用户名: 密码: 验证码:
基于QNX的水下滑翔机器人嵌入式控制系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究对象一水下滑翔机器人嵌入式控制系统是为了满足水下滑翔机器人的开发需要而设计的。在深入分析水下滑翔机器人控制系统特点的基础上,本文提出了水下滑翔机器人嵌入式控制系统硬件、软件结构的设计方案。基于此思想,以QNX实时嵌入式操作系统为开发平台,以C语言为主要开发工具,设计并开发了控制系统。该控制系统不仅满足了水下滑翔机器人的功能需求,而且具有通用性和易用性的特点。
     全文分为三个部分,第一部分为控制系统开发环境分析。分析了实时操作系统QNX独特的体系结构和特点;通过测试,详细研究了WINDOWS2000、LINUX9.0、QNX6.2在线程创建能力、进程创建能力等方面的差异。
     第二部分为控制系统设计。论述了嵌入式控制系统的软、硬件组成和开发目标,对控制系统的需求和可行性进行了分析,详细阐述了控制系统软件和硬件的总体结构设计思想,并对控制系统中进程间通讯机制做了分析和比较,设计实现了基于消息传递及公共数据区的通讯子系统。
     第三部分,对水下滑翔机器人嵌入式控制系统软件进行了详细设计。实现了DiskOnChip在QNX操作系统下的驱动以及QNX操作系统在DOC上的移植;实现了水下滑翔机器人在AUV模式下的预编程控制和ROV模式下遥操作;论述了使命程序的编制过程;针对水下滑翔机器人的特定功能需求,以及对水下滑翔机器人的定常滑翔运动和空间螺旋回转运动的分析,提出了组合导航定位的模式,运用船位推算算法,设计开发了航行控制系统;描述了TCM2电子罗盘的数据采集工作流程,利用多传感器数据融合技术开发了数据采集系统,提出了一种多传感器数据的处理方法;最后,介绍了公共数据区的功能以及公共数据区的创建方法。
     通过实验验证,本文设计的控制系统能够满足水下滑翔机器人的基本运动控制,实现了载体的航行定位以及多传感器系统的数据采集,并利用QNX操作系统的优越性能,实现了控制系统中多进程间的信息传递及数据存储。
The dissertation is on the research of an Underwater Glider Embedded Control Systemwhich is designed for the purpose of meeting the requirements for the development ofUnderwater Glider. In this paper, on detailed analysis of the characteristics about underwaterglider control system, the author put forwards the design philosophy of the hardware andsoftware structure applied in embedded control system for underwater glider. Based on thisconception, and using QNX real-time, embedded operation system as development platformand C language as development language, the control system was designed and develpped forthe Underwater Glider, which not only supports the requirement of generalization but alsosupports the requirement of facility.
     This paper is divided into three parts. In the fist part, the author analyses thedevelopment environment of the control system. In this part, real-time platform QNX and itscharacteristic architecture are introduced as well as QNX6.2 with Windows2000 andLinux9.0 on the performance of threads creation and the performance of processes creationare compared based on the considerations.
     In the second part, the main idea of control system development is expatiated. The authordescribes the software and hardware composition and the development objectives, anddiscusses the requirement and feasibility of the system. The design conception of the generalstructure of control system software and hardware are given. In addition, the interprocesscommunications in the control system are compared and the communication subsystem basedon Message Passing and Common Data Zone is designed and realized.
     In the third part, the underwater glider embedded control system is designed in detail. Inthis part, the DiskOnChip driving under QNX operation system and the QNX operationsystem porting under DOC are achieved.The work models of Underwater Gliderpre-programing control under AUV mode and the remote operation under ROV mode arerealized; The compiling process of the Mission Program is introduced; Based on the particular function requirements of the Underwater Glider, and the detailed discussion and analysisabout Constant Gliding Motion and Space Helix Turning Motion, a mode of integratednavigation and positioning is put forward, and the navigation control system is designed basedon Dead Reckoning Algorithm. In addition, the data acquisition working process of TCM2electronic compass is integrated discussed; and what is more, using the multi-sensor datafusion technique, the Data Acquisition System is developed and a multi-sensor informationprocessing treatment is put forward. In the last of this part, the functions and creation processof the Mission Program are mainly analyzed.
     The experiment shows that the control system designed in this paper meets therequirements on movement control, achieves the navigation and localization of the carrier andthe data acquisition of multi-sensor system, and realizes the interprocess communications anddata storage by making use of the excellent performance of QNX operation system.
引文
[1] 冯正平.国外自治水下机器人发展现状综述.鱼雷技术,2005.
    [2] 蒋新松,封锡盛,王隶棠编著.水下机器人.沈阳:辽宁科学技术出版社,2000.
    [3] 朱继憋著.潜水器设计.上海:上海交通大学出版社,1992:1-7.
    [4] 封锡盛,刘永宽.自治式水下机器人研究开发的现状和趋势.高技术通讯,1999,9(9):55-59.
    [5] Stommel H. The Slocum mission. Oceanography, 1989,2(1):22-25.
    [6] Webb D C, Simonetti P J, Jones C P. Slocnm: An underwater glider propelled by environmental energy, IEEE J. Oceanic Engin.,2001,26(4):447-452.
    [7] Eriksen C C, Osse T J, Light R D. Seaglider: A long range autonomous underwater vehicle for oceanographic research, IEEE J. Oceanic Engin.,2001,26(4):424-436.
    [8] Sherman, Davis R E, Owens W B. Ihe autonomous underwater glider Spray, IEEE J. Oceanic Engin.,2001,26(4):437-446.
    [9] Joshua Graver, Naomi Ehrich Leonard. UNDERWATER GLIDER DYNAMICS AND CONTROL. 12th International Symposium on Unmanned Untethered Submersible Technology, 2001.
    [10] Fiorelli E, Bhatta P, Shulman I. Adaptive sampling using feedback control of an autonomous underwater glider fleet[A]. Proceedings 13th International Symposium on Unmanned Untethred Submersible Technology [C].http://www.princeton.edu/~naomi/uust03FBLSp.pdf.2003.
    [11] K.P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru and A. Demetriou. Control Architecture for Autonomous Underwater Vehicles[J]. IEEE Control Systems, Dec. 1997: 48-64.
    [12] S.D. McPhail, M. Pebody. Navigation and Control of an Autonomous Underwater Vehicle Using a Distributed, Networked, Control Architecture[J].Journal of the Society for Underwater Technology. 1997-1998,23(1):19-30.
    [13] T.W. Kim, J. Yuh. Development of a Real-time Control Architecture for a Semi-autonomous Underwater Vehicle for Intervention Missions[J].Control Engineering Practice. 2004,12:1521-1530.
    [14] Comparison between QNX6.1 VxWorks AE1.1 and WindowsCE Net. pdf[EB/OL].http://www.dedicated-systems.com, RTOS Evaluation Project, 2002.
    [15] 张寅,许维胜.基于QNX的嵌入式液位监控系统设计.微计算机信息,2003,19(3):45-47.
    [16] QNX Neutrino RTOS: Kernel Benchmark Methodology. QNX Software Systems Ltd. 2003.
    [17] 徐竟青,黄俊蜂,李一平.QNX设备驱动程序的编制.计算机工程,2003,29(12):176-178.
    [18] PROF. DR. Martin Timmerman, Luc PerneeL. Rtos State of The Art: Understanding Rtos Technology and Markets. http://www.dedicated-systems.com. 2005.
    [19] 周全,窦振中.分布式实时操作系统QNX及其应用.2001嵌入式系统及单片机国际学术交流会暨产品展示会,北京,2001:263-267
    [20] Albert M. Bradley, Michael D. Feezor, Hanumant Singh et al. Power Systems for Autonomous Underwater Vehicles. IEEE JOURNAL OF OCEANIC ENGINEERING, 2001,26(4):526-538.
    [21] Bradley A. Low power navigation and control for long range autonomous underwater vehicles, in Proc. 2nd Int. Offshore and Polar Engineering Conf.,June, 1992.
    [22] Singh H, Yoerger D, Bradley A et al. Sonar mapping with the autonomous benthic explorer (ABE),in Proc. 9th Int. Symp. Unmanned Untethered Submersible Technology, Durham, NH., 1995.
    [23] 甘永,王丽荣,刘建成等.水下机器人嵌入式基础运动控制系统.机器人,2004,26(3):246-255.
    [24] 彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,Apr.2004:43-47.
    [25] 曹永辉.小型智能水下航行器控制系统的研究(硕士学位论文).西安:西北工大学.2002.
    [26] 刘建成,万磊,戴捷等.水下机器人推力器容错控制技术的研究.机器人,2003,25(2):163-166.
    [27] Adam J A.Probing beneath the sea.IEEE Spectrum,1985,1(10):55-64.
    [28] 赵德会,常宗虎,施小成等.AUV控制系统试验平台.船舶工程,2005,27(3):38-42.
    [29] 刘悦,甘永,万磊.GDROV运动控制中模糊滑模控制方法的研究.中国造船,2004,45(2):62-66.
    [30] 刘学敏,徐玉如.水下机器人运动的S面控制方法.海洋下程,2001,19(3):81-84.
    [31] Sasiadek J Z, Wang Q. Sensor Fusion Baded on Fuzz Kalman Filter for Autonomous Robot Vehicle. Proceeding of the 1999 IEEE International Conference on Robotics&Automation,1999:2970-2975.
    [32] Leopoldo Jetto, Sauro Longhi. Development and Experimental Validation of an Adaptive Extend Kalman Filter for the Location of Mobile Robots. IEEE TRANSACTIONS ON ROBOTS AND AUTOMATION, 1999.15(2):219-229.
    [33] 赵伟庆,周群彪,刘健波等.实时嵌入式操作系统QNX环境下驱动程序研究.四川大学学报,2003,40(3):463-466.
    [34] 毛德操,胡希明.Linux内核源代码情景分析.杭州:浙江大学出版社.2001.
    [35] 刘玉兰,李湖南.嵌入式操作系统的设计原理与方法.计算机与现代化,2004(4):17-21.
    [36] W. Wolf. Hardware-Software Co-Design of Embedded Systems. Proceedings of the IEEE, July, 1994,82(7)312-325.
    [37] Building Embedded Systems. QNX Software Systems Ltd. 2003. http://www.qnx.com/ developers/docs/momentics621_docs/neutrino/building/about.html.
    [38] Ridao P, Yuh J, Batlle J et al. On AUV control architecture [A].Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and System[C].
    [39] Oliveira P, Pascoal A, Silba Vet al. Design, development, and testing of a mission control system for the MARIUS AUV [A]. Proceedings of the 3th Workshop on Mobile Robots for Subsea Environments [C]. Toulon, France. March, 1996.
    [40] 刘健,于闯,刘爱民.无缆自治水下机器人控制方法研究.机器人,2004,26(1):7-10.
    [41] 黄兴博,刘景泰.QNX实时操作系统下实现遥操作机器人本地控制系统的解决方案.计算机应用,2004(1):1-2.
    [42] Michael R, Sweet. Serial Programming Guide for POSIX Operating Systems.http://www.easysw.com/~mike/serial/serial.html.2006.
    [43] Lou Yi, Chen Haichun, Qian Jing et al. Striding Networks of Inter-Process Communication Based on TCP/IP Protocol. Plasma Science&Technology. Aug. 2004.
    [44] Rob Krten. Getting started with QNX Neutrino 2. QNX Software Systems Ltd. 2000,4.
    [45] 刘予学,边信黔,熊华胜.基于QNX与Windows运行的PC机之间的网络通信.微计算机信息,2003,19(7):70-91.
    [46] 李璐.最优估计理论在水下机器人导航系统中的应用(硕士学位论文).哈尔滨:哈尔滨工程大学.2003.
    [47] Leonard N E, Graver J G. Model-based feedback control of autonomous underwater gliders [J]. IEEE Journal Oceanic Engineer, 2001,26(4):633-645.
    [48] Graver J G, Bachmayer R, Leonard N E et al. Underwater glider model parameter identification [A]. Proceedings 13th International Symposium on Unmanned Untethered Submersible Technology [C], http://www.princeton.edu/~naomi/uust03GBLFp.pdf.2003.
    [49] Joshua Graver, Jonathan Liu, Craig Woolsey et al. Design and Analysis Underwater Vechile for Controlled Glider. Conference on Information Sciences and Systems, Princeton, 1998.
    [50] Gosman A N, Lderish F J K. Teach-2E[M].London:Imperial College, 1986.
    [51] 翟建华.计算流体力学(CFD)的通用软件.河北科技大学学报,2005,2(2):160-165.
    [52] 俞建成,张奇峰,吴利红,张艾群.水下滑翔机器人运动调节机构设计与运动性能分析.机器人,2005,27(5):390-395.
    [53] Halld L, Lilnas J. An Introduction to Multisensor Data Fusion[J]. Proc IEEE, 2004,85(1):6-23.
    [54] 史丽萍,孙宝元,于浩洋.多项式回归分析在传感器测试中的应用.河北工业大学学报,2003,32(3):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700