用户名: 密码: 验证码:
航天继电器分断电弧及其抑制措施的仿真和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天电磁继电器是可靠性及寿命要求较高的一类密封继电器,其寿命主要取决于分断过程的燃弧特性及电弧对触头的烧蚀特性。本文建立航天热力学环境下银触头在N_2、H_2和He气体中分断电弧的三维磁流体动力学模型,研究不同分断因素对电弧温度、电压、燃弧时间等参数的影响,研究触头烧蚀量与燃弧因素之间的关系,比较各种适用于航天继电器的电弧抑制措施对触头烧蚀量的减小程度。
     燃弧气体和触头蒸汽混合等离子体的热力学特性和输运系数是研究电弧特性和触头烧蚀特性的前提和基础。针对银蒸汽带来的组份之间碰撞现象,提出了碰撞积分的计算方法。银原子与中性气体组份的碰撞采用Lennard-Jones势描述,碰撞参数采用组合法获得;银原子与气体离子组份之间、银离子与气体中性组份之间的碰撞采用极化势描述。采用Gibbs自由能最小化原理和Chapman-Enskog估计法给出了200K~20000K温度范围内任意比例银蒸汽与N_2、H_2和He气体的混合物平衡组份、热力学特性和输运系数,解决因电弧等离子体热力学特性和输运系数未知而无法进行航天继电器电弧理论分析与建模仿真的问题。
     建立了航天热力学条件下银触头在N_2中分断电弧的三维磁流体动力学模型。该模型考虑了银触头材料汽化烧蚀、银蒸汽浓度和弧根区域鞘层的等效。提出了热力学环境在航天继电器电弧模型中的描述方法,其中力学环境等效为动量方程的体积力,热学环境通过温度边界条件、压力边界条件及电弧热力学特性和输运系数实现。结合动态层铺法实现了分断过程温度场、电场、磁场以及银蒸汽浓度的耦合求解,研究了不同分断条件下电弧电压、燃弧时间、触头烧蚀量等参数,给出了热力学环境对电弧特性和触头烧蚀特性的影响规律。
     采用航天继电器分断电弧三维磁流体动力学模型,研究了H_2和He作为燃弧气体、增大气体压强、永磁体磁场吹弧等适用于航天继电器的电弧抑制措施对电弧特性和触头烧蚀特性的影响规律。研究结果表明,H_2可作为航天继电器的理想燃弧气体;增大压强有利于提高电弧电压,减少蒸发烧蚀量,从而提高电寿命;永磁磁场吹弧可缩短燃弧时间、减少触头蒸发烧蚀量。采用H_2熄弧、提高气体压强及磁场吹弧等措施均能有效地加快电弧熄灭,减轻电弧对触头的烧蚀程度。采用高气压H_2作为燃弧气体,并配合小体积永磁体吹弧,可有效提高灭弧性能和触头分断寿命。
     最后,本文设计了碰撞式触头恒速分断电弧试验系统,利用高速摄像机拍摄了分断过程电弧和银原子浓度分布图像,提出了弧根运动特性自动提取的图像处理算法,研究了电弧的形态及其在磁场作用下的运动特性。实验研究了不同电流、分断速度、外加磁场等因素对电弧特性和触头烧蚀特性的影响规律,为理论分析和仿真研究提供实验依据。最终通过电弧电压、燃弧时间和磁场作用下电弧运动特性的测试结果证明所建电弧模型的正确性。
Aerospace relay is a hermetically sealed relay with high requirements on life and reliability, and its life depends greatly on electrical arc characteristics and contacts erosion rate during the opening process. A three-dimensional Magneto Hydrodynamic (MHD) model of electrical arc with the existence of required thermal and dynamic environment in aerospace equipments was proposed. The influence of opening conditions on temperature, voltage, arc duration and silver contact erosion of opening arc in nitrogen, hydrogen and helium gases was investigated. Comparison was also made on the erosion mass under different extinguishing methods usable in aerospace relay. The results of this dissertation will provide theoretical basis for designing a long life aerospace relay in future.
     Thermal dynamic properties and transport coefficients of plasmas formed by gas and contact vapor are preconditions for studying arc characteristics and erosion mass. An empirical approximation method was proposed for calculating the collision integrals between species of silver vapor and species of arcing gases. The Lennard-Jones potential was used to approach interactions between atomic silver and neutral species, and their interaction parameters were obtained through using a combination method. The polarization potential was used to approach interactions between atomic silver and ions produced by gases and between ionized silver and neutral species produced by gases. Finally, minimization of Gibbs free energy and Chapman-Enskog method were used to calculate compositions and thermal physical properties of silver-nitrogen plasmas, silver-hydrogen plasmas and silver-helium plasmas with different silver percentages, in the temperature range of 200 K~20000 K .
     A three-dimensional MHD model of silver-nitrogen arc was proposed with the thermal and dynamic environments. Silver contact erosion, silver concentration and one-dimensional sheath model were taken into consideration in this model. The modeling method of thermal and dynamic environment was also proposed, where the thermal environment was treated as temperature boundary, pressure boundary and variation in thermal physical properties of arc, and the dynamic environment was treated as body force in the fluid. A dynamic layering method was used to update the calculated meshes during the opening process. The influence of opening factors on arc voltage, arc duration and silver contact erosion was investigated based on this model, and the effect of environments on those arc characteristics was also revealed.
     Arc extinguishing methods adoptable in aerospace relay were then investigated on the basis of the arc MHD model. The adoptable methods are taking hydrogen and helium as arcing gases, increasing gas pressure, and driving arc by using transverse magnetic fields or radial magnetic fields. It revealed that hydrogen is a promising arcing gas for highest arc voltage and lowest erosion mass, that higher pressure is good for increasing arc voltage and alleviating erosion, and that magnetic fields are also able to shorten the arc duration and alleviating erosion.
     Finally, an experiment system was realized with the mechanism of collision breaking, which ensured a constant opening velocity. In this system, a high-speed camera was used to take photos of arc imaging and silver concentration during the opening process, and an image processing methods was proposed to extra arc root motion characteristics. Experiments on arc characteristics and erosion mass during the opening process were carried out under different currents, opening velocities and magnetic fields, which proved the validation of simulation results. Good agreements were seen between the simulation arc voltage, arc duration, and arc motion characteristics and their test results, respectively.
引文
1朱永庆,吴世湘.军用继电器的发展态势[J].电子科学技术评论,2005,(1):55-56.
    2雷祖圣.军用继电器的质量与可靠性[J].宇航材料工艺,1995,(2):54-55.
    3李卫华.对航天继电器技术发展若干问题的思考[J].桂林学术研究, 1998,3(2):35-39.
    4唐宝卿,刘雪来,金福群.继电器行业发展形势分析[J].电子元器件应用, 2000,2(9):47-51.
    5周峻峰.我国军用继电器生产现状[J].电子元器件应用, 2005,7(3):1-2.
    6李海军,孙秀霞.继电器触头的电蚀机理研究[J].电子产品可靠性与环境试验,2005(3):29-32.
    7陈主荣,林秀华,张仁义.电磁继电器触点磨损的理化分析[J].厦门大学学报(自然科学版),1998,37(3):368-373.
    8郭凤仪,王国强,董讷,等.银基触头材料电弧侵蚀特性及裂纹机理分析[J].中国电机工程学报,2004,24(9):209-217.
    9吴细秀.开关电器触头材料喷溅侵蚀模型研究及其试验[D].武汉:华中科技大学博士学位论文,2005.
    10 Chen Z K , Sawa K. Effect of Arc Behavior on Material Transfer : A Review[J]. IEEE Transaction on Components,Packaging and Manufacturing Technology-Part A,1998,21(2):310-322.
    11罗思J R.工业等离子体工程[M].北京:科学出版社,1998:37-74.
    12荣命哲.电接触理论[M].北京:机械工业出版社,2004:34-45.
    13王其平.电器电弧理论[M].北京:机械工业出版社,1991:50-55.
    14邵福球.等出子体粒子模拟[M].北京:科学出版社,2002:8-15.
    15 Gleizes A,Gonzalez J J,Freton P. Thernal Plasma Modeling. J Phys D:Appl Phys. 2005,38(9):153-158.
    16王仁甫.电弧现象模型的发展[J].高压电器,1991,(4):39-46.
    17王章启,郑振坤,彭玲.电弧黑盒模型的应用成就与存在问题[J].高压电器,1995,(5):38-43.
    18 Cassie A M. A New Theory of Rupture and Circuit Severity[C]. CIGRE,1939:1-12.
    19 Lowke J J,Ludwig H C. Simple Model for High-current Arcs Stabilized by Force-convection[J],Journal of Applied Physics,1974,46(8):3352-3360.
    20 Fang M T C,Brannen D. A Current Zero Arc Model Based on Force Convection[J]. IEEE Transaction on Plasma Science,1979,(4):217-229.
    21 Novak J P,Sc M,Fuchs V. Dynamic Equation and Characteristics of a Short Arc Moving in a Transverse Magnetic Field[J]. Proceeding IEE,1974,121(1):81-84.
    22 Lowke J J. Two-dimensional Calculations of Properties of Arc in High-speed Flow Circuit Breakers[C]. 7th International Conference on Gas Discharge and their Applications,1982:20-23
    23 Zhang J F,Fang M T C,Newland D B. Theoretical Investigation of a 2 kA dc Nitrogen Arc in a Supersonic Nozzle[J]. Journal of Physics D:Applied Physics,1987,20(3):368-379.
    24 Horinouchi K , Nakayama Y , Hidaka M. A Method of Simulating Magnetically Driven Arcs[J]. IEEE Transaction on Power Delivery,1997,12(1):213-218
    25陶文铨.数值传热学[M].第二版.西安:西安交通大学出版社,2001:1-8
    26 Anderson J D. Computational Fluid Dynamics The Basic with Applications[M].北京:清华大学出版社,2002:53-74.
    27王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:7-12.
    28 Fievet C,Barrault M,Chevrier P,Petit P. Experimental and Numerical Studies of Arc Restrikes in Low Voltage Circuit Breakers[J]. IEEE Transaction on Plasma Science,1997,25(5):954-960.
    29 Chevrier P,Barrault M,Fievet C. Hydrodynamic Model for Electrical Arc Modeling[J]. IEEE Transaction on Power Delivery,1996,11(4):1824-1829.
    30 Rachard H,Chevirer P,Henry D,Jeandel D. Numerical Study of Coupled Electromagnetic and Aerothermodynamic Phenomena in a Circuit Breaker Electric Arc[J]. International Journal on Heat and Mass Transfer,1999,42(10):1723-1734.
    31 Karetta F,Lindmayer M. Simulation of The Gasdynamic and Electromagnetic Processes in Low Voltage Switching Arcs[J]. IEEE Transaction on Component,Packaging and Manufacturing Technology,1998,21(1):96-103.
    32 Daube T,Stammberger H,Anheuser M. 3D Simulation of a Low Voltage Switching Arc Based on MHD Equations[C]. 14th Symposium on Physics of Switching Arc,Czech,2001:10-14.
    33 Lindmayer M,Paulke J. Arc Motion and Pressure Formation in Low Votage Swithgear[J]. IEEE Transaction on Component,Packaging and Manufacturing Technology-Part A,1998,21(1):33-39.
    34 Gleizes A,Gonzalez J J. Analyse and Modeling of High-voltage and Low-voltage Circuit Breakers Arc[J]. High Temperature Material Processes,2004,8(3):461-473.
    35 Schlitz L Z,Garimella S V,Chan S H. Gas Dynamics and Electromagnetic Processes in High-current Arc Plasmas. Part II. Effects of External Magnetic Fields and Gassing Materials[J]. Journal of Applied Physics,1999,85(5):2547-2555.
    36 Gleizes A,Gonzalez J J,Liani B. Calculation of Net Emission Coefficients of Thermal Plasmas in Mixtures of Gas with Metallic Vapor[J]. Journal of Physics D:Applied Physics,1993,26(11):1921-1927.
    37 Lindmayer M,Marzahn E,Mutzke A,et al. The Process of Arc-splitting between Metal Plates in Low Voltage Arc Chutes[C]. Proceeding of 50th IEEE Holm Conference on Electrical Contacts,Seattle,2004:28-34.
    38 Murphy A B,Tanaka M,Yamamoto K,et al. Modelling of Thermal Plasmas for Arc Welding:the Role of the Shielding Gas Properties and of Metal Vapor[J]. Journal of Physics D:Applied Physics,2009,42(1):1-20.
    39张晋,陈德桂,付军.低压断路器灭弧室中磁驱电弧的数学模型[J].中国电机工程学报,1999,19(10):22-26
    40季良.低压断路器多场域耦合开断过程的数学模型及其应用的研究[D].西安:西安交通大学博士学位论文,2010.
    41吴翊.低压空气电弧多场耦合过程的仿真及实验研究[D].西安:西安交通大学博士学位论文,2006.
    42马强.考虑灭弧室器壁和电极烧蚀的低压空气电弧仿真与实验研究[D].西安:西安交通大学博士学位论文,2009.
    43孙志强.低压断路器中栅片切割电弧过程的实验与仿真研究[D].西安:西安交通大学博士学位论文,2009.
    44臧春艳.航天继电器稳态电弧等离子体电离过程与电弧特性研究[D].武汉:华中科技大学学位论文. 2006
    45 Chapman S , Cowling T G. The Mathematical Theory of Non-Uniform Gases[M]. 3rd Edition. Cambridge:Cambridge University Press,1972:46-68.
    46 Ferziger J H,Kaper H G. Mathematical Theory of Transport Process in Gases[M]. Amsterdam:North-Holland Publish Company,1972:31-59,227-229.
    47 Murphy A B,Arundell C J. Transport Coefficients of Argon,Nitrogen,Oxygen,Argon-Nitrogen,and Argon-oxygen Plasmas[J]. Plasma Chemistry and Plasma Processing,1994,14(4):451-490.
    48 Gorden S,McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1 Analysis[R]. Ohio:NASA,1994:3-17.
    49 Kovitya P. Thermodynamic and Transport Properties of Ablated Vapors of PTEE,Alumina,Perspex,and PVC in the Temperature Range 5000-30000 K[J]. IEEE Transactions on Plasma Science,1984,PS-12(1):38-42.
    50 Devoto R S. Simplified Expressions for the Transport Properties of Ionized Monatomic Gases[J]. The Physics of Fluids,1967,10(10):2105-2112.
    51 Murphy A B. A Comparison of Treatments of Diffusion in Thermal Plasmas[J]. Journal Physics D:Applied Physics,1996,29:1922-1932.
    52 Yos J M. Transport Properties of Nitrogen,Hydrogen,Oxygen,and Air to 30000 K[R]. Washinton D C:Research and Advanced Development Division Corporation,1967:51-53.
    53 Capitelli M. Transport Coefficients of High-Temperature Nitrogen[J]. The Physics of Fluids,1973,16(11):1835-1841.
    54 Chen W L T,Heberlein J,Pfender E,et al. Thermodynamic and Transport Properties of Argon/Helium Plasmas at Atmospheric Pressure[J]. Plasma Chemistry and Plasma Processing,1995,15(3):559-579.
    55 Murphy A B. Transport Coefficients of Helium and Argon-Helium Plasmas[J]. IEEE Transactions on Plasma Science,1997,25(5):809-814.
    56 Aubreton J , Fauchais P. Influence de Potentials d’interaction sur les Propriétérs de Transport des Plasmas Thermiques:Exemple d’application le Plasma Argon Hydrogêneàla Pression Atmosphérique[J]. Review Physics Applied,1983,18:51-66.
    57 Stallcop J R,Levin E,Partridge H. Transport Properties of Hydrogen[J]. Journal of Thermophysics and Heat Transfer,1998,12(4):514-519.
    58 Murphy A B. Transport Coefficients of Hydrogen and Argon-Hydrogen Plasmas[J] . Plasma Chemistry and Plasma Processing,2000,20(3):279-297.
    59 Hoffmann T,Baldea G,Riedel U. Thermodynamics and Transport Properties of Metal/inert-Gas Mixtures Used for Arc Welding[J]. Proceedings of the Combustion Institute,2009,32:3207-3214.
    60 Aubreton A,Elchinger M F. Transport Properties in Non-equilibrium Argon,Copper and Argon-copper Thermal Plasmas[J]. Journal Physics D:Applied Physics,2003,36:1798-1805.
    61 Chervy B,Gleizes A,Razafinimanana M. Thermodynamic Properties and Transport Coefficients in SF6-Cu Mixtures at Temperatures of 300-30000K and Pressures of 0.1-1 MPa[J]. Journal Physics D:Applied Physics,1994,27:1193-1206.
    62 Cressault Y,Gleizes A. Thermodynamic Properties and Transport Coefficients in Ar-H2-Cu Plasmas[J]. Journal Physics D:Applied Physics,2004,37:560-572.
    63菅井秀郎.等离子体电子工程学[M].北京:科学出版社,2002:56-60.
    64 Pechrach K,McBride J W. Gas Flow and Composition Effects on Arc Motion in Current Limiting Circuit Breakers[C]. Proceedings of the 47th IEEE Holm Conference on Electrical Contacts,2001:12-17
    65 Sekikawa J,Kubono T. Optical Observation of Arc Discharges between Electrical Contacts Breaking at Low Speed in DC42V Resistive Circuit[J]. IEICE Transaction on Electronics,2006,E89-C(8):1147-1152.
    66 Sekikawa J,Kubono T. Motion of Break Arcs Driven by External Magnetic Field in a DC42V Resistive Circuit[J]. IEICE Transaction on Electronics,2008,E91-C(8):1255-1260.
    67赵子玉,武建文,邹积岩,等.利用CCD摄象系统研究真空电弧演变过程[J].中国电机工程学报,1999(11):10-13.
    68 Zhai G F,Cui X L,Zhou X. Study on the Retrograde Motion of Arc under Transverse Magnetic Field[J] . IEICE Transaction on Electronics,2010,E93-C(9):1431-1436.
    69 Gray E W. Some Spectroscopic Observations of the Two Regions (Metallic Vapor and Gaseous) in Break Arcs[J]. IEEE Transactions on Plasma Science,1973,PS-1(1):30-33.
    70 Yoshida K,Takahashi A. Simultaneous Measurements of Two Wavelength Spectra for Ag Break Arc[J]. IEICE Transaction on Electronics,1994,E77-C:1640-1646.
    71 Sekikawa J , Moriyama N , Kubono T. Time-resolved Spectroscopic Temperature Measurement of Break Arcs in a dc 42 V Resistive Circuit[J]. IEICE Transaction on Electronics,2008,E91-C(8):1268-1272.
    72 Ben Jemaa N,Morin L. Some Investigations on Slow and Fast Arc Voltage Fluctuations for Contact Materials Proceeding in Various Gases and Direct Current[J]. IEEE Transaction on Component,Packaging and Manufacturing Technology-Part A,1991,14(1):113-117.
    73梁慧敏,林景波,翟国富.触点分离初速度与电弧能量关系的研究[J].哈尔滨工业大学学报,2006,38(3) :374-378.
    74 Chase M W,Davies C A,Downey J R,et al. JANAF Thermochemical Tables[J]. Journal of Physics and Chemical Reference Data,1985,14(sup-1):16-19.
    75 Moore C E, Atomic Energy Levels[R]. Washington DC: U.S. National Bureau of Standard,1949:32-220.
    76 Lide D R. Handbook of Chemistry and Physics[M]. Boca Raton:CRC Press,2001:1-15-1-18.
    77 Muckenfuss C,Curtiss C F. Thermal Conductivity of Multicomponent Gas Mixture[J]. The Journal of Chemical Physics,1958,29(6):1273-1277.
    78 Devoto R S. Transport Properties of Ionized Monatomic Gases[J]. The Physics of Fluids,1966,9(6):1230-1240.
    79 Levin E,Partridge H,Stallcop J R. Collision Integrals and High Temperature Transport Properties for N-N,O-O,and N-O[J]. Journal of Thermophysics,1990,4(4):469-477.
    80 Stallcop J R,Levin E,Partridge H. Transport Properties of Hydrogen[J].Journal of Thermophysics and Heat Transfer,1998,12(4):514-519.
    81 Stallcop J R,Partridge H,Levin E. H-H2 Collision Integrals and Transport Coefficients[J]. Chemical Physics Letter,1996,245:25-31.
    82 Andre P , Bussiere W , Rochette D. Transport Coefficients of Ag-SiO2 Plasmas[J]. Plasma Chemistry and Plasma Processing,2007,27:381-403.
    83 Cressault Y,Gleizes A. Thermodynamic Properties and Transport Coefficients in Ar-H2-Cu Plasmas[J]. Journal Physics D: Applied Physics,2004,37:560-572.
    84 Monchick L. Collision Integrals for the Exponential Repulsive Potential[J]. The Physics of Fluids,1959,2(6):695-700.
    85 Baker J A,Fock W,Smith F. Calculation of Gas Transport Properties and the Interaction of Argon Atoms[J]. The Physics of Fluids,1964,7(6):897-903.
    86 Maitland G C,Rigby M,Smith E B,et al. Intermolecular Forces:Their Origin and Determination[M]. Oxford: Clarendon Press,1981:897-903.
    87 Phelps A V. Cross Sections and Swarm Coefficients for Nitrogen Ions and Neutrals in N2 and Argon Ions and Neutrals in Ar for Energies from 0.1 eV to
    10 keV[J]. Journal of Physics and Chemical Reference Data,1991,20(3):557-568.
    88 Aubreton J,Elchinger M F,Rat V,et al. Two-Temperature Transport Coefficients in Argon-Helium Thermal Plasmas[J]. Journal Physics D : Applied Physics,2004,37:34-41.
    89 Kihara T,Taylor M H,Hirschfelder J O. Transport Properties for Gases Assuming Inverse Power Intermolecular Potentials[J]. The Physics of Fluids,1960,3(5):715-720.
    90 Devoto R S. Transport Coefficients of Partially Ionized Argon[J]. The Physics of Fluids,1967,10(2):354-364.
    91 Mason E A,Munn R J. Transport Coefficients of Ionized Gases[J]. The Physics of Fluids,1967,10(8):1827-1832.
    92 Wright M J,Bose D,Palmer G E,et al. Recommended Collision Integrals for Transport Property Computations,Part 1:Air Species[J]. AIAA Journal,2005,43(12):2558-2564.
    93 Rong M Z,Ma Q,Wu Y,et al. The Influence of Electrode Erosion on the Air Arc in a Low-voltage Circuit Breaker[J]. Journal of Applied Physics,2009,106:023308.
    94王其亚.航天电磁继电器动态特性及其优化方法的研究[D].哈尔滨:哈尔滨工业大学博士论文,2011.
    95 Ben Jemma N,Morin L,Benhenda S,et al. Anodic to Cathodic Arc Transition According to Break Arc Lengthening[J]. IEEE Transactions on Components, Packing and Manufacturing Technology-Part A, 1998, 21(4):599-603.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700