用户名: 密码: 验证码:
舰船并靠波浪补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰船在海上实施并靠补给等作业时,由于受到风浪的影响及两船间的水动力干扰,会产生比单船时更剧烈的摇荡运动,过大的横摇运动甚至会导致两船的上层建筑发生触碰。为了避免上述碰撞危险,提高海上并靠的可作业海况,论文提出了基于磁流变技术的舰船并靠变阻尼波浪补偿方法,对舰船并靠的横摇和横荡运动姿态进行约束。
     论文采用理论研究、计算机软件仿真和船模水池试验相结合的研究方法,对舰船并靠变阻尼波浪补偿进行了较为系统的研究。论文解决的关键问题包括:波浪中舰船并靠相对运动特性研究、相对运动极短时间预报、变阻尼波浪补偿及控制、模型试验信号采集与处理、加速度信号处理,以及舰船并靠相对运动和变阻尼波浪补偿模型试验。论文在研究过程中主要开展了以下几方面的工作:
     (1)基于三维势流理论,对规则波和不规则波中舰船并靠相对运动特性进行研究,并提出一种基于AQWA和谱分析法的不规则波中舰船并靠相对运动特性研究方法。
     (2)对舰船并靠相对运动预报进行研究。对较低海况下的相对运动采用AR模型进行极短时间预报;对较高海况下的相对运动采用混沌Elman神经网络进行极短时间预报。混沌Elman神经网络适应波浪中舰船并靠相对运动的非线性、非平稳性和混沌特性,它以混沌系统相空间重构得到的最佳嵌入维数作为网络的输入节点数,并在网络权值调整的反向传播算法中加入混沌噪音以实现混沌反传,能够充分获取当时环境和情况下舰船并靠相对运动特性;仿真研究表明,该方法能够有效预报并靠两船的相对运动。
     (3)对基于磁流变技术的舰船并靠变阻尼波浪补偿及控制进行研究,这是波浪补偿研究的一个新思路。针对波浪中舰船并靠相对运动特性,设计制造了基于磁流变技术的变阻尼波浪补偿器,并在分析其性能的基础上建立了力学模型;充分利用其输出阻尼力可控的特性,建立舰船并靠变阻尼波浪补偿时域运动状态空间方程,设计并实现基于最优控制理论的clipped optimal control控制策略对舰船并靠的横摇运动姿态施加约束;以两艘在波浪中并靠的船舶模型为例,对舰船并靠波浪补偿的有效性进行数值仿真和船模试验验证,结果表明:采用变阻尼波浪补偿能够有效地减小并靠两船的横摇运动响应。
     (4)对模型试验信号采集与处理方法进行研究,特别是有关加速度信号处理的研究。加速度信号处理是船舶并靠模型试验研究的关键,为了提高加速度信号积分成位移后的相位和幅值的精度,提出了基于EMD(经验模态分解)自适应滤波和频域积分的加速度信号处理方法。该方法先对加速度信号进行EMD分解得到n个本征模态函数IMF,然后基于相关规则确定属于高频的IMF个数(h),并对这h个高频IMF进行自适应滤波去噪,最后通过FFT变换在频域进行积分得到位移信号。仿真研究表明这种加速度信号处理方法比纯粹的频域积分法效果好,舰船并靠相对运动模型试验数据处理结果也证明了这种方法的有效性。
     (5)确定了模型试验的相似准则,建立舰船并靠波浪补偿模型试验,对舰船并靠相对运动和变阻尼波浪补偿分别进行模型试验,进一步验证了舰船并靠变阻尼波浪补偿能够有效地减小并靠两船的横摇运动响应。
When two vessels float parallel alongside at sea to do the operation of replenishment, thesix-degree-of-freedom motions of them are much larger than themselves alone, due to theimpact of wave and hydrodynamic interaction. In certain cases, the relative motions are toolarge, even leading to the collision of their superstructure. In order to avoid the abovementioned danger and to improve the sea state of side-by-side ship operation, a variabledamping wave compensation method is presented, which restrict the roll and sway of the twoside-by-side ships.
     The research for the variable damping wave compensation was carried out by theoryanalysis, computer simulation and model test in this dissertation. The key problems whichwill be solved in this paper are as follows: the characteristics of relative motion of twoside-by-side ships, the short time prediction of relative motion, the variable damping wavecompensation and its control strategy, the signal acquiring and processing for model test, theacceleration signal processing, and model test for relative motion and variable damping wavecompensation. The main contents of this paper are:
     1. Based on the three dimensional potential flow theory, the characteristics of relativemotion between two side-by-side ships are studied in the regular and irregular waves. Anda new method for analyzing relative motion characteristics of two side-by-side ships inirregular waves was presented which based on AQWA and spectrum analysis.
     2. The prediction of relative motion between two side-by-side ships are studied. The relativemotion of low seas is predicted by AR model. The relative motion of high seas ispredicted by chaotic Elman neural network. Chaotic Elman neural network fits for thenonlinearity, nonstationarity and chaotic characteristics of two side-by-side ships in waves.The optimal embedding dimension acquired by phase space reconstruction is used for thenumber of input nodes, and a chaotic back-propagation algorithm was applied, in whichchaotic noise is added into weight update process. It can obtain the the characteristics ofthe relative motion between two side-by-side ships under the prevailing conditions andenvironments. The simulation result shows that the proposed method can predict therelative motion of two side-by-side ships effectively.
     3. The variable damping wave compensation based on magneto-rheological technology andits control strategy are studied, which presents a new idea for the research of wavecompensation. By consideration of the relative motion characteristics, variable damping wave compensator is designed and manufactured, which is based on themagnetorheological technology. Its mechanical model was established by the analysis ofits performance. By taking full advantage of its controllable damping force characteristics,temporal state-space equations of variable damping wave compensation of twoside-by-side ships is built. The clipped optimal control strategy is designed and realized torestrict the roll motion. By taking the two side-by-side ship models in waves as example,numerical simulation and model test are executed to prove the efficiency of variabledamping wave compensation. The results shows that variable damping wave conpensationcan reduce the roll motion responses of two side-by-side ships.
     4. Signal acquiring and processing for model test is studied, especially about the processingof acceleration signal. Acceleration signal processing is key to the side-by-side shipsmodel test. In order to improve the accuracy of the phase and amplitude of the results ofacceleration integration, a method based upon EMD adaptive filtering and frequencydomain integration is presented. The acceleration signal is decomposed by EMD into nIMF, and then based upon appropriate rules, the number of IMF pertaining highfrequency(h) is determined, and they are adaptively filtered to cancel noise. Finally, FFTtransformation is applied, frequency domain integration is done, and then IFFT is used toacquire displacements. Simulation results show that this acceleration signal processingmethod is better than the pure frequency domain ingegral. The data processing result ofside-by-side ship model test also show the validity of this method.
     5. Model test similarity principle is determined, and model test for side-by-side ship wavecompensation is established. Model test is performed for relative motion of twoside-by-side ships and variable damping wave compensation, which further validate theeffective reduction of roll motion responses by variable damping wave compensation.
引文
[1]韩涛,李江翔,叶明.舰艇航行补给接收装置及发展趋势[J].船舶,2005第5期:15-18
    [2]余建星,顾鹏.海上干货补给技术[J].海洋技术,2005,24(3):105-110
    [3] William E.S., Michael M., Changben J.. Skin-to-skin replenishment[J]. Proceedings of theASNE Symposium on Expeditionary Force Projection, Biloxi, MS,2008(2):25-28
    [4]周德才,严梅剑,匡晓峰等.船舶靠绑作业系统试验模拟与测试技术[J].船舶力学,2001,11(5):664-673
    [5]万林,蔡烽,张永胜等.提高舰船武器、装备使用海况的新方法[J].船舶,2003年第3期:10-16
    [6]万林,石爱国,杨宝璋.提高舰船海上补给海况的新途径[J].海军大连舰艇学院学报,2003,26(1):25-32
    [7] Kim M.S., Jeong H.S., Kwak H.W., et al. Improvement Method on Offloading Operabilityof Side-by-side Moored FLNG[C]. Proceedings of the Twenty-Second InternationalOffshore and Polar Engineering Conference. Rhodes, Greece.2012:921-926
    [8]王建方.舰/舰补给系统中水动力学问题的数值仿真研究[D].哈尔滨:哈尔滨工程大学,2005:1-12
    [9]彭江丰.液压折臂式起重机的波浪补偿装置设计[J].船舶,2000年第3期:39-41
    [10]刘春阳.船用起货机波浪补偿研究[D].大连:大连海事大学,2009:3-4
    [11]王晓林.美国海军海上补给装备发展趋势研究[J].物流技术,2007,26(6):127-128
    [12]欧阳茹荃,朱继懋.船舶横摇运动的非线性振动与混沌[J].水动力学研究与进展, A辑,1999,14(3):334-340
    [13]蔡烽,万林,石爱国.基于相空间重构技术的舰船摇荡极短期预报[J].水动力学研究与进展,A辑,2005,20(6):780-784
    [14]袁远,余音,金咸定.船舶在规则横浪中的奇异倾覆[J].上海交通大学学报,2003,37(7):995-998
    [15] Schellin, T.E., Jiang, T., Sharma, S.D.. Crane Ship Response to Waves Groups[J]. Journalof Offshore Mechanics and Arctic Engineering,1991, Vol.113:211-218
    [16] Kral, R., Kreuzer, E., and Wilmers, C.. Nonlinear Oscillations of a Crane Ship[J],ZAMM,1996, Vol.76:5-8
    [17]蔡淳鹏.海上起重机波浪补偿系统研究[D].北京:中国石油大学,2010
    [18] Korvin B.V., Jacobs W.R. Pitching and heaving motion of a ship in regular waves[J].Trans. SNAME, Vol.65,1957:590-632
    [19] Ogilvie T.F., Tuck E.O. A rational strip-theory of ship motion[R]. The University ofMichigan, Report No.013,1969
    [20] Salvesen N., Tuck E.O., Faltinsen O. Ship motion and sea loads[J]. Trans. SNAME,Vol.78,1970:250-287
    [21] Chapman R.B. Numerical solution for hydrodynamics forces on a surface piercing plateoscillation in yaw and sway[J]. Proc.1st. Int. Symp. Numer. Hydrodyn.,1975:333-350
    [22] Newman J.N. Double-evaluation of the oscillatory source potential[J]. Journal of ShipResearch,1984,28(3):151-154
    [23] Noblesse F. The Green function in the theory of radiation and diffraction of regular waterwaves by a body[J]. Jour. Eng. Math.,1982(16):137-169
    [24] Teste J.G., Noblesse F.N. Numerical evaluation of the Green function of water-waveradiation and diffraction[J]. Joural of Ship Research,1986,30(2):69-84
    [25] Ohkusu M. On the heaving motion of two circular cylinders on the surface of a fuid.Reports of the Research Institute of Applied Mechanics, Kyushu University (Japan),1969,17(58)
    [26] Ohkusu M. Ship motions in the vicinity of a structure[A]. Proceedings of FirstInternational Conference of Behavior of Offshore Structures[C], Trondheim,1976:284-306
    [27] Kodan N. The motions of adjacent floating structures in oblique waves[A]. Proceedingsof3rd International Symposium on Offshore Mechanics&Arctic Engineering[C],1984:206-213
    [28] Oortmerssen G. Hydrodynamics interaction between two structures of floating inWaves[A]. Proceedings of Second International Conference of Behavior of OffshoreStructure[C],1979:339-356
    [29] Loken A.E. Hydrodynamic interaction between several foating bodies of arbitrary formin waves[A]. Proceedings of International Symposium on Hydrodynamics in OceanEngineering[C],1981:754-779
    [30] Duncan J.H., Barr R.A., Liu Y.Z. Computations of the coupled response of two bodies ina seaway[A]. International Workshop on Ship and Platform Motions[C],1983
    [31] Koo B.J., Kim M.H.. Hydrodynamic interactions and relative motions of two floatingplatforms with lines in side-by-side offloading operation[J]. Applied ocean research,2005(27):292-310
    [32] Chen G.R., Fang M.C. Hydrodynamic interactions between two ships advancing inwaves[J]. Ocean Engineering,2001(28):1053-1078
    [33] Hong S.Y., Kim J.H., Cho S.K., et al. Numerical and experimental study onhydrodynamic interaction of side-by-side moored multiple vessels[J]. Ocean Engineering,2005(32):783-801
    [34] McTaggart K., Cumming D., Hsiung C.C., et al. Seakeeping of two ships in closeproximity[J]. Ocean Engineering,2003(30):1051-1063
    [35] Zhou X.C., Wang D.J., Chwang A.T.. Hydrodynamic interaction between two verticalcylinders in water waves[J]. Applied Mathematics and Mechanics,1997(18):927-940
    [36]谢楠,郜焕秋.波浪中两个浮体水动力相互作用的数值计算[J].船舶力学,1999(2):7-15
    [37]谢楠,姜滨,李平等.舰船在波浪中补给的运动性能研究[J].水动力学研究与进展,1999,14(4):510-520
    [38]冯奇,王志刚.船舶靠绑补给系统力学模型的建立[J].力学学报,第34卷增刊,2002,10:204-208
    [39]卢永锦.海上横向补给高加索道系统数学模型研究[J].中国造船,1996,132(1):17-22
    [40]吴广怀,沈庆,陈徐均等.浮体间距对多浮体系统水动力系数的影响[J].海洋工程,2003,21(4):29-34
    [41]勾莹,滕斌,宁德志.波浪与两相连浮体的相互作用[J].中国工程科学,2004(7):75-80
    [42]陆冬青,芮震峰,石爱国等.波浪中并靠两船运动计算[J].船舶工程,2005,27(5):46-50
    [43] Zhou D.C., Miao Q.M., Cheng R.Z. Nonlinear characteristics simulation of mooringlines and fenders of binding ships in model tests[J]. Journal of ship mechanics,2005,9(6):48-55
    [44]周德才,严梅剑,匡晓峰等.船舶靠绑作业系统试验模拟与测试技术[J].船舶力学,2007,11(5):664-673
    [45] ZHU R.C., MIAO G.P, ZHU H.R. The radiation problem of multiple structures withsmall gaps in between[J]. Journal of Hydrodynamics,2006(5):520-526
    [46]匡晓峰,缪泉明,向旭.船舶在波浪中靠绑运动理论预报[J].中国造船,2005(46):6-14
    [47]匡晓峰,缪泉明,周德才等.两船在波浪中靠绑模型运动的试验预报[J].中国造船,第48卷增刊,2007.11:528-532
    [48]黄明汉,邹志利.波浪中多船多墩柱受力和运动的快速计算方法[J].船舶力学,2010,14(11):1227-1240
    [49] Person A., Alamitos L., Bolding V.E., et al. Heave compensation apparatus for a marinemining vessel. US Patent3943868,1976
    [50]平建涛,李海明,宋立忠.船用起重机波浪补偿控制技术研究[J].计算技术与自动化,2009,28(4):42-44
    [51]邵曼华,寇雄,赵鹏程.几种船用起重机波浪补偿装置[J].机械工程师,2004(2):14-16
    [52]赵珍强.船用起重机波浪补偿技术研究[J].船舶标准化工程师,2009(2):15-17
    [53] Korde U.A.. Active heave compensation on drill-ships in irregular waves[J]. OceanEngineering, Vol.25,1998:541-561
    [54] Driscoll F.R., Nahon M., Lueck R.G.. A comparison of shipmounted and cage-mountedpassive heave compensation systems[J]. J. Offshore Mech. Arctic Eng.,2000,122(3):214-221
    [55] Hatleskog J., Dunnigan M. Passive compensator load variation for deep-water drilling[J].IEEE J. Oceanic Eng.,2007,32(3):593-602
    [56] Sagatun S.I., Johansen T.A., Fossen T.I., et al. Wave synchronizing crane control duringwater entry in offshore moonpool operations[A]. Proceedings of the IEEE conference oncontrol applications[C],2002:174-179
    [57] Kuchler S., Mahl T., Neupert J., et al. Active Control for an Offshore Crane UsingPrediction of the Vessel’s Motion[J]. IEEE/ASME transactions on mechatronics,2011,16(2):297-309
    [58] Maczynski A., Wojciech S. Stabilization of load’s position in offshore cranes[J]. Journalof Offshore Mechanics and Arctic Engineering,2012(5):1-10
    [59] Masoud Z.N. Oscillation control of quay-side container cranes using cable-lengthmanipulation[J]. Transactions of the ASME, March2007, Vol.129:224-228
    [60] Idres M.M., Youssef K.S., Mook, D.T. A nonlinear8-DOF coupled crane-ship dynamicmodel[A]. Proceedings of the44th AIAA/ASME/ASCE/AHS Structures, StructuralDynamics, and Materials Conference[C], Norfolk, VA,2003:1-11
    [61] Masoud Z.N. A control system for the reduction of cargo pendulation of ship-mountedcranes[D]. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.December4,2000
    [62] Masoud Z.N., Hayfeh A.H.. Cargo pendulation rduction of sip-munted canes[J].Nonlinear Dynamics,2004(35):299–311
    [63]刘绍兴.船用液压起重机加装波浪补偿装置的研究[J].机电设备,1999(5):21-25
    [64]邱志成,赵明扬,谈大龙等.一种具有波浪补偿和防晃功能的船用起重机[J].工程机械,1999(2):12-13
    [65]徐小军,陈循,尚建忠.一种新型主动式波浪补偿系统的原理及数学建模[J].国防科技大学学报,2007,29(3):118-122
    [66]徐小军,何平,陈循等.基于DSP的主动式波浪补偿起重机控制系统设计[J].国防科技大学学报,2008,30(1):110-114
    [67]鄢华林,姜飞龙.海洋平台吊机波浪补偿系统研究[J].液压与气动,2011年第2期:22-25
    [68]蔡东伟,刘荣华,张作礼等.一种主动升沉波浪补偿控制系统研究[J].船舶工程,第34卷,2012年增刊2:103-106
    [69]肖体兵.深海采矿装置智能升沉补偿系统的研究[D].广州:广东工业大学,2004年6月
    [70] YE J.W., CHEN Y.M., WANG D.J., et al. Wave Motion Compensation Scheme and ItsModel Tests for the Salvage of An Ancient Sunken Boat[J]. China Ocean Engineering,2006,20(4):635-643
    [71]吴建坡,郑亚青.用于靠绑补给的绳牵引并联起重机器人的设计[J].起重运输机械,2009(9):12-15
    [72]金蓓.波浪补偿起艇绞车[J].机电设备,2006,23(4):44-45
    [73]王悦民,童民慧.超大型浮吊重载打捞波浪补偿系统的关键技术[J].中国工程机械学报,2009,7(3):362-366
    [74]陆卫杰.舰艇并靠导弹补给及波浪补偿系统研究[D].南京:南京理工大学,2006年5月
    [75]陈爱国.新型舰船过驳波浪补偿系统关键性技术研究[D].广州:华南理工大学,2011年10月
    [76]马洁,韩蕴韬,李国斌.基于自回归模型的船舶姿态运动预报[J].舰船科学技术,2006,28(3):28-30
    [77]王玉珍,姜礼平,肖鹏.舰船运动姿态仿真与多层AR预报研究[J].舰船电子工程,2012,32(4):87-89
    [78]彭秀艳,闫金山,邱德庆.船舶运动建模预报的周期图法研究[J].船舶工程,2011,33(5):60-64
    [79]孙宏放,彭秀艳,赵希人.改进周期图算法及在船舶运动预报中的应用[J].哈尔滨工程大学学报,2008,29(11):1181-1184
    [80]彭秀艳,赵希人,吕淑萍等.具有艏前波观测量的大型舰船姿态运动预报[J].船舶力学,2003,7(2):39-44
    [81]乔宝进,陈宇,袁朔等.船舶运动建模及预报方法的研究[J].黑龙江自动化技术与应用,1999,18(6):8-11
    [82]谢美萍,赵希人.基于投影寻踪学习的大型船舶运动极短期预报[J].船舶力学,2000,4(4):28-32
    [83]谢美萍,赵希人,庄秀龙.多维非线性时间序列的投影寻踪学习逼近[J].系统仿真学报,2001,13(1):75-77
    [84]吴春平,张冰.基于改进的ELMAN网络的舰船航态建模与预测[J].华东船舶工业学院学报(自然科学版),2004,18(5):19-22
    [85]侯建军.舰船摇荡混沌动力学分析及其时域预报研究[D].大连:大连海事大学,2010:51-97
    [86]蔡烽,万林,石爱国.基于相空间重构技术的舰船摇荡极短期预报[J].水动力学研究与进展,2005,20(6):780-784
    [87]侯建军,东昉,蔡烽.混沌理论和神经网络相结合的舰船摇荡运动极短期预报[J].舰船科学技术,2008,30(1):67-70
    [88] Yoshiyuki M., Junzo W. A proposal of chaotic forecasting method based on wavelettransform [J]. M.Gh. Negoita et al.(Eds.),2004:59–165
    [89]朱伟.基于MR阻尼器及并联机构的多维减振系统半主动控制研究[D].南京:江苏大学,2007:11-13
    [90]刘少谦.磁流变橡胶减振器的设计与研究[D].福建厦门:华侨大学,2007:5-11
    [91] Mauricio Z., Francesc P., Hamid R.K, et al. Semiactive control methodologies forsuspension control with magnetorheological dampers[J]. IEEE/ASME transactions onmechatronics,2012,17(2):370-380
    [92]张路军,李春植,张俊华等.磁流变减振器及其在汽车半主动悬架中的应用[J].机床与液压,2004(9):24-27
    [93] Dykey S.J., Spencer B.F., Sain M.K. Modeling and control of magnetorheologicaldampers for seismic response reduction[J]. Smart martials and structures,1996(5):565-575
    [94] Dykey S.J., Spencer B.F., Sain M.K. An experimental study of MR dampers for seismicprotection[J]. Smart martials and structures,1998(7):693-703
    [95] Caterino N., Spizzuoco M. Occhiuzzi A. Understanding and modelling the physicalbehaviour of magnetorheological dampers for seismic structural control[J]. Smartmartials and structures,2011(20):1-19
    [96] Li H.J., Wang S.Q., Ji C.Y. Semi-active control of wave-induced vibration for offshoreplatforms by use of MR damper[J]. China Ocean Engineering,2002,16(1):33-40
    [97]管友海,李华军,黄维平.海洋平台磁流变阻尼器半主动控制研究[J].青岛海洋大学学报,2002,32(4):650-656
    [98]管友海,黄维平. MR阻尼器在海洋平台半主动振动控制中的应用[J].中国海洋平台,2002,17(3)
    [99]姚熊亮,邓忠超,张明.船用智能抗冲击隔离器动力学数值试验分析[J].哈尔滨工程大学学报,2007,28(2):128-154
    [100]陈修祥,马履中,朱伟.航海船舶多维振动半主动控制研究[J].仪器仪表学报,2007,28(7):1250-1256
    [101]胡宗成.舰用磁流变弹性体隔振器设计及性能分析[J].噪声与振动控制,2013(2):169-173
    [102] Sahin I, Engin T, Cesmeci S. Comparison of some existing parametric models formagnetorheological fluid dampers[J]. Smart martials and structures,2010(19):1-11
    [103]李宏男,杨浩,李秀领.磁流变阻尼器参数化动力学模型研究进展[J].大连理工大学学报,2004,44(4):616-624
    [104]欧进萍,关新春.磁流变耗能器及其性能[J].地震工程与工程振动,1998,18(3):74-81
    [105]熊超,郑坚,张进秋等.磁流变阻尼器的设计及其力学特性实验研究[J].军械工程学院学报,2004,16(2):1-5
    [106] Taggart K.M, Cumming D., Hsiung C.C., et al. Seakeeping of two ships in closeproximity[J]. Ocean Engineering,2003(30):1051–1063
    [107] Chen G.R., Fang M.C. Hydrodynamic interactions between two ships advancing inwaves[J]. Ocean Engineering2001(28):1053-1078
    [108]戴遗山.舰船在波浪中运动的频域和时域理论[M].北京:国防工业出版社,1998
    [109] Zhu R.C, Miao G.P., Zhu H.R.. The Radiation Problem of Multiple Structures withSmall Gaps in between[J]. Journal of Hydrodynamics Ser.B,2006,18(5):520-526
    [110] Kim M.S, Ha M.K., Kim B.W. Relative motions between LNG-FPSO and side-by-sidepositioned LNG carrier in waves[A]. Proceedings of The Thirteenth (2003) InternationalOffshore and Polar Engineering Conference[C]. Honolulu, Hawaii, USA,2003:25-30
    [111] Fang M.C., Chen G.R. The relative motion and wave elevation between two floatingstructures in waves[A]. Proceedings of The Eleventh (2001) International Offshore andPolar Engineering Conference[C], Stavanger,Norway,2001:361-367
    [112]陈明明,王志东,杨爽等.两船在波浪载荷作用下的运动响应分析[J].中国舰船研究,2012,7(2):24-28
    [113]刘元丹,熊治国,刘敬喜等.基于AQWA的旁靠油轮水动力相互作用研究[J].舰船科学技术,2012,34(5):13-22
    [114]李积德.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社,2007:29-32
    [115] Sebastian K, Tobias M, Jorg N, Klaus S and Oliver S. Active control for an offshorecrane using prediction of the vessel’s Motion[J]. IEEE/ASME Transactions onMechatronics, vol.16, no.2, Apr.2011:297-309
    [116]郭金吉,甘泉,陈务深.多重线性回归的最小二乘估计的递推算法[J].南京工业大学学报,2005,27(2):43-46
    [117]陈国强,赵俊伟,黄俊杰等.基于MATLAB的AR模型参数估计[J].工具技术,2005(4)
    [118]沈艳.神经网络理论研究及在舰船运动预报中的应用[D].哈尔滨工程大学.2005(5):83
    [119]付华,乔德浩,池继辉.一种非线性系统参数辨识的耦合算法研究[J].西安交通大学学报,2011,45(2):49-53
    [120]张孝双,彭秀艳,赵希人.基于神经网络方法的船舶姿态运动极短期预报与仿真[J].系统仿真学报,2002,14(5):641
    [121]张孝双.基于神经网络方法对舰船姿态运动预报的仿真研究[D].哈尔滨:哈尔滨工程大学,2002
    [122]葛宏伟,梁艳春.进化Elman神经网络模型与非线性系统辨识[J].吉林大学学报:工学版,2005,35(5):511-519
    [123]孙增圻,张再兴,邓志东.智能控制理论与技术[M].北京:清华大学出版社,广西科学技术出版社,1997:190-194
    [124] Azian A., Yoko U. and Yoshifumi N.. An Analysis of Chaotic Noise Injected toBackpropagation Algorithm in Feedforward Neural Network[C]. Proceedings ofIWVCC’08, Nov2008:70-73
    [125]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002:110
    [126] Packard N., Crutchfield J., Farmer D., et al. Geometry from A Time Series[J]. PhysicalReview Letters, Vol45, No9,1980:712–716
    [127] Takens F. Detecting Strange Attractors in Turbulence[J]. Lecture Notes in Mathematics,Vol898, Springer-Verlag,1981:366–381
    [128] Shaw RS. Strange Attractors, Chaotic Behavior and Information Flow[J]. Zeitschrift fürNaturforschung,36A,1981:80-112
    [129] Fraser A M, Swinney H L. Independent Coordinates for Strange Attractors from MutualInformation[J]. Physical Review A, Vol33, No2,1986:1134-1140
    [130] Cao L. Practical Method for Determining the Minimum Embedding Dimension of aScalar Time Series[J]. Physica D: Nonlinear Phenomena,1997,110(l):43-50
    [131]魏栋.舰载直升机平台广义升沉补偿控制系统的实验研究[D].广州:华南理工大学,2009
    [132]周云,谭平.磁流变阻尼控制理论与技术[M].北京:科学出版社,2007.03:5-6
    [133] Cummins W.E. The impulses response function and ship motions[R]. DTMB Report1661. Washington D.C.,1962
    [134] Ogilvie T.F. Recent progress toward the understanding and prediction of shipmotions[A]. Fifth Symposium on Naval Hydrodynamics[C], Bergen,1964:3-80
    [135] Dyke S.J., Spencer B.F., Sain M.K., et al. Semi-active response reduction usingmagnetorheological dampers[A]. Proceedings of the IFAC World Congress[C]. SanFrancisco,1996:145-150
    [136]周凤崎,周军,郭建国.现代控制理论基础[M].西安:西北工业大学出版社,2011:244-256
    [137]孙增圻.计算机控制理论及应用[M].北京:清华大学出版社,1989:155-160
    [138]薛定宇.控制系统计算机辅助设计[M].北京:清华大学出版社,2006:249-260
    [139]刘正君. MATLAB科学计算与可视化仿真宝典[M].北京:电子工业出版社,2009:267-296
    [140]胡晓,王济. MATLAB在振动信号处理中的应用[M].中国水利水电出版社,知识产权出版社,2006
    [141]李志忠.基于多传感器的波浪补偿平台补偿系统研究[D].华南理工大学,2010:8-13
    [142]刘继承,徐庆华,查建新.用加速度传感器测量振动位移的方法[J].现代雷达,2007(05):69-71
    [143]曾智刚.波浪运动升沉补偿液压平台关键问题试验研究[D].华南理工大学,2010:56
    [144] Brincker R., Brandt A. FFT integration of time series using an overlap-addtechnique[A]. Proceedings of the IMAC-XXVIII[C], Jacksonville, Florida USA,2010:1467-1474
    [145]蒋良潍,姚令侃,吴伟.边坡振动台模型实验动位移的加速度时程积分探讨[J].防灾减灾工程学报,2009(03):261-266
    [146] XIE Nan, QIAN Guo, Liang GUO. A Measurement System of Ship Motions duringModel Tests and Full Scale Seakeeping Trials[J]. Journal of Ship Mechanics,2001,5(3):26-32
    [147]李志忠,叶家玮.波浪补偿稳定平台运动响应位移测量数据处理方法研究[J].中国舰船研究,2010,5(3):30-33
    [148] Huang NE, Long SR, Wu MC, et al. The Empirical Mode Decomposition and theHilbert Spectrum for Nonlinear and Nonstationary Time Series Analysis. Proc. R. Soc.London.1998, Series A(454):903-995
    [149]高云超,桑恩方,刘百峰.基于经验模式分解的自适应去噪算法[J].计算机工程与应用,2007,43(26):59-61
    [150] Huang NE, Shen Z, Long S. R. A new view of the nonlinear water waves: The Hilbertspectrum[J]. A nnu. Rev. Fluid Mech,1999.31:417-457
    [151] DENG Y, WANG W, QIAN C, et al. Boundary processing technique in EMD methodand Hilbert transform[J].Chinese Science Bulletin,200l,46(3):954-961
    [152] Wu Z, Huang NE. A Study of the Characteristics of White Noise Using the EmpiricalMode Decomposition Method. Proc. R. Soc. Lond.2004; Series A (460):1597-1611
    [153]玄兆燕,杨公训.基于EMD的非平稳信号低通滤波技术的研究[J].微计算机信息,2007,9(2):97-98
    [154]肖春生,王孝通,徐晓刚等.基于经验模式分解的滤波去噪算法[J].舰船科学技术,2010,32(10):41-44
    [155] Flandrin P, Rilling G, and Gon alvés P. Empirical Mode Decomposition as a Filter Bank.IEEE SIGNAL PROCESSING LETTERS.2004;11(2):112-114
    [156]谭善文,秦树人,汤宝平. Hilbert-Huang变换的滤波特性及其应用[J].重庆大学学报,2004,27(2):9-12
    [157]李夕兵,张义平,左宇军等.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),2006,37(1):150-154
    [158]蔡烽,王大云,张华等.基于EMD的自适应滤波的信号积分方法研究[J].船舶力学,2007,11(4):528-532
    [159]孔国杰,张培林,徐龙堂等.基于经验模态分解的自适应滤波算法及其应用[J].信号处理,2009,25(6)
    [160]孙艳争,黄炜,余波.基于EMD的非线性信号自适应分析[J].电子科技大学学报,2007,36(l):24-26
    [161]陈远明.舰(船)载直升机平台升沉补偿系统的实验研究[D].广州:华南理工大学,2007
    [162]吴秀恒.船舶操纵性与耐波性[M].北京:人民交通出版社,1999.8(第2版):189-195
    [163]李积德.船舶耐波性[M].哈尔滨:哈尔滨工程大学出版社,2007.10:129-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700