用户名: 密码: 验证码:
短基线定位关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
21世纪是海洋世纪,基于声波探测的水声技术是获取和传递水下信息最有效的手段。本文主要研究短基线高精度定位技术,是为解决水下探测和作业的机器人提供高精度定位装备。
     由于水声信道的多途特性,严重影响了水声定位系统的时延估计精度。信号直达声与多途反射声混在一起影响了声呐检测器的判决。本文利用时间反转聚焦信道多途的特性,提出一种抑制信道多途的新方法,即对短基线定位系统加以改进,提出短基线与单阵元时间反转镜相结合的方法。采用基于单阵元的非同步主动应答式、同步虚拟信标式的时间反转定位方式,达到抑制信道多途提高定位精度。并且提出利用时间反转信道聚焦的功能解决多目标定位中的若干问题。
     本文针对短基线声呐的检测问题,理论分析推导常规匹配滤波检测器、时间反转匹配检测器、常规最大似然估计器及时间反转最大似然估计器的性能特点。针对在水下存在多途、混响及噪声边缘等非平稳背景条件下声呐检测器的检测性能,给出了一种变异指数的恒虚警检测器—VI-CFAR检测器,其具有较强的自适应性及抗干扰能力,且在噪声边缘背景下有较好的虚警概率控制能力且运算量小,是一种稳健的检测器。
     本文详尽分析了基阵误差对定位精度的影响,提出一种快速随机布放的水声短基线定位系统。针对短基线基阵校准问题,本文从系统的总体误差角度入手,以基阵扰动矢量最小化为目标,提出采用约束最小二乘算法来抑制扰动误差的影响,并且针对在短基线定位中具有相同误差源的特性,提出利用邻近辅助基阵节点做为差分参考节点,用参考节点去修正未知节点测距,然后结合最小二乘技术迭代求解,该算法结构简单,工程应用性高。
     最后本文论证并且实现了一套应用于水下机器人的短基线定位系统,详细介绍了各模块的软、硬件设计思想和实施方案。给出了该系统经过水池、多功能造波水池、海试的试验结果。通过实验验证,该系统定位精度可达到0.5%以内,并且工作稳定,性能可靠,通过园筛法、中值滤波及卡尔曼滤波等后置处理手段对定位过程中的间断点和野点进行处理,轨迹平滑效果良好,满足系统要求。
21stcentury is a century of ocean, and the underwater acoustic technology based on sounddetecting is the most effective means to achieve and transform underwater information. Thisarticle mainly deals with short-baseline based high-precision location technology, whichprovides high-precision location devices for robots detecting and working underwater.
     Multi-path time delay estimation error is one of the important factors that affect theprecision of a location system. Due to the multi-path feature of the underwater acousticchannel, direct sound signal mixes with multi-path reflected sound, which affects the sonardetector’s judgment. Utilizing the multi-path characteristic of a time-reversal focusingchannel, this paper proposes a new strategy to mitigate the multi-path effect of the underwateracoustic channel, namely an improvement of short-baseline location system. A technologycombining short-baseline and single array time-reversal mirror method is raised. Also, thefocusing gain of the proposed method is analyzed. In this paper, time-reversal locationmethods, asynchronous initiative respond and single array based synchronous virtual beacon,are used to mitigate the multi-path effect and improve precision of location. A method basedon the channel focus function of time-reversal mirror to resolve problems such as near-fareffect and multi-target distinguish of multi-target location system is also proposed.
     Focused on detection issue of the short-baseline sonar, the paper analyses and deduces theperformance of the common matching filtering detector, time-reversal matching detector,common maximum likelihood estimator and time-reversal maximum likelihood estimator.Especially, for the detection performance of the sonar detectors in unstable background suchas multi-path effect of the underwater acoustic channel, reverberation and noise edge, it putsup with a CFAR detector of varying index, namely VI-CFAR detector. The VI-CFAR detectorhas strong capacity of self-adaptation and anti-interference. It not only does well in falsealarm probability control, but also requires small calculating amount, which makes it a steadydetector.
     The paper analyses the influence of the base array to location precision in detail, and putsforward a high speed random placed short-baseline underwater acoustic location system. Asfor the short-baseline array’s correction, the paper aiming at minimizing the array interference vector, starts from the factor of total error and proposes a method to mitigate the influence ofinterference error by utilizing restraint Least Square Method. Due to the characteristic of thesame error source in locating system, the paper uses adjacent array nodal point as differentialreference nodal point to correct unknown nodal points. Then combine Least Square Methodfor iterative solution. The proposed method has simple structure and high engineeringapplicability.
     At last the paper demonstrates and realizes a short-baseline location system used forunderwater robots. The design idea and implementation plan of software and hardware ineach module are also introduced carefully. In addition, the test results of the system underdifferent condition such as pool, multifunction wave-producing pool and the sea are provided.It is proved that the system is of great reliability in various circumstances and its locatingprecision even ranges within0.5%, which satisfies the system requirements. It copes with thebreakpoints occurred in the process of locating through some manners like round filter,mid-value filtering and Kalman filtering, which contributes to its good effect for pathsmoothing.
引文
[1]P.H.Milne, Underwater Acoustic Positioning Systems,1983
    [2]www.sonardyne.com
    [3]Lee Freitag, Mark Johnson and Matthew. Grund. Integrated acoustic communication andnavigation for multiple AUV localization[C]. OCEANS,2001. Proceedings of MTS/IEEE.2001(4):2065-2070P
    [4]Lee Freitag, Mark Johnson and and Matthew. Grund. Micro-Modem:Anacousticcommunications and navigation system for multiple platforms[C]. OCEANS,2005.Proceedings of MTS/IEEE.2005(2):1086-1092P
    [5] M. Stojanovic, L. Freitag and J.Leonard. A new protocol for multiple AUV localization[C].OCEANS,2002. Proceedings ofMTS/IEEE.2002(1):604-611P
    [6]Frederick R. Driscoll, Pierre-Philippe J. Beaujean and William. Developmentand testing ofan A-sized rapidly deployable navigation and communication GATEWAY buoy[C].OCEANS,2005. Proceedings of MTS/IEEE.2005(2):1234-1241P
    [7]Donald Thomson and Scott Elson. New generation acoustic positioning systems[C].Oceans’02MTS/IEEE.2002(3):1312-1318P
    [8]Mckeown D L. Marine acoustic navigation and location-a status report[J]. Proceedings ofInternational Workshop on Marine Acoustics.1990,03, Beijing
    [9]Anonymous. Ten TrackLink USBL systems sold in one month. Sea Technology.2003,44(12):69P
    [10]T.C. Austin. The application of spread spectrum signaling techniques to underwateracoustic navigation. Proceedings of the1994Symposium on AUV’94.1994:443-449P
    [11]Max Auddc. GAPS,a new concept for USBL. MTS/IEEE TECHNO-OCEAN’04.2002(2):786-788P
    [12]Grogan M.High frequency band acoustic positioning equipment: its evolution andintegration with other systems.Proe.Oeeans87,1987,19:357-36l
    [13]Keith Vickery. Acoustic positioning Systems-A Practical Overview of Current SystemProceedings of the IEEE1998Workshop on Autonomous Underwater Vehicle,1998,08:5-17P
    [14]F. Napolitano,F. Cretollier,H. Pelletier. GAPS,combined USBL+INS+GPS trackingsystem for fast deployable&high accuracy multiple target positioning. Oceans2005-Europe.2005(2):1415-1420P
    [15]http://www.whoi.edu/page.do?pid=8422
    [16]H.THOMAS,"The use of GPS for underwater navigation sea trials results",1995,INS-GPS-95,Palm Springs(USA).
    [17]A.Alcocer,P.Oliveira,and A.Pascoal,Undewater acoustic positioning system based onBuoys With GPS, European Conference on Underwater Acoustics,8th ECUA1993,7
    [18]Jeanpeyronnet.POSIDONIA6000A new long range highly accurate ultra short baselinepositioning system.OCEANS’98.1998(3):1721-1727
    [19]田坦,惠俊英.长基线水声应答器导航系统应用[J].哈尔滨船舶工程学院学报.1981(1):41-52页
    [20]封金星,丁士圻,惠俊英.水下运动目标长基线定位解算研究[J].声学学报.1996,21(5):832-837页
    [21]喻敏长程超短基线系统研制[D].哈尔滨工程大学博士论文2006,4
    [22]郑翠娥超短基线潜器在水下对接中的应用[D].哈尔滨工程大学博士论文20083
    [23]李想水下高速运动目标轨迹测量系统[D].哈尔滨工程大学博士论文20116
    [24]付进长基线定位信号处理若干关键技术研究[D].哈尔滨工程大学博士论文200710
    [25]张光谱导航定位通信一体化系统总体技术研究[D].哈尔滨工程大学博士论文200710
    [26]蔡艳辉差分GPS水下定位系统集成关键技术研究[D].辽宁工程技术大学博士论文2007,5
    [271]孙大军,郑翠娥.水声定位系统在海洋工程中的应用[J].声学技术.2012(02).
    [28] www.desert.com
    [29]Smith, Samuel M. Experimental results of an inexpensive short baseline acousticpositioning system for AUV navigation OCEANS '97. MTS/IEEE ConferenceProceedings.199710714-720
    [30]Bingham, Brian, Mindell, David, Wilcox, Thomas. Integrating Precision RelativePositioning into JASON/MEDEA ROV Operations; Marine Technology Society Journal,2006,40(1),pp.87-96(10)
    [31]丁士圻,徐新盛,王智元,惠俊英.船载式远程高精度水声定位系统海洋工程,1996,11,14(4),16-21
    [32]梁国龙,江峰,蔡平.一种新颖的短基线高精度定位系统[J].应用声学.1999,18(5):15-18页
    [33]潘继成.水下机器人水声定位系统硬件的设计与实现[D].哈尔滨工程大学硕士论文2006.3
    [34]李壮乔钢基于虚拟时间反转镜的短基线定位系统[J]应用声学2012(4).
    [35]王庆天,邢志刚,刘伯胜智能水下机器人水声精确定位技术的研究[J]海洋工程1999,04
    [36]H.Krim,M.Viberg."Sensor Array Signal Processing:Two Decades Later". Technical reportCTH-TE-28, Chalmers University of Technology.1995
    [37]S. P. Applebaum. Adaptive Arrays. IEEE Trans. Antennas and Propagation,1976,24(9):585-598P
    [38]R.K.Young.Wavelet Theory and Its Applications.Kluwer Academic Publishers, Boston,1993.
    [39]H.L.Van Trees.Detection,estimation,and modulation theory Part Ⅱ.1971
    [40]H.L.Van Trees.Detection,estimation,and modulation theory Part Ⅰ.1968
    [41]H.L.Van Trees.Detection,estimation,and modulation theory Part Ⅲ.1971
    [42]张仁和水声信号处理面临的挑战与发展潜力.[C].《中国声学学会2002年全国声学学术会议论文集》2002(9)
    [43]Hinich M J.Detecting a transient signal by bispectral analysis[J].IEEE Transaction on Acoustics,Speech and Signal Processing,1990,38(7):1277-1283.
    [44]Hinich M J, Sheehan J H. Ocean acoustic field matching:normal mode filtering andnon-Gaussian sources[J].IEEE Transactions on Oceanic Engineering,1993,18(3):181-188.
    [45]Hinich M J, Messer H.On the principal domain of the discrete bispectrum of astationarysignal[J].IEEE Transactions on Signal Processing,1995,43(9):2130-2134.
    [46]Colonnese S,Scarano G..Transient signal detection using higher order moments[J].IEEETransactions on Signal Processing,1999,47(2):515-520.
    [47]Chandran V, Elgar S, Nguyen A. Detection of mines in acoustic images using higher orderspectral features[J].IEEE Journal of Oceanic Engineering,2002,27(3):610-618.
    [48]郭业才,赵俊渭,陈华伟.水中运动目标动态线谱增强算法研究[J].声学学报.2003(04)
    [49]郭业才,赵俊渭,陈华伟.基于高阶累积量符号相干累积自适应滤波算法[J].系统仿真学报.2002(10)
    [50]T.J.Barnard, Fyzodeen. Statistical Normalization of spherically Invariant Non-GaussianClutter[J]. IEEE Journal of Oceanic Engineering.2004.29(2).303-309
    [51]Steven Kay,John Salisbury. Improved Active sonar detection using autoregressiveprewhiteners[J]. J.Acoust.Soc.Amer.1990,4:1603-1611
    [52]V.Carmillet, P-O.Amblard, G.Jourdain. Detection of Phase or Frequency-Modulatedsignals in Reverberation Noise [J]. J.Acoust.Soc. Amer.1999,105(6):3375-3389
    [53]B.Kalyan, A.Balasuriva. Sonar based automatic target detection scheme for underwaterenvironments using CFAR techniques:a comparative study[C].UT04.2004InternationalSymposium on,2004:33-37
    [54]Amit Kumar Verma. Variability Index Constant False Alarm Rate (VI-CFAR) for SonarTarget Detection[J]. IEEE-International Conference on Signal processing, CNMIT, AnnaUniversity Chennai India, Jan4-6,2008. pp'38-141
    [55]Lee Nige,Zurk L M,Ward J.Evaluation of reducedrank,adaptive matched field processingalgorithms for passive sonar detection in a shallow-water environment [C].ConferenceRecord of the Asilomar Conference on Signals, Systems and Computers,1999,2:876-880.
    [56]Wang F T,Lee J C,Chang S H.Nonstationary signals detection by using the empiricalmode decomposition in empirical noise model[C].In proceedings of OCEANS2006ASIAOES/IEEE Conference and exhibition,Singapore,2006.
    [57]梁国龙.回波信号瞬时参数序列分析及其应用研究[D]..哈尔滨工程大学博士论文.1997:12-16页,33-38页,55-61页
    [58]Namias V. The fractional Fourier transform transform and its application in quantummechanics. J Inst Math,1980,25:241-265
    [59]Gardner W.A, Napolitano A, Paura L.Cyclostationarity:half a century of research. SignalProcessing,2006,86(4),pp.639-697.
    [60]B Riemman.The propagation of plane sound waves of finite amplitude.In:BeyerBT.Nonlinear acoustics in fluids.Brown University,Province,Rhode Island,VNRComp.1984.42~60P
    [61]S Earnshaw.On the mathematical theory of sound.Phil Trans Roy Soc.1859.8:75~102P
    [62]D T Blackstock.Connection between the Fay and Fubini solutions for plane soundwavesof finite amplitude.J Acoust Soc Am.1966.39:1019~1026P
    [63]B B Cary.Nonlinear losses induced in spherical waves. J Acoust Soc Am.1967.42:88P
    [64] A. Parvulescu, C. S. Clay, Reproducibility of signal reansmissions in the ocean, RadioElec. Eng,1965(29):223-228P
    [65]Mathias Fink. Time-reversal of ultrasonic fields—PartI: basic principles. IEEETrans.Ultrason, Ferroelect,Freq.Contr.1992;39(5):555-556
    [66]Francois Wu Jean-louis Thomas Mathias Fink,Time-reversal of ultrasonic fields—PartII:experimental results.IEEE Trans.Ultrason,Ferroelect,Freq Contr.,1992;39(5):567-578
    [67]Philippe Roux,Mathias Fink.Time reversal in a waveguide: Study of the temporal andspatial focusing. Acoustical Society of America,2000;107(5)
    [68]D.R. Jackson, D.R. Dowling, Phase conjugation in underwater acoustics, J. Acoust. Soc.Am.1991(89):171-181P
    [69]David R. Dowling, Darrell R.Jackson, Narrow-band performance of phase-conjugatearrays in dynamic random media, J. Acoust. Soc. Am. June1992:3257-3277P
    [70]David R. Dowling, Phase-conjugate array focusing in a moving medium, J. Acoust. Soc.Am. Vol.94, No.3, Pt.1, Sept.1993:1716-1718P
    [71]David R. Dowling, Acoustic pulse compression using passive phase-conjugate processing,J. Acoust. Soc. Am.95(3), March1994:1450-1458P
    [72]Sunny R. Khosla, David R. Dowling, Time-reversing array retrofocusing in simpledynamic underwater environments, J. Acoust. Soc. Am.1998(104):3339-3350P
    [73]W.A.KuPerman, W.S.Hodgkiss, H.C.Song, T.Akal, C.Ferla, D.R.Jackson, Phaseconjugation in the ocean: Experimental demonstration of a time reversal mirror, J.Acoust.Soc. Am.1998,103(1):25-40p
    [74] J.S. Kim, H.C. Song, W.A. Kuperman, Adaptive time reversal mirror, J. Acoust. Soc. Am.2001(109):1817-1825P
    [75]J.F.Lingevitch, H.C.Song, and W.A.Kuperman,“Time reversal reverberation focusing in awaveguide, J.Aeoust.Soc.Am.,2002,111(6):2609-2614P
    [76]S.Kim, W.A.KuPerman, W.5.Hodgkiss, H.C.Song, G.Edelmann, and T. Akalb,“Echo-to-reverberation enhancement using a time reversal mirror, J. Acoust.Soc.Am,April2004,115(4):1525-153IP
    [77]W.A. Kuperman, W.S. Hodgkiss, H.C. Song, T. Akal, C. Ferla, D.R. Jackson, Phaseconjugation in the ocean: Experimental demonstration of a time reversal mirror, J. Acoust.Soc. Am.1998(103):25-40
    [78]H.C. Song, W.A. Kuperman, W.S. Hodgkiss, T. Akal, C. Ferla, D.R. Jackson, Iterativetime reversal in the ocean, J. Acoust. Soc. Am.1999(105):3176-3184P
    [79]Baggeroer, A., Acoustic telemetry-An overview, IEEE J. Ocean. Eng,1984(9):229-235P
    [80]M. Heinemann, A. Larraza, K. B. Smith, Experimental studies of applications oftime-reversal acoustics to noncoherent underwater communications, J. Acoust. Soc. Am.113(6), June2003
    [81]魏炜,超声时间反转法自适应聚焦性能研究[D].,中国科学院博士论文1999
    [82]M. Heinemann, A. Larraza, K. B. Smith, Experimental studies of applications oftime-reversal acoustics to noncoherent underwater communications, J. Acoust. Soc. Am.113(6), June2003
    [83]Kevin B. Smith, Antonio A. M. Abrantes, Andres Larraza, Examination of time-reversalacoustics in shallow water and application to noncoherent underwater communications, J.Acoust. Soc. Am.2003(113):3095-3116P
    [84]Abrantes, A. A. M., Smith, K. B., Examination of time-reversal acoustics and applicationsto underwater communications, J. Acoust. Soc. Am.1999(105):1364P
    [85]Joao Gomes Victor Barroso DOPPLER COMPENSATION IN UNDERWATERCHANNELS USING TIME-REVERSAL ARRAYS ICASSP’03-Hong Kong, China,April2003.
    [86]Joao Gomes Victor Barroso Time-Reversed OFDM Communication in UnderwaterChannels5th IEEE Workshop on Signal Processing Advances in WirelessCommunications, Lisboa, Portugal, July11-14,2004
    [87]Dr.David M.Pierson; Dr.David E.Aspnes.Breakthrough Mine-Detection Turns OceanFloor “Transparent”. News Release.2004.
    [88] José M. F. Moura, Yuanwei Jin. Detection by Time Reversal: Single Antenna IEEE TransActions on Signal Processing, Vol.55,2007(1)
    [89]Yuanwei Jin, José M. F. Moura. Time Reversal Detectionin Clutter: AdditionalExperimental Results IEEE Trans Actions on Aerospace and Electronic Systems Vol.47,2011(1)
    [90]汪承颧,魏炜.改进的时间反转法用于有界时超声目标探测的鉴别[J]..声学学报,2002,27(3):193-197页
    [91]张碧星,吴昊,汪承颧. Time Reversalself-Foeusing in a solid-plate waveguideChinese physies Letters(中国物理快报:英文版),2004,21(2):337-340页
    [92]张碧星,陆铭慧.用时间反转法在水下波导介质中实现自适应聚焦的研究[J]..声学学报,2002,27(6):541-545页
    [93]生雪莉,惠俊英,梁国龙.矢量反转镜时空滤波技术研究[J].声学学报,2005,30(4):349-354
    [94]生雪莉,矢量反转镜时空滤波技术及其在水声中的应用[D].哈尔滨工程大学博士论文,2004
    [95]雷亚辉水下目标的时间反转探测技术应用研究[D].哈尔滨工程大学博士论文,2010,6
    [96]雷亚辉,郭丽华,李鹏.单阵元时间反转法主动声探测技术研究[J]..声学技术.2009,12
    [97]殷敬伟多途信道中Pattem时延差编码水声通信研究[D].哈尔滨工程大学博士论文,2007
    [98]殷敬伟,惠俊英,惠娟,生雪莉,姚直象.无源时间反转镜在水声通信中的应用[J].声学学报,2007,32:362-368页
    [99]殷敬伟,惠俊英,王燕,刘洋.虚拟时间反转镜Pattem时延差编码水声通信[J].系统仿真学报,2007,19:4033-4036页
    [100]夏梦璐浅水起伏中的模型-数据结合水声信道均衡技术[D].浙江大学博士论文,2012
    [101]Menglu Xia, Wen Xu. Feng Sun. and Xiang Pan, Experimental Studies of Time-ReversalUnderwater Acoustic Coirununications [C], Proc. IEEE OCEANS Bremen, May2009.
    [102]牛嗣亮基于时延估计的岸基长线阵阵形估计方法研究[D].国防科学技术大学硕士论文,20007(7)
    [103]B.Friedlander. A sensitivity analysis of the MUSIC algorithm [J] Trans.on ASSP,1990,38(10):1740-1751
    [104]A.J.Weiss and B.Friedlander,“Array shape calibration using sources in unknownlocations—A maximum likelihood approach.[J] IEEE Trans.on ASSP,1989,37(12):1958-1966
    [105]Anthony.J.Weiss and Benjamin.Friedlander. Array shape calibration using eigenstructuremethods.[J]. Elsevier Science Publishers, Signal Processing,1991,22(3):251-258
    [106]Brian P.Flanagan and Kristine L.Bell. Improved array self-calibration with large sensorposition errors for closed space sources.[C]. Proceedings of IEEE Sensor Array andMultichannel Workshop,2000,484~488
    [107]B.Friedlander and A.J.Weiss. Eigenstructure methods for direction finding with sensorgain and phase uncertainties. Circuit Syst.Signal Processing,1990,9(3):271-300
    [108]Eric K.L.Hung. A critical study of a self-calibrating direction-finding method for arrays.IEEE Trans.on Signal Processing,1994,42(2):471-474
    [109]J.Pierre and M.Kaveh,“Experimental performance of calibration and direction findingalgorithms” IEEE Trans.on Signal Processing,1992,40(11):2641-2650
    [110]Wang Buhong, Wang Yongliang and Chen Hui,“Array shape calibration using carry-oninstrumental sensors,”IEEE international symposium on phased array systems andtechnology, Boston, Massachusetts, USA,22-27, Oct,2003,182-186
    [111]D.R.C.PhiliPs. An evaluation of USBL and SBL acoustic systems and the Optimizationof methods of calibration-Part1. The Hydrographic Journal.2003(4):18-25
    [112]D.R.C.PhiliPs. An evaluation of USBL and SBL acoustic systems and the Optimizationof methods of calibration-Part2. The Hydrographic Journal.2003(7):10-19
    [113]D.R.C.PhiliPs. An evaluation of USBL and SBL acoustic systems and the Optimizationof methods of calibration-Part3. The Hydrographic Journal.2003(10):10-19
    [114]杜广文,超短基线定位之感测器对准偏差修正[D].国立中山大学硕士论文.2006
    [115]唐秋华,吴永亭,丁继胜.超短基线声学定位定位系统的校准技术研究[J].声学技术.2006,25(4):281-287页
    [116]J,Opderbecke.At-sea calibration of a USBL underwater vehicle positioning system[C].OCEANS‘97. MTS/IEEE.1997(1):721-726P
    [117]郑翠娥,孙大军,张殿伦,李想.超短基线声学定位系统安装误差精确校准[J].哈尔滨工程大学学报.2007,28(8).
    [118]龚光鲁.概率论与数理统计[M].北京,清华大学出版社,2006.
    [119]何友等,雷达目标检测与恒虚警处理[M].清华大学出版社20119132-136p
    [120]惠俊英,生雪莉.水下声信道[M].国防工业出版社20072
    [121]何祚镛,赵玉芳.声学理论基础[M]北京国防工业出版社1981.8
    [122]范敏毅.水下声信道的仿真与应用研究[D].哈尔滨.哈尔滨工程大学2000:25-31`
    [123]孙琳.浅水环境中时间反转镜聚焦性能的研究[D].哈尔滨工程大学硕士论文20073
    [124]余赟.浅海多途信道中声聚焦与声屏蔽技术研究[D].哈尔滨工程大学硕士论文20083
    [125]朴大志,李启虎,孙长瑜.时间反转技术对水声多输入多输出系统干扰抑制性能的研究[J].通信学报.2008,07.29(7).81-87p
    [126]梁国龙,杨春,陈晓忠,王燕.同步水声跟踪定位系统软件抗距离模糊技术研究[J].应用声学2005年05期
    [127]陈晓忠,梁国龙,王逸林,赵羽.非同步水声定位技术及其性能评价[J].声学学报2003,7.28(4).357-362
    [128]李迎春,吴德明.短基线平面阵型双曲面定位系统的声线修正[J].声学学报,1992(9):340~344.
    [129]Beek J,Edfors O,Sandell M,Wilson S K,etc.On channel estimation in OFDM systems.IEEE VTC’95.July1995,815-819P
    [130]安良,陈励军,陆佶人,凌斌.船载柔性阵基元坐标实时获取技术研究[J].数据采集与处理,2010(01)
    [131]李启虎数字式声呐设计原理[M]安徽教育出版社2002,11
    [132]Boyd S, Vandenberghe L. Convex Optimization. New York: Cambridge University Press,2004:56-79.
    [133]Guha S, Murty RN, Sirer E G Sextant. A unified node and event localization frameworkusing non-convex constraints. Proceedings of the6th ACM International SymPosium onMobile Ad-Hoc Networking and Computing, IL, USA,2005:205-216.
    [134]Cao M, Anderson BDO, Morse AS. Sensor network localization with imprecisedistances. Systems and Control Letters,55(I),2006,887-893.
    [135]Biswas P, Lian T C, Wang T C. Semidefinite programming based algorithms forsensor localization. ACM Trans. Sensor Networks, New York: ACM press,2006,2(2):188-200.
    [136]Srirangarajan S, Tewfik AH, Luo ZQ. Distributed sensor network localization withinaccurate anchor positions and noisy distance information. IEEE InternationalConference on Acoustics.
    [137]Savarese C, Rabaey J M, Beutel J. Locationing in distributed ad-hoc wireless sensornetworks. Proceeding of the2001IEEE Interactional Conference on Acoustics, Speech,and Signal, Salt Lake,2001:2037-2040.
    [138]Savarese C, Rabay J, Langendoen K. Robust positioning algorithms for distributedAd-hoc wireless sensor networks. Proeeedings of the USENIX Technical AnnualConference, Monterey, USA,2002:317-327.
    [139]Avvides A, Park H, Srivastava MB. The bits and flops of the N-hop multilaterationprimitive for node localization problems. Proceeding of the lst ACM InteractionalWorkshop on Wireless Sensor Network sand Applications, Atlanta,2002:112-121.
    [140]Begamo P, Mazzini G. Localization in sensor networks with fading and mobility.Proeessing of the13th IEEE International Symposium on Personal, Indoor and MobileRadio Communications, NJ, USA,2002:750-754
    [141]Yuanwei Jin, and José M. F. Moura, Time-Reversal Detection Using Antenna ArraysIEEE Trans Actions on Signal Processing, Vol.57,2009(4)
    [141]杨天池,宇超群散射体位置扰动条件下约束总体最小二乘单站定位方法[J].中国科学:信息科学.2011,41(3):377-384
    [142] Abatzoglou T J, Mendel J M, Harada G A. The constrained total least squares techniqueand its applications to harmonic superresolution. IEEE Trans Signal Process,1991,39:1070-1087
    [143] Chan Y T, Ho K C. A simple and excilent estimator for hyperbolic location. IEEE TransAcoust Speech Signal Process,1994,42:1905-1915
    [144]程伟,史浩山基于差分修正的传感器网络加权质心定位算法[J].系统仿真学报2012,24(2),389-392
    [145]刘伯胜,雷家煜编.水声学原理[M].哈尔滨船舶工程学院出版社.1993
    [146]田坦,刘国枝.孙大军编著.声呐技术[M].哈尔滨工程大学出版社,1999,11-14,19-27
    [147]周伟,惠俊英,梅继丹等.三元阵被动测距浅海试验及后置处理[J]声学学报2009,3
    [148]梁民赞,陆扬,周新鹏.一种抑制卡尔曼滤波发散的实时数据处理方法[J].声学技术2008,27(5).
    [149]张维.复杂杂波背景恒虚警检测技术研究[D].南京航空航天大学博士论文.2009.2
    [150]金鑫.超短基线定位系统检测技术研究[D].哈尔滨工程大学硕士论文.2008.2
    [151]梅继丹.水声声图测量技术研究[D].哈尔滨工程大学博士论文.2010.4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700