Spectroscopy , Prog. Opt. 35, 257 (1996)
    [1.3] S. E. Harris, Electromagnetically Induced Transparency , Phys. Today 50, 36 (1997)
    [1.4] O. Kacharovskaya, Amplification and lasing without inversion , Phys. Rep. 219, 175 (1991)
    [1.5] D. Phillips,A. Fleischauer,A. Mair,R. L. Walsworth and M. D. Lukin, Storage of Light in Atomic Vapor , Phys.Rev.Lett. 86, 783 (2001)
    [1.6] M. D. Lukin and A. Imamoglu, Controlling photons using electromagnetically induced transparency , Nature,413, 273 (2001)
    [1.7] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in Electromagnetically Induced Transparency , Phys.Rev.Lett. 84, 5094 (2000)
    [1.8] M. S. Bigelowl, N. N. Lepeshkin and R.W.Boyd, Ultra-slow and superluminal light propagation in solids at room temperature , J. Phys.: Condens. Matter 16, R1321–R1340 (2004)
    [1.9] Lord Rayleigh, On progressive waves Proc. Lond. Math.Soc. 9, 21-6 (1877)
    [1.10] O. Kocharovskaya and Y. L. Khanin, Coherent amplification of an ultrashort pulse in a three-level medium without a population inversion , Pis ma Zh. Eksp. Teor. Fiz. 48, 581 (1988) [JETP Lett. 48, 630 (1988)].
    [1.11] S. E. Harris, "Lasers without inversion - interference of lifetime-broadened resonances", Phys. Rev. Lett. 62, 1033 (1989).
    [1.12] S. E. Harris, Electromagnetically Induecd Transparency , Phys. Today 36, (1997)
    [1.13] M. Fleischhauer, A. Imamoglu and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media , Rev. Mod. Phys. 77, 633 (2005)
    [1.14] M. O. Scully, S. Y. Zhu and A. Gavrielides, "Degeneratequantum-beat laser– lasing without inversion and inversion without lasing," Phys. Rev. Lett. 62, 2813 (1989)
    [1.15] S. E. Harris, J. E. Field and A. Imamoglu, "Nonlinear optical processes using electromagnetically induced transparency," Phys. Rev. Lett. 64, 1107 (1990)
    [1.16] K. J. Boller, A. Imamoglu and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593 (1991)
    [1.17] J. E. Field, K. H. Hahn and S. E. Harris, "Observation of electromagnetically induced transparency in collisionally broadened lead vapor", Phys. Rev. Lett. 67, 3062 (1991)
    [1.18] S. Alam, Lasers without inversion and electromagnetically induced transparency (SPIE Press, Washington, 1999)
    [1.19] M. O. Scully and M. S. Zubairy, Quantum Optics (CUP, Cambridge, 1997)
    [1.20] J. P. Marangos, "Topical review electromagnetically induced transparency", J. Mod. Opt. 45, 471 (1998)
    [1.21] M. H. Dunn, Electromagnetically Induced Transparency , in SUSSP 47: Laser Sources and Applications. pp. 411-446 (1995)
    [1.22] D. J. Gauthier, A. L. Gaeta and R. Boyd, Slow light:from basic to furure prospects , Photonics Spetira 44, March (2006)
    [1.23] G. Alzetta, A. Gozzini, L. Moi and G. Orriols, An experimental method for the observation of r.f. transitions and laser beat resonances in oriented Na vapour , Nuovo Cimento B 36, 5 (1976)
    [1.24] E. Arimondo, "Coherent population trapping in laser spectroscopy", Prog. Opt. 35, 257-354 (1996)
    [1.25] M. D. Lukin, Colloquium: Trapping and manipulating photon statesin atomic ensembles , Rev. Mod. Phys. 75, 457 (2003)
    [1.26] S. M. Barnett and P. M. Radmore, Methods in Theoretical QuantumOptics, (OUP, Oxford, 1997)
    [1.27] F. ?hman, K. Yvind and J. M?rk, Voltage-controlled slow light in an integrated semiconductor structure with net gain , Opt. Express 14, 21 (2006)
    [1.28] M. D. Lukin, A. Imamoglu, Controlling photons using electromagnetically induced transparency , Nature 413, 273(2001)
    [1.29] R. R. Moseley, Sum Frequency Mixing and Quantum Interference in Three Level Atoms , PhD thesis, University of St. Andrews (1994)
    [1.30] J. L. Cohen and P. R. Berman, "Amplification without inversion: Understanding probability amplitudes, quantum interference, and Feynman rules in a strongly driven system", Phys. Rev. A 55, 3900 (1997).
    [1.31] A. Kasapi, "Three-dimensional vector model for a three-state system", J. Opt. Soc. Am. B 13, 1347- (1996)
    [1.32] J. A. Vaccaro, A. V. Durrant, D. Richards, S. A. Hopkins, H. X. Chen and K. E. Hill, "Stochastic wavefunction diagrams for electromagnetically induced transparency, inversionless gain and shelving", J. Mod. Opt. 45, 315-333 (1998)
    [1.33] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas , Nature 397, 594 (1999)
    [1.34] M. S. Bieglow, N. N. Lepeshkin and R. W. Boyd, Superluminal and slow light propagation in a room-temperature solid , Science 301. 5630 (2003)
    [1.35] M. S. Bieglow, N. N. Lepeshkin and R. W. Boyd, Observation of ultraslow light propagation in a ruby crystal at room temperature , Phys. Rev. Lett. 90,113903 (2003)
    [1.36] R. W. Boyd, Nonlinear Optics (San Diego, California: Academic,1992) .
    [1.37] H. Schmidt and A. Imamoglu, Giant Kerr nonlinearities obtainedby electromagnetically induced transparency , Opt. Lett. 21, 1936 (1996)
    [1.38] E. I. Rashba, M. D. Sturge (Eds.), Excitons , North-Holland, Amsterdam, 1982.
    [1.39] M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals , Oxford University Press, Oxford, 1999.
    [1.40] W. Lorenz, Charge-transfer and chemical bond formation dynamics in electrochemical systems: processes on metals, semiconductors, and biomembranes , J. Phys. Chem. 95 (26): 10 566—10 575 (1991)
    [1.41] S. J. Diol and R. J. Dwayne Miller, Ultrafast Studies of Imaging Processes J. Imaging Sci. & Technol., vol. 41, no. 2; p. 99-111 (1997)
    [1.42] X. Q. Zhou, P. D. Pan , H. Z. Chen and W. Mang, Synthesis and photoconductivity study of new bisazos containing hydrazone groups , J. Photochem. Photobio. A, 115: 207—212 (1998)
    [1.43] Y. Arakawa and H. Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current , Appl. Phys. Lett. 40, 939 (1982)
    [1.44] L. P. Kouwenhoven et al., in Proceedings of NATO ASI on Mesoscopic Electron Transport, edited by L.L. Sohn, L.P. Kouwenhoven and G. Sch?n (Kluwer, 1997).
    [1.45] A. Mews, A. V. Kadavanich, U. Banin and A. P. Alivisatos, Structural and spectroscopic investigations of Cds/HgS/CdS quantum dot quantum wells . Phys. Rev. B 53, 13242 (1996)
    [1.46] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore and A. E. Wetsel, Observation ofdiscrete electronic states in a zero-dimensional semiconductor nanostructure , Phys. Rev. Lett. 60, 535 (1988)
    [1.47] S. Tarucha, D. G. Austing, T. Honda, R. J. Hage and L. P. Kouwenhoven, Shell filling and spin effects in a few electrion quantum , Phys. Rev. Let. 77, 3613 (1996)
    [1.48] T. H. Oosterkamp, L. P. Kouwenhoven, A. E. Koolen, C. N. van der Varrt and C. J. Hamans, Photon sidebands of the round state and first excite state of a quantum dot , Phys. Rev. Lett. 78, 1536 (1997)
    [1.49] F. R. Waugh, M. J. Berry, D. J. Mar et al., Single-Electron Charging in Double and Triple Quantum Dots with Tunable Coupling , Phys. Rev. Lett. 75, 705 (1995)
    [1.50] C. Livermore, C. H. Crouch, R. M. Westervelt, K. L. Campman and A. C. Gossard, The Coulomb Blockade in Coupled Quantum Dots , Science 274, 5291 (1996)
    [1.51] T. H. Oosterkamp, S. F. Godijn, M. J. Uilenreef, Y. V. Nazarov, N. C. van der Vaart and L. P. Kouwenhoven, Changes in the Magnetization of a Double Quantum Dot , Phys. Rev. Lett. 80, 4951 (1998)
    [1.52] R. H. Blick , D. Pfannkuche, R. J. Haug , K. V. Klitzing and K. Eberl, Formation of a Coherent Mode in a Double Quantum Dot , Phys. Rev. Lett. 80, 4032 (1998)
    [1.53] T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi, R. V. Hijman, S. Tarucha and L. P. Kouwenhoven, Microwave spectroscopy of a quantum-dot molecule , Nature 395, 873 (1998)
    [1.54] I. J. Maasilta and V. J. Goldman, Tunneling through a Coherent Quantum Antidot Molecule , Phys. Rev. Lett. 84, 1776 (2000)
    [1.55] D. Divincenzo. The Physical Implementation of Quantum Computation Fortschr. Phys. 48, 771 (2000)
    [1.56] D. Loss and D. P. Divincenzo. Quantum computation with quantum dots Phys. Rev. A 57,120 (1998)
    [1.57] T. H. Stievater, X. Li, D. G. Steel, D. Gammon, D. S. Katzer, D. Park, C. Piermarocchi and L. J. Sham, Rabi Oscillations of Excitons in Single Quantum Dots , Phys. Rev. Lett. 87, 133603 (2001)
    [1.58] H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara and H. Ando, Exciton Rabi Oscillation in a Single Quantum Dot , Phys. Rev. Lett.87, 246401 (2001)
    [1.59] P. Borri, W. Langbein, S. Schneider et al., Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots , Phys. Rev. B 66, 81306 (2002)
    [1.60] A. Zrenner, E. Beham, S. Srufler, F. Findeis, M. Bichler and G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode , Nature 418, 612 (2002)
    [1.61] L. Besombes, J. J. Baumberg and J. Motohisa, Coherent Spectroscopy of Optically Gated Charged Single InGaAs Quantum Dots , Phys. Rev. Lett. 90, 257402 (2003)
    [1.62] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong and Y. Hirayama, Coherent Manipulation of Electronic States in a Double Quantum Dot , Phys. Rev. Lett. 91, 226804 (2003)
    [1.63] J. Gorman, D. G. Hasko and D. A. Williams, Charge-Qubit Operation of an Isolated Double Quantum Dot , Phys. Rev. Lett. 95, 90502 (2005)
    [2.1] S. E. Harris, Electromagnetically Induced Transparency , Phys. Today 50, 369 (1997)
    [2.2] M. D. Lukin and A. Imamoglu, Controlling photons using electromagnetically induced transparency , Nature 413, 273 (2001)
    [2.3] M. D. Lukin, Colloquium: Trapping and manipulating photon states in atomic ensembles , Rev. Mod. Phys. 75, 457 (2003)
    [2.4] A. Kasapi, M. Jain, G. Y. Yin and S. E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics , Phys. Rev. Lett. 74, 2447 (1995)
    [2.5] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas , Nature 397, 594 (1999)
    [2.6] M. M. Kash, V. A. Sautenkov, A. S. Zibrov,et al., Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas , Phys. Rev. Lett. 82, 5229 (1999)
    [2.7] M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd, Superluminal and Slow Light Propagation in a Room-Temperature Solid , Science 301, 5630 (2003)
    [2.8] M. Bajcsy, A. S. Zibrov and M. D. Lukin, Stationary pulses of light in an atomic medium , Nature 426, 638 (2003)
    [2.9] D. A. Braje, V. Balic, G. Y. Yin and S. E. Harris, Low-light-level nonlinear optics with slow light , Phys. Rev. A 68, 041801 (2003)
    [2.10] H. Wang, D. Goorskey and M. Xiao, Enhanced Kerr Nonlinearity via Atomic Coherence in a Three-Level Atomic System , Phys. Rev. Lett. 87, 073601 (2001)
    [2.11] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots , Phys. Rev. A 57, 120 (1998)
    [2.12] A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin and A. Small, Quantum Information Processing Using Quantum Dot Spins and Cavity QED , Phys. Rev.Lett. 83, 4204 (1999)
    [2.13] E. Biolatti, R. C. Iotti, P. Zanardi and F. Rossi, Quantum Information Processing with Semiconductor Macroatoms , Phys. Rev. Lett. 85, 5647 (2000)
    [2.14] A. Zrenner, E. Beham, S .Stufler, F. Findeis, M. Bichler and G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode , Nature 418, 612 (2002)
    [2.15] S. Stufler, P. Ester and A. Zrenner, Quantum optical properties of a single InxGa1–xAs-GaAs quantum dot two-level system , Phys. Rev. B 72, 121301 (2005)
    [2.16] S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaitre and J. M. Gerard, Strong Electron-Phonon Coupling Regime in Quantum Dots: Evidence for Everlasting Resonant Polarons , Phys.Rev. Lett. 83, 4152 (1999)
    [2.17] R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar and D. Bimberg, Enhanced Polar Exciton-LO-Phonon Interaction in Quantum Dots , Phys. Rev. Lett. 83, 4654 (1999)
    [2.18] L. Besombes, K. Kheng, L. Marsal and H. Mariette, Acoustic phonon broadening mechanism in single quantum dot emission , Phys. Rev. B 63, 155307 (2001)
    [2.19] W. W. Chow, H. C. Schneider and M. C. Phillips, Theory of quantum-coherence phenomena in semiconductor quantum dots , Phys. Rev. A 68, 053802 (2003)
    [2.20] J. Kim, S. L. Chuang, P. C. Ku and C. J. Chang-Hasnain, Slow light using semiconductor quantum dots , J. Phys: Condens. Matter 16, S3722 (2004)
    [2.21] C. C. Yu, J. R. Bochinski, T. M. V. Kordich, T. W. Mossberg and Z. Ficek, Driving the driven atom: Spectral signatures , Phys. Rev. A 56, R4381 (1997)
    [2.22] K. D. Zhu and W. S. Li, Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well , J. Phys. B: At. Mol. Opt. Phys. 34, L679 (2001)
    [2.23] K. D. Zhu, X. Z. Yuan, J. J. Dong and W. S. Li, Nonlinear optical responses due to exciton-phonon interactions in strongly coupled exciton-phonon systems , Eur. Phys. J. D 30, 117 (2004)
    [2.24] T. Inoshita and H. Sakaki, Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots , Phys. Rev. B 56, 4355 (1997)
    [2.25] J. Seebeck, T. R. Nielsen, P. Gartner and F. Jahnke, Polarons in semiconductor quantum dots and their role in the quantum kinetics of carrier relaxation , Phys. Rev. B 71, 125327 (2005)
    [2.26] I. Wilson and A. Imamoglu, Quantum dot cavity-QED in the presence of strong electron-phonon interactions , Phys. Rev. B 65, 235311 (2002)
    [2.27] W. S. Li and K. D. Zhu, Rabi oscillation of exciton dressed by phonons in a quantum dot , Chin. Phys. Lett. 20, 1568 (2003)
    [2.28] K. Huang and A. Rhys, Theory of Light Absorption and Non-Radiative Transitions in F-Centres , Proc. R. Soc. Lond. A 204, 406 (1950)
    [2.29] G. S. Agarwal, Electromagnetic-field-induced transparency in high-density exciton systems , Phys. Rev. A 51, R2711 (1995)
    [2.30]B. I. Greene, J. F. Mueller, J. Orenstein, D. H. Rapkine, S. Schmitt-Rink and M. Thakur, Phonon-Mediated Optical Nonlinearity in Polydiacetylene , Phys. Rev. Lett. 61, 325 (1988)
    [2.31] J. F. Lam, S. R. Forrest and G. L. Tangonan, Optical nonlinearities in crystalline organic multiple quantum wells , Phys. Rev. Lett. 66, 1614 (1991)
    [2.32] R. W. Boyd, Nonlinear Optics (San Diego, California: Academic) p 225 (1992)
    [2.33] R. S. Bennink, R. W. Boyd, C. R. Stroud and V. Wong, Enhanced self-action effects by electromagnetically induced transparency in the two-level atom , Phys. Rev. A 63, 033804 (2001)
    [2.34] S. E. Harris, J. E. Field and A. Kasapi, Dispersive properties of electromagnetically induced transparency , Phys. Rev. A 46, R29 (1992)
    [2.35] S. Sauvage, P. Boucaud, T. Brunhes, M. Broquier, C. Crepin, J. M. Ortega and J. M. Gerard, Dephasing of intersublevel polarizations in InAs/GaAs self-assembled quantum dots , Phys. Rev.B 66, 153312 (2002)
    [2.36] R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kopev and Zh. I. Alferov, Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , Phys. Rev. B 56, 10435 (1997)
    [2.37] Y. V. Radeonychev, M. D. Tokman, A. G. Litvak and O. Kocharovskaya, Acoustically Induced Transparency in Optically Dense Resonance Medium , Phys. Rev. Lett. 96, 093602 (2006)
    [3.1] S. E. Harris, Electromagnetically Induced Transparency , Phys. Today 50, 369 (1997)
    [3.2] M. D. Lukin and A. Imamoglu, Controlling photons using electromagnetically induced transparency , Nature 413, 273 (2001)
    [3.3] M. D. Lukin, Colloquium: Trapping and manipulating photon states in atomic ensembles , Rev. Mod. Phys. 75, 457 (2003)
    [3.4] A. Kasapi, M. Jain, G. Y. Yin and S. E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics , Phys. Rev. Lett. 74, 2447 (1995)
    [3.5] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas , Nature 397, 594 (1999)
    [3.6] M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry and M. O. Scully, Ultraslow GroupVelocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas , Phys. Rev. Lett. 82, 5229 (1999)
    [3.7] G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinki and R. W. Boyd, Observation of Backward Pulse Propagation Through a Medium with a Negative Group Velocity , Science 312, 895 (2006)
    [3.8] C. J. Chang-Hasnain, J. Kim, P. C. Ku and S. L. Chuang, Variable optical buffer using slow light in semiconductor nanostructures , Proc. IEEE 91, 1884-1897 (2003)
    [3.9] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots , Phys. Rev. A 57, 120 (1998)
    [3.10] E. Biolatti, R. C. Iotti, P. Zanardi and F. Rossi, Quantum Information Processing with Semiconductor Macroatoms , Phys. Rev. Lett. 85, 5647 (2000)
    [3.11] T. Nakaoka, E. C. Clark, H. J. Krenner, M. Sabathil, M. Bichler, Y. Arakawa, G. Abstreiter and J. J. Finley, Direct observation of acoustic phonon mediated relaxation between coupled exciton states in a single quantum dot molecule , Phys. Rev. B 74, 121305(R) (2006)
    [3.12] G. Y. Slepyan, S. A. Maksimenko, A. Hoffmann and D. Bimberg, Quantum optics of a quantum dot: Local-field effects , Phys. Rev. A 66, 063804 (2002)
    [3.13] G. Y. Slepyan, S. A. Maksimenko, V. P. Kalosha, A. Hoffmann and D. Bimberg, Effective boundary conditions for planar quantum dot structures , Phys. Rev. B 64, 125326 (2001)
    [3.14] G. Y. Slepyan, A. Magyarov, S. A. Maksimenko, A. Hoffman and D. Bimberg, Rabi oscillations in a semiconductor quantum dot: Influence of local fields , Phys. Rev. B 70, 045320 (2004)
    [3.15] Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuang and M. Yao, Electromagnetically induced transparency in quantum dot systems , J. Phys. B 39, 2621 (2006)
    [3.16] C. H. Yuan and K. D. Zhu, Voltage-controlled slow light in asymmetry double quantum dots , Appl. Phys. Lett. 89, 052115 (2006)
    [3.17] H. J. Krenner, S. Stufler, M. Sabathil, E. C. Clark, P. Ester, M. Bichler, G. Abstreiter, J. J. Finley and A. Zrenner, Recent advances in exciton-based quantum information processing in quantum dot nanostructures , New J. Phys. 7, 184 (2005)
    [3.18] A. Vagov, V. M. Axt and T. Kuhn, Electron-phonon dynamics in optically excited quantum dots: Exact solution for multiple ultrashort laser pulses , Phys. Rev. B 66, 165312 (2002)
    [3.19] B. Krummheuer, V. M. Axt and T. Kuhn, Theory of pure dephasing and the resulting absorption line shape in semiconductor quantum dots , Phys. Rev. B 65, 195313 (2002)
    [3.20] E. Pazy, Calculation of pure dephasing for excitons in quantum dots , Semicond. Sci. Technol. 17, 1172 (2002)
    [3.21] L. Besombes, K. Kheng, L. Marsal and H. Marette, Acoustic phonon broadening mechanism in single quantum dot emission Phys. Rev. B 63, 155307 (2001)
    [3.22] I. Wilson-Rae and A. Imamoglu, Quantum dot cavity-QED in the presence of strong electron-phonon interactions , Phys. Rev. B 65, 235311 (2002)
    [3.23] Z. J. Wu, K. D. Zhu and H. Zheng, The dynamics of coherently driven exciton in a single quantum dot , Phys. Lett. A 333, 310 (2004)
    [3.24] R. E. Kleinman, in Electromagnetic Scattering, ed. by P.L.E. Uslenghi (Academic, New York, 1978), p. 1
    [3.25] C. C. Yu, J. R. Bochinski, T. M. V. Kordich and T. W. Mossberg, Z. Ficek, Driving the driven atom: Spectral signatures , Phys. Rev. A 56, R4381 (1997)
    [3.26] R. W. Boyd, Nonlinear Optics (San Diego, California: Academic) p 225 (1992)
    [3.27] R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffmann, D. Bimberg, V. M. Ustinov, P. S. Kopev and Zh. I. Alferov, Energy relaxation by multiphonon processes in InAs/GaAs quantum dots , Phys. Rev. B 56, 10435 (1997)
    [3.28] R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar and D. Bimberg, Enhanced Polar Exciton-LO-Phonon Interaction in Quantum Dots , Phys. Rev. Lett. 83, 4654 (1999)
    [3.29] N. Wang and H. Rabitz, Near dipole-dipole effects in electromagnetically induced transparency , Phys. Rev. A 51, 5029 (1995)
    [3.30] J. Q. Shen and S. He, Local field contribution to the optical properties of multilevel coherent atomic media , Ann. Phys. (Leipzig) 16, 364 (2007)
    [3.31] H. Schmidt and A. Imamoglu, Giant Kerr nonlinearities obtained by electromagnetically induced transparency , Opt. Lett. 21, 23 p1936 (1996)
    [4.1] M. Yan, E. G. Rickey and Y. Zhu, "Observation of absorptive photon switching by quantum interference", Phys. Rev. A 64, 041801(2001)
    [4.2] T. Nakajima, "Enhanced nonlinearity and transparency via autoionizing resonance", Opt. Lett. 25, 11 (2000)
    [4.3] A. B. Matsko, I. Novikova, G. R. Welch and M. S. Zubairy, "Enhancement of Kerr nonlinearity by multiphoton coherence", Opt. Lett. 28, 2 (2003)
    [4.4] Y. Niu, S. Gong, R. Li, Z. Xu and X. Liang, "Giant Kerr nonlinearityinduced by interacting dark resonances", Opt. Lett. 30, 24 (2005)
    [4.5] H.Wang, D. Goorskey and M. Xiao, "Enhanced Kerr Nonlinearity via Atomic coherence in a Three-Level Atomic System", Phys. Rev. Lett. 87, 073601 (2001)
    [4.6] A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin and S. E. Harris, "Efficient Nonlinear Frequency Conversion in an All-Resonant Double- ? System", Phys. Rev. Lett. 84, 5308 (2000)
    [4.7] Y. Li and M. Xiao, "Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms", Opt. Lett. 21, 14 (1996)
    [4.8] K. Hakuta, L. Marmet and B. P. Stoicheff, "Electric-field-induced second-harmonic generation with reduced absorption in atomic hydrogen", Phys. Rev. Lett. 66, 596 (1991)
    [4.9] H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency", Opt. Lett. 21, 1936 (1996)
    [4.10] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas", Nature 397, 594 (1999)
    [4.11] S. E. Harris and Y. Yamamoto, "Photon Switching by Quantum Interference", Phys.Rev. Lett. 81, 3611(1998)
    [4.12] H. Sun, S. Gong, Y. Niu, S. Jin and Z. Xu, "Enhancing Kerr nonlinearity in an asymmetric double quantum well via Fano interference", Phys. Rev. B 74, 155314 (2006)
    [4.13] G. F. Sinclair and N. Korolkova, "Cross-Kerr interaction in a four-level atomic system", Phys. Rev. A 76, 033803 (2007)
    [4.14] J. M. Villas-Boas, A. O. Govorov and S. E. Ulloa, "Coherent control of tunneling in a quantum dot molecule", Phys. Rev. B 69, 125342 (2004)
    [4.15] C. H. Yuan and K. D. Zhu, "Voltage-controlled slow light in\asymmetry double quantum dots", Appl. Phys. Lett. 89, 052115 (2006)
    [4.16] G. J. Beirne, C. Hermannst?dter,L. Wang, A. Rastelli, O. G. Schmidt and P. Michler, Quantum Light Emission of Two Lateral Tunnel-Coupled (In,Ga)As/GaAs Quantum Dots Controlled by a Tunable Static Electric Field , Pys. Rev. Lett. 96, 137401 (2006)
    [4.17] R. Songmuang, S. Kiravittaya and O. G. Schmidt, Formation of Lateral quantum dot molecules around self-assembled nanoholes , Appl. Phys. Lett. 82, 2892 (2003)
    [4.18] B. Krause and T. H. Metzger, Shape, strain, and ordering of lateral InAs quantum dot molecules , Phys. Rev. B 72. 085339 (2005)
    [4.19] H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter and J. J. Finley, "Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule", Phys. Rev. Lett. 94, 057402 (2005)
    [4.20] Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuang and M.Yao, "Electromagnetically induced transparency in quantum dot systems", J. Phys. B: At. Mol. Opt. Phys. 39, 2621 (2006)
    [5.1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, United Kingdom, 2000)
    [5.2] C. Monroe, Quantum information processing with atoms and photons , Nature 416, 238 (2002)
    [5.3] B. E. Kane, A silicon-based nuclear spin quantum computer , Nature 393, 133 (1998)
    [5.4] Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Coherent control of macroscopic quantum states in a single-Cooper-pair box , Nature 398, 786 (1999)
    [5.5] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, et al., Spintronics: A Spin-Based Electronics Vision for the Future , Science 294, 1488 (2001)
    [5.6] Y. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic , Science 281, 951 (1998)
    [5.7] G. A. Prinz, Magnetoelectronics , Science 282, 1660 (1998).
    [5.8] P. Ball, Meet the spin doctors , Nature 404, 918 (2000)
    [5.9] D. Loss and D. P. DiVincenzo, Quantum computation with quantum dots , Phys. Rev. A 57, 120 (1998)
    [5.10] A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler and G. Abstreiter, Coherent properties of a two-level system based on a quantum-dot photodiode , Nature 418, 612 (2002)
    [5.11] S. Bandyopadhyay, Self-assembled nanoelectronic quantum computer based on the Rashba effect in quantum dots , Phys. Rev. B 61, 13813 (2000)
    [5.12] J. C. Egues, G. Burkard and D. Loss, Rashba Spin-Orbit Interaction and Shot Noise for Spin-Polarized and Entangled Electrons , Phys. Rev. Lett. 89, 176401 (2002)
    [5.13] E. I. Rashba and AI. L. Efros, Orbital Mechanisms of Electron-Spin Manipulation by an Electric Field , Phys. Rev. Lett. 91, 126405 (2003)
    [5.14] Y. Kato, R. C. Myers, D. C. Driscoll, A. C. Gossard, J. Levy and D. D. Awschalom, Gigahertz Electron Spin Manipulation Using Voltage-Controlled g-Tensor Modulation , Science 299, 1201 (2003)
    [5.15]S. Debald and C. Emary, Spin-Orbit-Driven CoherentOscillations in a Few-Electron Quantum Dot , Phys. Rev. Lett. 94, 226803 (2005)
    [5.16] K. D. Zhu, Z. J. Wu, X. Z. Yuan and H. Zheng, Excitonic dynamics in a single quantum dot within a microcavity , Phys. Rev. B 71, 235312 (2005)
    [5.17] J. Nitta, T. Akazaki, H. Takayanagi and T. Enoki, Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure , Phys. Rev. Lett. 78,1335 (1997)
    [5.18] D. Grundler, Large Rashba Splitting in InAs Quantum Wells due to Electron Wave Function Penetration into the Barrier Layers , Phys. Rev. Lett. 84, 6074 (2000)
    [5.19] T. Koga, J. Nitta, T. Akazaki and H. Takayanagi, Rashba Spin-Orbit Coupling Probed by the Weak Antilocalization Analysis in InAlAs/InGaAs/InAlAs Quantum Wells as a Function of Quantum Well Asymmetry , Phys. Rev. Lett. 89,046801 (2002)
    [5.20] Yu. A. Buchkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , J. Phys. C 17, 6039 (1984)
    [5.21] L. Allen and J. H. Eberly, Optical Resonance and Twolevel Atoms (Wiley, New York, 1975)
    [6.1] P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, New York, 1991)
    [6.2] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas , Nature (London) 397, 594 (1999)
    [6.3] S. E. Harris, Electromagnetically induced transparency , Phys. Today 50, 36 (1997)
    [6.4] A. Kasapi, Maneesh Jain, G. Y. Yin and S. E. Harris, Electromagnetically Induced Transparency: Propagation Dynamics , Phys.Rev.Lett. 74, 2447(1995)
    [6.5] M. M. Kash, Vladimir A. Sautenkov, Alexander S. Zibrov et al., Ultraslow Group Velocity and Enhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas , Phys. Rev. Lett. 82, 5229 (1999)
    [6.6] C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses , Nature(London) 409, 490 (2001)
    [6.7] M. Fleischhauer and M. D. Lukin, Dark-State Polaritons in Electromagnetically Induced Transparency , Phys. Rev. Lett. 84, 5094 (2000)
    [6.8] E. Podivilov, B. Sturman, A. Shumelyuk and S. Odoulov, Defect Mode Emission of a Dye Doped Cholesteric Polymer Network , Phys. Rev. Lett. 90, 083902 (2003)
    [6.9] G. S. Agarwal and T. N. Dey, Slow light in Doppler-broadened two-level systems , Phys. Rev. A 68, 063816 (2003)
    [6.10] M. S. Bigelow, N. N. Lepeshkin and R. W. Boyd, Observation ofUltraslow Light Propagation in a Ruby Crystal at Room Temperature , Phys. Rev. Lett. 90, 113903 (2003)
    [6.11] M. S. Bigelow, N. N. Lepeshkin and R. W. boyd, Superluminal and slow light propagation in a room-temperature solid , Science 301, 200 (2001)
    [6.12] G. S. Agarwal, T. N. Dey, and S. Menon, Knob for changing light propagation from subluminal to superluminal , Phys. Rev. A 64, 053809 (2001)
    [6.13] G. S. Agarwal and S. Dasgupta, Superluminal propagation via coherent manipulation of the Raman gain process , Phys. Rev. A 70, 023802 (2004)
    [6.14] S. Menon and G. S. Agarwal, Gain from cross talk among optical transitions , Phys. Rev. A 59, 740 (1999)
    [6.15] Y. W. Jiang and K. D. Zhu, Local field effects on phonon-induced transparency in quantum dots embedded in a semiconductor medium , Appl. Phys. B 90, 79-85 (2008)
    [6.16] K. D. Zhu and W. S. Li, Electromagnetically induced transparency due to exciton-phonon interaction in an organic quantum well , J. Phys.B: At.Mol.Opt.Phys. 33, 4255(2000)
    [6.17] D. Lu, G. Chen, and W. A. Goddard III, The valence-bond charge-transfer-exciton model for predicting nonlinear optical properties (hyperpolarizabilities and saturation length) of polymeric materials , J. Chem. Phys. 101, 4920 (1994)
    [6.18] S. Suchi, Theory of exciton–photon interaction in polymers: Polariton spectra of polydiacetylenes , J. Chem. Phys. 85, 611(1986)
    [6.19] O. Dubovsky and S. Mukamel, Charge-transfer excitons and ? (2) of molecular monolayers , J. Chem. Phys. 96, 9201 (1992)
    [6.20] F. Spano, V. M. Agranovich and S. Mukamel, Biexciton states and two-photon absorption in molecular monolayers , J. Chem. Phys. 95,1400 (1991)
    [6.21] K. D. Zhu and T. Kobayashi, Temperature dependence of the dielectric-metal phase transition in a two-dimensional system of charge-transfer excitons , Phys. Lett. A 201, 439 (1995)
    [6.22] S. Takeno and M. Mabuchi, A Theory of Frenkel Excitons Using a Two-Level-Atom Model , Prog. Theor. Phys. 50, 1848 (1973)
    [6.23] X. Li, D. L. Lin, T. F. George and X. Sun, New type of optical bistability in polymers mediated by phonons , Phys. Rev. B 41, 3280 (1990)
    [6.24] V. I. Yudson and P. Reineker, Excitonic effects in dense media: breakdown of intrinsic optical bistability , Phys. Lett. A 196, 371 (1995)
    [6.25] R. W. Boyd, Nonlinear Optics (Academic, San Diego, California,1992), p225
    [6.26] Y. W. Jiang, K. D. Zhu, Z. J. Wu, X. Z. Yuang and M. Yao, Electromagnetically induced transparency in quantum dot systems , J. Phys. B: At. Mol. Opt. Phys. 39, 2621 (2006)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700