用户名: 密码: 验证码:
车辆—轨道耦合系统高效随机振动分析及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源环境问题的日益突出和不断增加的交通运输需求,世界铁路建设呈现出了客运高速化、货运重载化的发展趋势,这也日益加剧了车辆与轨道、桥梁、地基、弓网以及周边建筑等结构的动力相互作用,直接关系到列车与线路的安全性、平顺性、疲劳、噪声等一系列问题。轨道不平顺是引起铁路机车车辆振动的公认的主要激励源,它具有明显的随机性。对轨道不平顺作用下车辆—轨道耦合系统进行随机振动分析,尤其是对其功率谱的计算,在铁路运输的动力计算中占据极其重要的地位。
     然而,由于轨道结构庞大的计算自由度和传统频域和时域随机振动分析方法的低效,对上述问题进行求解需要花费高额的计算成本,迄今为止对这一领域的研究还大都只能局限于采用较简单的分析模型,这显然无法满足现代铁路列车实际工程的需要,因此亟需发展新的计算理论和数值方法。
     本博士学位论文立足于现代化铁路建设的具体需求,以发展有效的复杂耦合系统随机振动响应行为预测理论与数值方法为目标,实现了有限元车辆一轨道耦合系统的高效随机振动分析及其平顺性优化,具体研究内容如下:
     1.随机载荷作用下无穷周期链式结构振动分析扩展的辛数学方法
     本文扩展了辛数学方法的适用范围,使其可以用于计算任意载荷作用下无穷周期链式结构的动力响应。该方法只以受力子结构为研究对象,首先利用无穷周期链式结构传递系数的性质消去子结构中不独立的自由度,得到了系数矩阵中含有波数的凝聚运动方程。然后基于这类结构的色散关系和辛数学方法的基本假定提出了离散和闭合两种子结构运动方程的求解形式:前者是将波数在区间[0,2π)上均匀离散,得到一系列的通带传播系数,则结构的响应可以通过对通带频率响应进行累加而得到;后者则是将凝聚运动方程的系数矩阵和响应进行傅立叶展开,通过波数与时间的变量分离而得到。最后将该方法与虚拟激励法相结合,实现了任意平稳/非平稳随机载荷作用下无穷周期链式结构的随机振动分析。
     2.周期系数时变系统随机振动分析的周期拟稳态方法
     本文基于虚拟激励的具体形式、变量分离手段和Schur分解技巧,提出了一种用于周期系数时变系统随机振动分析的周期拟稳态方法。首先采用虚拟激励法将平稳/非平稳的随机激励转化为确定性的虚拟激励,建立了虚拟激励作用下时变系统的周期系数运动方程,并将其引入状态空间;然后将载荷向量中与频率相关的项进行分离,通过对系统进行一个周期内的逐步积分运算,求解出耦合系统状态空间下的周期状态转移矩阵和周期载荷系数向量;最后利用方程解的周期性和Schur分解技巧将传统计算方法中的逐步积分过程转化为了系数矩阵为上三角阵的线性方程组求解问题,从而将虚拟激励作用下系统的确定性时间历程分析转化为了简单的拟稳态响应分析,计算效率较之基于逐步积分方法的非平稳随机振动虚拟激励法又提高了1-2个数量级。
     3.多体动力学车辆—轨道耦合系统高效随机振动分析
     本文采用虚拟激励法、辛数学方法、对称性凝聚方法和周期拟稳态方法对高低、方向和水平三类轨道不平顺同时作用下二维垂向/三维多体动力学车辆—轨道耦合系统的随机动力响应进行了求解。具体做法是:首先采用虚拟激励法将上述三类轨道不平顺转化为一系列相应的虚拟简谐轨道不平顺,将时变耦合系统受多源多点完全相干平稳激励的随机振动分析问题转化为三类广义单点虚拟轨道不平顺分别单独作用下耦合系统确定性响应的求解问题。在此基础上,根据车辆定点和车辆移动两种多体动力学车辆—轨道耦合系统分析模型各自的特点,结合虚拟激励的具体形式,将辛数学方法、扩展的辛数学方法和对称性凝聚方法分别应用于建立耦合系统两种分析模型的二维垂向和三维运动方程,极大程度地降低了耦合系统的计算自由度。最后采用周期拟稳态方法将车辆移动模型的运动方程整理为拟稳态求解形式,通过求解线性方程组方便地得到了车辆定点和车辆移动两种模型的虚拟响应,进而得到了响应的功率谱和标准差。通过分析结果对车辆定点和车辆移动两种模型进行了对比,对车辆速度、轨道不平顺等级等参数进行了讨论,并对车辆—轨道耦合系统随机动力响应的传递机理进行了探讨。
     4.精细有限元车辆—轨道耦合系统高效随机振动分析
     本文基于多体动力学车辆—轨道耦合系统随机振动的分析方法,在普通的个人电脑上首次实现了具有数十万自由度的精细有限元车辆—轨道耦合系统精确、高效的随机振动分析。车辆各构件采用有限元软件Ansys建模,利用其自由模态、通过一系、二系悬挂装置将它们连接在一起;轨道采用三维三层离散点支承梁模型。首先应用虚拟激励法将高低、方向、水平和轨距四类轨道不平顺转化为相应的简谐虚拟轨道不平顺,从根本上解决了对精细有限元模型进行随机振动分析时计算效率极其低下的问题;在此基础上,将有限元车辆运动方程与低自由度的轨道结构辛运动方程耦合在一起,求解得到了耦合系统的虚拟响应,进而得到了响应的功率谱和标准差。最后对车辆各构件弹性振动的发生机理进行了深入的研究,并绘制了车辆各构件的随机动力响应标准差云图。通过这些云图可以直观地查看轨道不平顺作用下车辆各构件不同部位的随机振动总体情况,以此确定车辆结构中振动较强的薄弱部位,为实际工程中车辆的设计和维护提供了有力的依据。
     5.基于有限元车辆—轨道耦合系统的车辆平顺性优化
     本文在精细有限元车辆—轨道耦合系统高效随机振动分析的基础上,采用具有百万量级自由度的精细车体有限元刚—柔混合车辆—轨道耦合系统分析模型实现了国产某高速列车头车悬架系统的平顺性优化设计。优化中选取车体地板上54个热点作为研究对象,采用IS02631国际标准对其舒适度进行了评估;提出了以—系和二系悬挂装置的刚度和阻尼共8个参数为设计变量、以各点舒适度指标的最大值为目标函数的最小—最大优化问题;采用K-S函数对目标函数进行拟合,使其具备良好的整体性、光滑性和可微性;综合运用虚拟激励法、辛数学方法和对称性凝聚方法对目标函数值进行了精确、高效的求解,并进一步发展了这些方法,得到了目标函数的1阶和2阶解析敏度,由此很好地解决了上述优化中的困难。采用该优化方法将某国产高速列车头车的平顺性指标最大值降低了58.34%,并对不同车速、不同轨道谱等级的优化结果进行了对比。
Due to the outstanding energy and environmental issues and growing transportation needs, the development of high-speed and heavy haul technologies are becoming the main directions on railway development. This considerably increases the interaction between the vehicle and the track, the bridge, the ground, the catenary and the surrounding buildings, which has a direct impact on a range of issues of the train and the railway line, e.g. safety, ride comfort, fatigue, noise, etc. The track irregularity is known as the most important source of random excitation of the railway vehicle, hence the random vibration analysis of the coupled vehicle-track systems subjected to the track irregularity, especially the calculation of response power spectral densities (PSDs) plays a very important role in the dynamic analysis for railway transportation.
     However, the degrees of freedom (DOFs) of the track models are usually considerably large and the computational efficiencies of both the conventional frequency-domain and time-domain random vibration analysis methods are very low, which undoubtedly makes the random vibration analysis of the complicated coupled vehicle-track systems particularly challenging. As a result, only very simple models have previously been used and it is in urgent need to develop new theories and numerical methods.
     In order to meet the specific needs of practical engineering, some valuable exploration and research for random vibration analysis and optimization of coupled vehicle-track systems are performed in this thesis. The main work can be summarized as follows:
     1. Generalized symplectic random vibration analysis for infinite long chain-type structures
     In this thesis, the symplectic mathematical method is generalized for the first time to investigate the transient response of an infinitely long chain-type structure subjected to arbitrary loads. This method simply needs to establish the equation of motion of the loaded substructure. The dependent DOFs are firstly condensed into the independent ones according to the properties of the wave propagation constants. Consequently, the condensed equation of motion, whose coefficient matrices are functions of the wave number, is derived. Two solving forms, i.e. the discrete form and closed form, are then performed based on the dispersion relations of such structures and the basic assumptions of symplectic method to obtain the transient responses. The former form is established by desecrating the wave number evenly in the interval [0,2n), so that the corresponding propagation constants are derived. This enables the response of the infinitely periodic structure to be obtained by accumulating the pass-band frequency responses. The latter form is established by applying Fourier expansions to these coefficient matrices, so that the response vectors, the time and wave number variables are easily separated accordingly. Finally, the resulting equations are combined with PEM for stationary or non-stationary random response analysis.
     2. Pseudo-steady state approach for random vibration analysis of periodic time-dependent systems
     A pseudo-steady state approach for random vibration analysis of periodic time-dependent systems is developed based on PEM, separation of variables and the Schur decomposition scheme. The periodically time-varying equation of motion of the coupled system subjected to pseudo-excitation is firstly established by transforming the stationary/non-stationary random excitation into deterministic pseudo-excitation using PEM, which is then rewritten as a first order linear differential equation group with periodic coefficients in state-space. Since the frequency-dependent terms are separated from the load vector to avoid repeated computations for different frequencies associated with the pseudo-excitations, the periodic state transition matrix and periodic load vector of the state-space equation of motion are then derived using a step-by-step integration scheme over only one period. Finally, based on the periodicity of the solution, the Schur decomposition scheme is performed to further transform the former pseudo response problem for this time-dependent system into a set of linear equations whose coefficient matrix is upper triangular. Thus the conventional periodically time-history analysis is transformed in to a pseudo-steady state response analysis and an improvement of the computational efficiency by above1-2orders of magnitude can be achieved as compared with the non-stationary PEM approach based on numerical integration method.
     3. Efficient random vibration analysis of coupled multi-body vehicle-track systems
     The random responses of the2-dimentional (2D) vertical and3-dimentional (3D) multi-body models of coupled vehicle-track systems subjected to three types of rail irregularities, i.e. the longitudinal level irregularity, alignment irregularity and the cross level irregularity are achieved using the PEM, the symplectic mathematical method, the symmetric condensation approach and the pseudo-steady state approach. PEM is firstly applied to convert the complicated random vibration analysis subjected to multi-sourse multi-point fully-coherent non-stationary random excitations into simple deterministic response analysis subjected to generalized single-point harmonic excitations by transforming the above three types of rail irregularities into corresponding harmonic pseudo-excitations. The symplectic method, the generalized symplectic method and the symmetric condensation approach are then applied to establish the equations of motion of2D/3D F-V/M-V models based on the concrete forms of pseudo-excitations and the characteristics of F-V/M-V models, which considerably reduces the computational DOFs of the coupled system. Finally, the pseudo-steady state approach is applied to transform the equations of motion of the M-V models into pseudo-steady state form so that the pseudo-responses of both the F-V and M-V models can be calculated by solving linear equations, after which the response PSDs and the standard deviations can be derived conveniently. Based on the calculation results, the F-V model and the M-V model are compared; the influences of vehicle velocity and class of track on system responses are discussed; the transmission mechanism of random vibration in the coupled system is also investigated.
     4. FEM-based random vibration analysis of coupled vehicle-track systems
     In this thesis, an accurate and efficient random vibration analysis of a well-meshed FE coupled vehicle-track system with hundreds of thousands of DOFs is performed on a ordinary personal computer for the first time based on the multi-body model approach. The vehicle components are modeled by Ansys software and then connected by the1st and2nd suspension system using their free modals. The track is modeled as a3D discrete-supported structure with three layers. PEM is firstly used to transform the four types of rail irregularities, i.e. the longitudinal level irregularity, alignment irregularity, the cross level irregularity and the gauge irregularity, into corresponding harmonic pseudo-excitations, which fundamentally solves the difficulties in the random vibration analysis of well-meshed FE model. Based on this, the equation of motion of the FE vehicle model and the low-DOFs symplectic equation of motion of the3D track model are coupled and then solved to derive the pseudo-response, after which the response PSD and the standard deviation of the coupled system can be derived conveniently. Finally, the elastic vibration mechanism of the vehicle is studied. Some standard deviation nephograms of vehicle components are also drawn, through which the overall random vibration behavior and vulnerable parts of these components can be viewed intuitively. This provides a powerful foundation for vehicle design and maintenance in practical engineering.
     5. FEM-based riding comfort optimization using a coupled vehicle-track system
     Based on the above-mentioned FEM-based random vibration analysis of coupled vehicle-track systems, a riding comfort optimization approach on the suspension system of a domestic high-speed railway train is developed using a coupled FE body rigid-flexible hybrid vehicle-track model with millions of DOFs is achieved. The min-max optimization approach is utilized to improve the train riding comfort with related8parameters of the suspension structure adopted as design variables, in which54design points on the vehicle floor are chosen as estimation locations and the international standard ISO-2631is used to evaluate the riding comfort. The K-S function is applied to fit the objective function to make it smooth, differentiable and have superior integrity, which is then solved accurately and efficiently using the PEM, the symplectic method and the symmetric condensation approach. The1st and2nd order analytical sensitivities are derived by further developing these methods and so the difficulties in the optimization are fundamentally solved. The max weighted RMS acceleration among the54design points reduced by58.34%after optimization, the influences of vehicle velocities and class of track irregularity on optimization results are also discussed.
引文
[1]雷晓燕.轨道力学与工程新方法[M].北京:中国铁道出版社,2002.
    [2]李成辉.轨道[M].成都:西南交通大学出版社,2005.
    [3]夏禾,张楠.车辆与结构动力相互作用(第二版)[M].北京:科学出版社,2005.
    [4]罗林,张格明,吴旺青.轮轨系统轨道平顺状态的控制[M].北京:中国铁道出版社,2006.
    [5]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [6]Crandall S H. Random vibration [M]. Cambridge:MIT Press,1958.
    [7]Lin Y K. Probabilistic theory of structural dynamic [M]. New York:McGraw-Hill,1967.
    [8]星谷胜.随机振动分析[M].北京:地震出版社,1977.
    [9]庄表中,王行新.随机振动概论[M].北京:地震出版社,1982.
    [10]Nigam N C. Introduction to random vibration [M]. Cambridge:MIT Press,1983.
    [11]张景绘.工程随机振动理论[M].西安:西安交通大学出版社,1988.
    [12]徐昭鑫.随机振动[M].北京:高等教育出版社,1990.
    [13]Roberts J B, Spanos P D. Random vibration and statistical linearization [M]. New York: Wiley & Sons,1990.
    [14]朱位秋.随机振动[M].北京:北京科学出版社,1992.
    [15]Soong T T, Grigoriu M. Random vibration of mechanical and structural systems [M]. Englewood Cliffs:PTR Prentice Hall,1993.
    [16]Newland D E. An introduction to random vibrations, spectral and wavelet analysis (3rd Ed.) [M]. England:Longman Scientific & Technical,1993.
    [17]欧进萍,王光远.结构随机振动[M].北京:高等教育出版社,1998.
    [18]罗林.轨道随机干扰函数[J].中国铁道科学,1982,3(1):74-111.
    [19]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992(3):10-21.
    [20]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [21]Lin J H, Zhang Y H. Seismic random vibration of Long-span structures [G]. deSilva C W. Vibration and shock handbook. Boca Raton:CRC Press,2005:1313-1353.
    [22]吕峰,林家浩,张亚辉.车辆-轨道系统垂向随机振动的辛方法分析[J].力学学报,2008(3):381-387.
    [23]Lu F, Kennedy D, William F W, Lin J H. Symplectic analysis of vertical random vibration for coupled vehicle-track systems [J]. Journal of Sound and Vibration,2008,317:236-249.
    [24]Williams F W, Zhong W X, Bennett P N. Computation of the eigenvalues of wave propagation in periodic sub-structural systems [J]. Journal of Vibration and Acoustics,1993,115(4):422-426.
    [25]Zhong W X, Williams F W. Wave problems for repetitive structures and symplectic mathematics [C]. Proceedings of the Institution of Mechanical Engineers, Part C 206,1992,371-379.
    [26]Lin J H, Fan Y, Bennett P N, Williams F W. Propagation of stationary random waves along substructural chains [J]. Journal of Sound and Vibration,1995,180:757-767.
    [27]Amann H, Metzen G. Ordinary differential equations:An introduction to nonlinear analysis (Gerhard Metzen, trans.) [M]. New York:de Gruyter,1990.
    [28]杨世武.试论人类认识的随机性[J].哲学研究,1986,(11):14-20.
    [29]钟万勰,张森文.独树一帜的随机振动算法及对工程科学计算的推动[J].科学中国人,2008:100-102.
    [30]王丽霞,杨静.人类对于随机性认识的四个阶段[J].自然辩证法通讯,2006,(3):62-66+111.
    [31]苑延华,徐莹,陈洪海.客观现象的概率统计解释举例[J].价值工程.2011,(15):230-231.
    [32]飞田武幸.布朗运动论[M].蔡聪明译.北京:世界图书出版公司,1992.
    [33]Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal,1944,23(3): 282-332.
    [34]Rice S O. Mathematical analysis of random noise [J]. Bell System Technical Journal,1945,24(1): 46-156.
    [35]Cooley, James W, Tukey W. An algorithm for the machine calculation of complex Fourier series [J]. Mathematics of Computation,1965,19(90):297-301.
    [36]林家浩,钟万勰,张文首.结构非平稳随机响应方差矩阵的直接精细积分计算[J].振动工程学报,1999,12(1):1-8.
    [37]孙作玉,王晖.结构非平稳随机响应方差数值计算方法[J].振动工程学报,2009,22(3):325-328.
    [38]Hoshiya M, Ishii K. Nagata S. Recursive covariance of structural responses [J]. Journal of Engineering Mechanics,1984,110(12):1743-1755.
    [39]To C W S. A stochastic version of the Newmark family of algorithms for discretized dynamic systems [J]. Computers and Structures,1992,44(33):667-673.
    [40]To C W S, Liu M L. Recursive expressions for time dependent means and mean square responses of a multi-degree-of-freedom non-linear system [J]. Computers and Structures,1993,48(6):993-1000.
    [41]Miao B Q. Direct integration variance prediction of random response of nonlinear systems [J]. Computers and Structures,1993,46(6):979-983.
    [42]缪炳祺,胡夏夏.许礼深.结构非平稳随机响应分析的Newmark递推算法[J].强度与环境,1996,23(1):34-39.
    [43]Tootkaboni M, Graham-Brady L. Stochastic direct integration schemes for dynamic systems subjected to random excitations [J]. Probabilistic Engineering Mechanics,2010,25(2):163-171.
    [44]Yong Y. and Lin Y K, Exact stationary-response solution for second order nonlinear systems under parametric and external white-noise excitations [J]. ASME, Transactions, Journal of Applied Mechanics,1987.54:414-418.
    [45]Caughey T K. Nonlinear Theory of Random Vibrations [J]. Advances in Applied Mechanics,1971, 11:209-253.
    [46]Crandall S H. Perturbation techniques for random vibration of nonlinear systems [J]. The Journal of the Acoustical Society of America,1963,35(11):1700-1705.
    [47]Roberts J B. Spanos P D. Stochastic averaging:an approximate method of solving random vibration problems [J]. International Journal of Non-Linear Mechanics.1986,21(2):111-134.
    [48]Iyengar R N, Dash P K. Study of the random vibration of nonlinear systems by the Gaussian closure technique [J]. ASME, Transactions, Journal of Applied Mechanics,1978.45:393-399.
    [49]Meteopolis N, Ulam S. The Monte-Carlo method [J]. Journal of the American statistical association, 1949,44(247):335-341.
    [50]Spanos P D, Ghanem R G. Stochastic finite element expansion for random media [J]. Journal of Engineering Mechanics,1989,115(5):1035-1053.
    [51]李杰.随机结构系统-分析与建模[M].北京:科学出版社,1996.
    [52]胡太彬,陈建军,徐亚兰,随机参数平面刚架结构频率特性分析的随机因子法[J].机械强度,2006,28(2):196-200.
    [53]陈建军,徐健,李金平,刘国梁.基于随机因子法的桁架结构有限元热分析[J].中北大学学报(自然科学版),2009,4:329-331.
    [54]李杰,陈建兵.随机结构动力可靠度分析的概率密度演化方法[J].振动工程学报,2004,17(2):121-125.
    [55]赵光恒,杜成斌.非线性系统随机响应分析进展[J].河海科技进展,1992,(3):16-23.
    [56]Lee M C, Penzien J. Stochastic analysis of structures and piping systems subjected to stationary multiple support excitations [J]. Earthquake Engineering & Structural Dynamics,1983,11(1): 91-110.
    [57]Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitations [J]. Earthquake Engineering & structural Dynamics,1992,21(8):713-740.
    [58]Ernesto Heredia Zavoni, Erik H Vanmarcke. Seismic Random-Vibration Analysis of Multisupport-Structural Systems [J]. Journal of Engineering Mechanics,1994.120(5):1107-1128.
    [59]Jain A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges [J]. Journal of Structural Engineering,1996,122(7):716-725.
    [60]林家浩.随机地震响应的确定性算法[J].地震工程与工程振动,1985,5(1):89-93.
    [61]林家浩.海洋平台对不规则波的随机响应及在DASOS-J上的实现[R].大连工学院工程力学研究所科研报告83-3026,1983.
    [62]林家浩.任意相干多激励随机响应[G].大连工学院工程力学研究所科研资料92-3002,1992.
    [63]Lin J H, Zhang W S, Li J J. Structural responses to arbitrarily coherent stationary random excitations [J]. Computers & Structures,1994,50(5):629-633.
    [64]林家浩,智浩,郭杏林.平稳随机振动荷载识别的逆虚拟激励法(一)[J].计算力学学报,1998,15(02):127-136.
    [65]智浩,郭杏林,林家浩.平稳随机振动荷载识别的逆虚拟激励法(二)[J].计算力学学报,1998,15(04):395-428.
    [66]陈健云,林皋.拱坝一地基体系的多点输人虚拟激励法及随机响应分析[J].上海力学,1999,20(1):76-81.
    [67]陈厚群.高拱坝抗震分析和坝肩动力稳定性研究[J].水力发电,2001,(08):51-53.
    [68]刘天云,刘光廷.拱坝地震动随机响应分析[J].工程力学,2000,17(6):20-25.
    [69]刘汉龙,陆兆溱,钱家欢.土石坝非线性随机反应及动力可靠性分析[J].河海大学学报,1996,24(3):105-109.
    [70]范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征[J].计算力学学报,2001,1 8(03):358-363.
    [71]武芳文,薛成凤,赵雷.超大跨度斜拉桥考虑行波效应的地震动随机响应研究[J].地震学报,2010,32(2):193-202.
    [72]Sun D K, Xu Y L, Ko J M, Lin J H. Fully coupled buffeting analysis of long-Span cable-supported bridges:formulation [J]. Journal of Sound and Vibration,1999,228(3):569-588.
    [73]刘高,朱乐东,项海帆.大跨悬索桥抖振内力响应分析[J].计算力学学报,2010,27(05):809-814.
    [74]Su L, Dong S L, Kato S. A new average response spectrum method for linear response analysis of structures to spatial earthquake ground motions [J]. Engineering Structures,2006,28(13): 1835-1842.
    [75]谭平,卜国雄,刘红军,周福霖.带TMD结构的随机地震响应分析的新方法[J].北京理工大学学报,2010,30(04):390-394.
    [76]薛素铎,王雪生,曹资.空间网格结构多维多点随机地震响应分析的高效算法[J].世界地震工程,2004,20(03):43-49.
    [77]李春林.高耸结构风振响应分析研究[D].广州:广州大学,2007.
    [78]肖正直.特高压输电塔风振响应及等效风荷载研究[D].重庆:重庆大学,2009.
    [79]李强,周济.重型越野车的非平稳随机激励系统优化设计方法[J].机械强度,1998,20(1):45-52.
    [80]赵又群,何小明,郭孔辉.汽车由路面激发的演变随机响应预测[J].机械工程学报,2004,40(01):179-182.
    [81]李杰,秦玉英,赵旗.汽车行驶平顺性建模与仿真的新方法[J].中国机械工程,2009,20(13):1625-1629.
    [82]张亮亮,唐驾时,李立斌.虚拟激励算法下的汽车悬架振动分析[J].振动与冲击,2006,25(6):167-169+187.
    [83]彭献,刘晓晖,文桂林.基于虚拟激励法的变速行驶车辆振动分析[J].湖南大学学报,2007,34(11):37-41.
    [84]张志超,林家浩,赵岩.车桥系统非平稳随机振动的PEM-PIM算法[J].计算力学学报,2009,26(1):26-32.
    [85]杨新文.高速铁路轮轨噪声理论计算与控制研究[D].成都:西南交通大学,2010.
    [86]李小珍,朱艳,强士中.车桥系统空间非平稳随机分析[J].铁道学报,2012,34(6):88-94.
    [87]周劲松.宫岛,孙文静,任利惠.铁道客车车体垂向弹性对运行平稳性的影响[J].铁道学报,2009,31(02):31-37.
    [88]Yu L, Das P K. Fatigue design assessment based on pseudo-excitation method [C]. International Maritime Association of Mediterranean, Varna, Bulgaria,2007.
    [89]Azarhoushang A. Nikraz H. Nonlinear Water-Structure Interaction of Fixed Offshore Platform in Extreme Storm [C]. The Twentieth International Offshore and Polar Engineering Conference, Beijing, China,2010.
    [90]何勇,龚顺风,金伟良.考虑几何非线性的海底悬跨管道疲劳可靠性分析方法[J].振动工程学报,2009,22(3):313-318.
    [91]廖俊,孔宪仁.随机载荷识别的算法改进与实验验证[J].航天器环境工程,2008,25(4):355-359.
    [92]侯秀慧,邓子辰,黄立新,胡伟鹏.桥梁结构移动平稳随机荷载识别新方法[J].计算力学学报,2009,26(5):659-663.
    [93]张丽萍,郭立新.基于逆虚拟激励法的随机路面谱的识别方法[J].东北大学学报,2012,33(2):258-261.
    [94]Chen W F, Duan L. Bridge engineering handbook [M]. Boca Raton:CRC Press,2012.
    [95]重庆交通科研设计院.公路桥梁抗震设计细则(JTG/TB02-01-2008)[S].2008.
    [96]胡海昌.多自由度结构固有振动理论[M].北京:科学出版社,1987.
    [97]陈斌,黄修长.周期结构振动控制研究现状[J].噪声与振动控制,2011,31(5):37-41.
    [98]Lund J W. Stability and damped critical speeds of a flexible rotor in fluid-film bearings [J]. ASME Journal of Engineering for Industry,1974,96(2),509-517.
    [99]Kim D, David J W. An improved method for stability and damped critical speeds of rotor-bearing systems [J]. Journal of Vibration and Acoustics,1990,112(1):112-118.
    [100]Leung A Y-T. Dynamic analysis of periodic structures [J]. Journal of Sound and Vibration,1980, 72(4):451-467.
    [101]Yong Y, Lin Y K. Propagation of decaying waves in periodic and piecewise periodic structures of finite length [J]. Journal of Sound and Vibration,1989,129(2):99-118.
    [102]Von Flotow A H. Disturbance propagation in structural networks [J]. Journal of Sound and Vibration,1986,106(3):433-450.
    [103]Luongo A, Romeo F. Real wave vectors for dynamic analysis of periodic structures [J]. Journal of Sound and Vibration,2005,279 (1-2):309-325.
    [104]Gry L. Dynamic modelling of railway track based on wave propagation [J]. Journal of Sound and Vibration,1996,195(3):477-505.
    [105]Cry L, Gontier C. Dynamic modelling of railway track:a periodic model based on a generalized beam formulation [J]. Journal of Sound and Vibration,1997,199(4):531-558.
    [106]Duhamel D. A recursive approach for the finite element computation of waveguides [J]. Journal of Sound and Vibration,2009,323(1-2):163-172.
    [107]Waki A. On the application of finite element analysis to wave motion in one-dimensional waveguides [D]. UK:Southampton University,2007.
    [108]Mace B R, Duhamel D, Breiman M J, Hinke L. Finite element prediction of wave motion in structural waveguides [J]. The Journal of the Acoustical Society of America,2005,117(5): 2835-2843.
    [109]Mace B R, Manconi E. Modelling wave propagation in two-dimensional structures using finite element analysis [J]. Journal of Sound and Vibration,2008,318(4-5):884-902.
    [110]Gonella S, Ruzzene M. Homogenization of vibrating periodic lattice structures [J]. Applied Mathematical Modelling,2008,32(4):459-482.
    [111]Zhong W X, Williams F W. On the localization of the vibration mode of a sub-structural chain-type structure [C]. Proceedings of the Institution of Mechanical Engineers.1991, Part C 205:281-288.
    [112]Zhou M, Zhong W X, Williams F W. Wave propagation in substructural chain-type structures excited by harmonic forces [J]. International journal of mechanical sciences,1993,35(11):953-964.
    [113]Zhong W X, Williams F W. On the direct solution of wave propagation for repetitive structures [J]. Journal of Sound and Vibration,1995.181(3):485-501.
    [114]Lin J H, Fan Y, Williams F W. Propagation of non-stationary random waves along substructural chains [J]. Journal of sound and vibration,1995,187(4):585-593.
    [115]Cai C W, Cheung Y K, Chan H C. Dynamic response of infinite continuous beams subjected to a moving force-an exact method [J]. Journal of Sound and Vibration,1988,123(3):461-472.
    [116]杨宗炼,蔡承武.富氏级数法解无限长链式周期结构的动力响应[J].中山大学学报(自然科学版),1992,31(2):1-6.
    [117]Belotserkovskiy P M. On the oscillations of infinite periodic beams subject to a moving concentrated force [J]. Journal of Sound and Vibration,1996,193 (3):705-712.
    [118]Belotserkovskiy P M. Forced oscillations and resonance of infinite periodic strings [J]. Journal of Sound and Vibration,1997,204(1):41-57.
    [119]Belotserkovskiy P M. Periodic string response to an impact and a suddenly applied concentrated force [J]. Journal of Sound and Vibration,1999,228(1):51-68.
    [120]侯之超,郑兆昌.一类周期结构的部分组集有限元法及静动力分析[J].工程力学,1997,14(4):11-17.
    [121]Sheng X, Jones C J C, Thompson D J. Responses of infinite periodic structures to moving or stationary harmonic loads [J]. Journal of Sound and Vibration,2005.282(1-2):125-149.
    [122]Mead D J. The forced vibration of one-dimensional multi-coupled periodic structures:an application to finite element analysis [J]. Journal of Sound and Vibration,2009,319(1-2):282-304.
    [123]高强,姚伟岸,吴锋.张洪武,林家浩,钟万勰.周期结构动力响应的高效数值方法[J].力学学报,2011(6):1181-1185.
    [124]Willis R. Report of the Commissioners appointed to inquire into the application of iron to railway structures [R]. London:Clowes,1849.
    [125]Stokes G G. Discussion of a Differential Equation Relating to the Breaking on Railway Bridges [R]. Transactions of the Cambridge Philosophical Society,1849,8, part 5:707-735.
    [126]Timoshenko S P. On the forced vibration of bridges [J]. Philosophical Magazine,1922,43(6): 1018-1019.
    [127]Krylov A N. Mathematical collection of paper of the academy of sciences [G]. St. Petersburg,1995. 61.
    [128]Fryba L. Infinite beam on an elastic foundation subjected to a moving load [J]. Appliance Mathematics,1957.2(2):1105-1132.
    [129]Steele C R. The finite beam with a moving load [J]. Journal of Applied Mechanics,1967. (34): 111-119.
    [130]Yosgioka O. Some considerations on generating mechanism of vibration due to running trains [J]. Butsuri-Tanko [Geophysical Exploration].1976.29(2):23-33.
    [131]Krylov V V. Vibrational impact of high-speed trains. I. Effect of track dynamics [J]. The Journal of the Acoustical Society of America,1996,100:3121-3134.
    [132]Jones C, Block J R. Prediction of ground vibration from freight trains [J]. Journal of Sound and Vibration,1996,193(1):205-213.
    [133]Sheng X, Jones C, Petyt M. Ground vibration generated by a load moving along a railway track [J]. Journal of sound and vibration,1999,228(1):129-156.
    [134]刘维宁,张昀青.轨道结构在移动荷载作用下的周期解析解[J].工程力学,2004,21(5):100-102.
    [135]傅世晓,崔维成,陈徐均,林铸明.移动载荷作用下非线性连接浮桥的动力响应分析[J].上海交通大学学报,2006,40(06):1004-1009.
    [136]刘小云,田润利.移动载荷下粘弹性道路瞬态响应解析解[J].工程数学学报,2007,24(06):1049-1055.
    [137]卿启湘,王永和,赵明华,万智.高速移动载荷作用下板式轨道-软岩路基系统的动力特性分析[J].岩土力学,2008,29(05):1396-1402.
    [138]刘小云,田润利.移动载荷作用下沥青路面稳态响应与计算[J].力学与实践,2009,31(3):64-68.
    [139]Zimmermann H. Die schwingungen eines tragers mit bewegter last [M]. Berlin:W. Ernst,1896.
    [140]Jeffcott H H. On the vibration of beams under the action of moving loads [J]. Philosophy Magazine. 1929,7(8):66-82.
    [141]Bolotin V V. On the Effect of a Moving Load on Bridges (in Russian) [J]. TrudJ Moskovskogo instituta inzhenerov zheleznodorozhnogo transporta,1950,74:269-296.
    [142]Wen R K. Dynamic response of beams traversed by two-axle loads [J]. Journal of the Engineering Mechanics Division,1960.86:91-111.
    [143]Fryba L. Vibration of solids and structures under moving loads [M]. The Netherlands:Noordhoff International,1972.
    [144]Dahlberg T. Vehicle-bridge interaction [J]. Vehicle System Dynamics,1984,13(1):187-206.
    [145]Olsson M. Analysis of structures subjected to moving loads [D]. Lund:Lund Institute of Technology,1986.
    [146]李炜明,骆汉宾,朱宏平,夏勇.移动质量速度对简支梁动力挠度响应的影响[J].华中科技大学学报(自然科学版),2008,36(9):117-120.
    [147]Ettefagh M M, Sadeghi M H, Rezaee M. Dynamic simulation of beam-like structure with a crack subjected to a random moving mass oscillator [J]. Earthquake Engineering and Engineering Vibration,2009,8(3):447-458.
    [148]Reis M, Pala Y. Dynamic Response of a Slightly Curved Bridges Under Moving Mass Loads [J]. Baltic Journal of Road and Bridge Engineering,2009,4(3):143-148.
    [149]Zhang Q, Jankowski L, Duan Z. Simultaneous identification of moving masses and structural damage [J]. Structural and Multidisciplinary Optimization,2010,42(6):907-922.
    [150]Dyniewicz B, Bajer C I. New feature of the solution of a Timoshenko beam carrying the moving mass particle [J]. Archives of mechanics,2010,62(5):327-341.
    [151]Wang Y, Liang L. A Virtual Reality Simulation for High Supersonic Speed Vehicle's Control of Moving Mass [C]. Proceedings of SPIE-The International Society for Optical Engineering.2010.
    [152]张青霞,段忠东,Jankowski L基于虚拟变形法的车-桥耦合系统移动质量识别[J].力学学报,2011,43(3):598-610.
    [153]Jiang J. Transient responses of Timoshenko beams subject to a moving mass [J]. Journal of Vibration and Control,2011,17(13):1975-1982.
    [154]Mazilu T, Dumitriu M, Tudorache C. On the dynamics of interaction between a moving mass and an infinite one-dimensional elastic structure at the stability limit [J]. Journal of Sound and Vibration, 2011,330(15):3729-3743.
    [155]HILLERBORG A. A Study of Dynamic Influences of Moving Loads on Girders [C],3rd Congress, International Association for Bridge and Structural Engineering,1948:661-667.
    [156]宋刚,吴志刚,林家浩.车辆主动悬架设计的约束H_∞控制方法[J].计算力学学报,2010,27(02):196-201.
    [157]戴君.基于四分之一车辆模型的具有随机结构参数车辆的随机振动分析[J].振动与冲击,2010,29(06):211-215.
    [158]谭国金,刘寒冰,程永春,王龙林,刘斌.基于车-桥耦合振动的简支梁桥冲击效应[J].吉林大学学报(工学版),2011,41(1):62-67.
    [159]黄昆,喻凡,张勇超.基于能量流动分析的电磁式馈能型主动悬架控制[J].上海交通大学学报,2011,45(7):1068-1073.
    [160]何锐,陈拴发,段冰.基于周期图法的路面不平度随机过程数值分析[J].郑州大学学报(工学版),2011,32(4):34-37.
    [161]Chu K H, Garg V K, Dhar C L. Railway-Bridge Impact:Simplified Train and Bridge Model [J]. Journal of the Structural Division,1979,105(9):1823-1844.
    [162]Chu K H, Garg V K, Wiriyachai A. Dynamic Interaction of Railway Train and Bridges [J]. Vehicle System Dynamics,1980,9(4):207-236.
    [163]David J C. Fundamental Issues in Suspension Design for Heavy Road Vehicles [J]. Vehicle System Dynamics,2001,35(4-5):319-360.
    [164]牛军川,孙玲玲,张蔚波.随机路面激励输入下四自由度悬架的特性研究[J].中国公路学报,2003,16(4):106-110.
    [166]谭国金,刘寒冰,程永春,王龙林,刘斌.基于车-桥耦合振动的简支梁桥冲击效应[J].吉林大学学报(工学版)[J].2011,41(1):62-67.
    [167]盛云,吴光强,7自由度主动悬架整车模型最优控制的研究[J].汽车技术,2007,(06):12-16.
    [168]Lin J H, Zhang Y H, Howson W P. Williams F W. Non-stationary random vibration analysis of three-dimensional train-bridge systems [J]. Vehicle System Dynamics,2010,48(4):457-480.
    [169]肖雪飞,何天明.摩托车振动仿真分析[J].机械科学与技术.2006,25(10):1154-1156.
    [170]Hwang E S. Simulation of dynamic load for bridges [J]. Journal of Structural Engineering,1991, 117(5):1413-1434.
    [171]徐伟国,毕世华.某火箭弹运输装填车的振动响应分析与实验研究[J].弹箭与制导学报,2005,(S9):182-185.
    [172]赵春发,翟婉明.磁浮车辆/轨道系统动力学(Ⅱ)--建模与仿真[J].机械工程学报,2005,41(8):163-175.
    [173]Fancher P S, Ervin R D, MacAdam C C, Winker C B. Measurement and representation of the mechanical properties of truck leaf springs[G]. Technical Paper Series 800905 (2nd edn)Society of Automotive Engineers,1980.
    [174]孙蓓蓓,周长峰,孙庆鸿.工程车辆非线性橡胶悬架系统的动态仿真与试验研究[J].机械强度,2006,(S1):12-16.
    [175]Huang D, Wang T. Vibration of highway steel bridges with longitudinal grades [J]. Computers & Structures,1998,69(2):235-245.
    [176]郑立碙,王安和.车辆非线性振动系统的动态模拟[J].车辆与动力技术,1985,(01):27-34.
    [177]ElMadany M M. Design and optimization of truck suspensions using covariance analysis [J]. Computers & structures,1988,28(2):241-246.
    [178]傅茂海,李芾,黄运华.第6届国际机车车辆转向架大会综述[J].国外铁道车辆,2005,(02):1-5.
    [179]Allen R R, Karnopp D C. Semi-active control of ground vehicle structural dynamics [C]. A1AA/ASME/SAE 16th Structures, Structural Dynamics, and Materials Conference, Denver,1975.
    [180]Hac A. Stochastic optimal control of vehicles with elastic body and active suspension [J]. Journal of Dynamic Systems, Measurement, and Control,1986,108(2):106-110.
    [181]胡子正,管欣,王光潮.车体弹性对大客车平顺性的影响[J].吉林工业大学学报,1987,(04):127-135.
    [182]铃木康文,韦苏来.车体弹性振动的理论分析[J].国外铁道车辆,1991,(05):35-40.
    [183]李世亮,王卫东.考虑车体弹性的铰接式高速车辆模型及响应计算分析[J].中国铁道科学,1997,18(02):77-86.
    [184]Foo E, Goodall R M. Active suspension control of flexible-bodied railway vehicles using electro-hydraulic and electro-magnetic actuators [J]. Control Engineering Practice,2000,8(5): 507-518.
    [185]邬平波,薛世海,杨晨辉.基于弹性车体模型的高速客车动态响应的理论与试验研究[C].中国铁道学会车辆委员会2004年度铁路机车车辆动态仿真学术会议,2004.
    [186]Dietz S, Netter H, Sachau. Fatigue life prediction by coupling finite-element and multibody systems calculations [C]. Proceedings of DETC'97, ASME Design Engineering Technical Conferences DETC/VIB-4229, Sacramento, California,1997.
    [187]Rulka W, Eichberger A. Simpack an analysis and design tool for mechanical systems [J]. Vehicle system dynamics,1993,22(S1):122-126.
    [188]Claus H, Schiehlen W. Modeling and simulation of railway bogie structural vibrations [J]. Vehicle System Dynamics,1998,29(S1):538-552.
    [189]王成国,孟广伟,原亮明,刘敬辉.新型高速客车构架的疲劳寿命数值仿真分析[J].中国铁道科学,2001,22(3):94-98.
    [190]金新灿,孙守光,陈光雄.车辆通过道岔时构架结构系统振动特性研究[J].工程力学,2007,24(01):178-185.
    [191]王文静,李强,刘志明,毛娟.柔性构架的动应力仿真研究[J].中国工程机械学报,2004,2(04):384-389.
    [192]任尊松,孙守光,刘志明.构架作弹性体处理时的客车系统动力学仿真[J].铁道学报,2004.26(04):31-35.
    [193]阳光武,肖守讷,金鼎昌.基于弹性构架的地铁车辆动力学分析[J].中国铁道科学,2004,25(4):43-46.
    [194]Lu Y H, Zeng J, Wu P B, Guan Q H. Modeling of Rigid-Flexible Coupling System Dynamics for Railway Vehicles with Flexible Bogie Frame [C].4th International Conference on Innovative Computing, Information and Control,2009:1355-1360.
    [195]Jaschinski A, Jochim M. Simulation eines ICE-Reisezugwagens mit MEDYNA zur Analyse von Brummschwingungen [R]. Oberpfaffenhofen:DLR,1992.
    [196]Claus H, Schiehlen W. Stability analysis of railways with radial elastic wheelsets [J]. Vehicle System Dynamics,2003.37:453-464.
    [197]孙明昌,曾京,徐志胜.弹性轮对车辆-轨道垂向耦合系统动力学研究[J].铁道车辆,2003.41(01):15-19.
    [198]Andersson C, Abrahamsson T. Simulation of interaction between a train in general motion and a track [J]. Vehicle system dynamics,2002,38(6):433-455.
    [199]Popp K, Kaiser I, Kruse H. System dynamics of railway vehicles and track [J]. Archive of Applied Mechanics,2003,72(11):949-961.
    [200]Chaar N, Berg M. Simulation of vehicle-track interaction with flexible wheelsets, moving track models and field tests [J]. Vehicle System Dynamics,2006,44(s1):921-931.
    [201]Jurgen A, Ingo K. Simulation of a railway vehicle's running behaviour:How elastic wheelsets influence the simulation results [J]. Vehicle System Dynamic,2004,41 (s):242-251.
    [202]Kaiser I, Popp K. Interaction of elastic wheelsets and elastic rails:modelling and simulation [J]. Vehicle System Dynamics,2006.44(s1):932-939.
    [203]万鹏,翟婉明,王开云.考虑轮对弹性时车辆运动稳定性分析[J].铁道车辆,2008,46(06):8-10.
    [204]姚英,铃木康文.构架主要参数对机车车辆车体弯曲振动的影响[J].国外内燃机车,1998,(09):24-31+41.
    [205]刘德刚,邵力耕.考虑车体和构架的弹性对构架动载荷、动应力及疲劳损伤的影响[J].铁道车辆.2005,43(11):1-4.
    [206]刘德刚.车体和构架的弹性对构架动载荷和动应力的影响[J].计算机辅助工程.2006,15(S1):395-396.
    [207]Andersson C, Oscarsson J. Dynamic train/track interaction including state-dependent track properties and flexible vehicle components [C]. Proceedings of the 16th IAVSD Symposium, Pretoria,1999, Vol.33:47-58.
    [208]Claus H. On dynamics of radialelastic railway wheelsets [C]. Proceedings of the 7th Mini Conference on vehicle system dynamics identification and anomalies, Budapest,2000.
    [209]Yagiz N, Gursel A. Active suspension control of a railway vehicle with a flexible body [J]. International journal of vehicle autonomous systems,2005,3(1):80-95.
    [210]Eriksson P, Friberg O. Ride comfort optimization of a city bus [J]. Structural and multidisciplinary optimization,2000,20(1):67-75.
    [211]Ambrosio J A C, Goncalves J P C. Complex flexible multibody systems with application to vehicle dynamics [J]. Multibody System Dynamics,2001,6(2):163-182.
    [212]. Goncalves J P C, Ambrosio J A C. Optimization of vehicle suspension systems for improved comfort of road vehicles using flexible multibody dynamics [J]. Nonlinear Dynamics,2003,34(1): 113-131.
    [213]王旭,苏瑞意,范子杰,大客车结构有限元分析及轻量化设计[J].汽车技术,2007,38(7):28-30+48.
    [214]万鹏程,陈剑.利用CAE方法分析某客车整车共振问题[J].噪声与振动控制,2007,(1):54-56.
    [215]王金,尹明德.基于有限元的客车模型的建立及动态性能分析[J].农业装备与车辆工程,2008.(1):28-30.
    [216]朱轶,张代胜,陆昌年.半挂牵引车整车模态分析[J].噪声与振动控制,2010,(1):48-50+54.
    [217]焦帅.轨道客车弹性振动分析方法研究[D].大连:大连交通大学,2008.
    [218]Gangadharan K V, Sujatha C, Ramamurti V. Dynamic response of railroad vehicles:a frequency domain approach [J]. International Journal of Heavy Vehicle Systems,2008.15(1):65-81.
    [219]赵辉.基于LS-DYNA公路桥梁车桥耦合振动响应研究[D].南昌:华东交通大学,2011.
    [220]Winkler E. Theory of elasticity and strength [M]. Prague:H. Domincus,1867.
    [221]Schwedler J W. Discussion on iron permanent way. C. Wood:Iron permanent way [C]. Proceedings of the Institution of Civil Engineers, London,1882,67:95-118.
    [222]Zimmermann H. Die berechnung des eisenbahn-oberbaues [M]. Berlin:Ernst & Korn,1888.
    [223]Timoshenko S. Method of Analysis of Static and Dynamic Stress in Rail [C]. Proceedings of the 2nd International Congress for Applied Mechanics, Zurich, Switzerland,1926:407-418.
    [224]Jenkins H H, Stephenson J E, Clayton G A, Morland G W, Lyon D. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces [J]. Railway Engineering Journal.1974,3(1): 2-16.
    [225]Cox S J, Grassie S L钟成若译.掌握轨道和车辆的动力特性是改进轨道的手段[G].铁科院情报所,1988.
    [226]Yoshihiko Sato. Study on High-frequency Vibrations in Track Operated with High-speed Trains [R]. Quarterly Reports,1977.
    [227]Grassie S L, Gregory R W, Harrison D, Johnson K L. The dynamic response of railway track to high frequency vertical excitation [J]. Journal of Mechanical Engineering Science,1982,24(2): 77-90.
    [228]翟婉明.铁路轮轨高频随机振动理论解析[J].机械工程学报,1997,33(2):20-25.
    [229]圣小珍,雷晓燕.欧洲铁路轮轨噪声研究方法和进展[J].华东交通大学学报,2001,18(3):6-10.
    [230]刘林芽,雷晓燕.轮轨噪声的预测[J].铁道学报,2004,26(1):101-104.
    [231]Strzyzakowski Z, et. al., Vertical Dynamics of Wheelset Rolling on a Discretly Supported Continuous Rail [R].1989.
    [232]http://www.ct.ntust.edu.tw/ct/files/file/CT4207701/CT4207701_ch10_ 1-3.pdf.
    [233]Doran A L, Mingbri D L. Periodic Motion of Vehicles on Flexible Guideways [J]. ASME Journal of Dynamic Systems, Measurement and Control,1977,99(4):268-276.
    [234]Chung Y I, Genin J. Stability of a Vehicle on a Multispan Simply Supported Guideway [J]. ASME Journal of Dynamic Systems, Measurement, and Control,1978,100(4):326-332.
    [235]Smith C C, Wormley D N. Response of Continuous Periodically Supported Guideway Beams to Traveling Vehicle Loads [J]. ASME Journal of Dynamic Systems, Measurement, and Control,1975, 97:21-29.
    [236]Genin J, Chung Y I. Response of a Continuous Guideway on Equally Spaced Supports Traversed by a Moving Vehicle [J]. Journal of Sound and Vibration,1979,67(2):245-251.
    [237]Knothe K L, Strzyzakowski Z, Willner K. Rail vibrations in the high frequency range [J]. Journal of Sound and Vibration,1994,169(1):111-123.
    [238]Newton S G, Clark R A. An investigation into the dynamic effects on the track of wheelflats on railway vehicles [J]. Journal of Mechanical Engineering Science,1979,21(4):287-297.
    [239]李定清.铁路轨道接头区轮轨动力效应的研究[J].铁道科学与工程学报,1985,(04):70-81.
    [240]Ilias H, Muller S. A discrete-continuous track-model for wheelsets rolling over short wavelength sinusoidal rail irregularities [J]. Vehicle System Dynamics,1994,23(S1):221-233.
    [241]鲍玉林,王其昌.轨道垂向动力响应理论及其分析[J].石家庄铁道学院学报,1988,(01):43-52.
    [242]Sun Y Q, Dhanasekar M. A dynamic model for the vertical interaction of the rail track and wagon system [J]. International Journal of Solids and Structures,2002,39(5):1337-1359.
    [243]雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社,1998.
    [244]翟婉明.车辆/轨道相互作用理论研究进展及发展趋势[J].力学进展,1998,28(03):339-348.
    [245]高志国.桥上轨枕埋入式无砟轨道动力特性分析,成都:西南交通大学,2009.
    [246]Sato Y. Abnormal wheel load of test train [J]. Permanent Way (Tokyo),1973,14:1-8.
    [247]Ahlbeck D R, Meacham H C, Prause R H. The development of analytical models for railroad track dynamics [C]. Symposium on Railroad Track Mechanics, Princeton,1975.
    [248]李定清.关于集总参数模型分析轨道结构动力问题的研究[J].铁道学报工务专辑,1989:82-90.
    [249]翟婉明,王其昌.轮轨动力分析模型研究[J].铁道学报,1994,16(1):64-72.
    [250]吴章江,王浦强,李湘敏,李景昌.车辆通过轨道低扣接头的垂向轮轨作用力计算[J].铁路机车车辆.1982,(1):24-30.
    [251]维尔辛斯基著C B.王福天译.铁路车辆动力学[M].北京:中国铁道出版社,1986.
    [252]裘晓钢.列车动力学理论与列车行为的计算机模拟[D].成都:西南交通大学,198?.
    [253]Ripke B, Knothe K, Simulation of high frequency vehicle-track interactions [J]. Vehicle System Dynamics,1995,24(sl):72-85.
    [254]Thompson D J, Vincent N. Track dynamic behaviour at high frequencies. Part 1:theoretical models and laboratory measurements [J]. Vehicle System Dynamics,1995,24(sl):86-99.
    [255]Knothe K et al., Consideration of the elasticity of sleepers in high-frequency railway track dynamics [R].1993.
    [256]Lundqvist A, Dahlberg T. Load impact on railway track due to unsupported sleepers [J]. Journal of Rail and Rapid Transit,2005,219(2):67-77.
    [257]Kuo C, Huang C. Two Approaches of Finite-Element Modeling of Ballasted Railway Track [J]. Journal of Geotechnical & Geoenvironmental Engineering,2009,135(3):455-458.
    [258]Huang H. Discrete element modeling of railroad ballast using imaging based aggregate morphology characterization [D]. Chicago:University of Illinois,2010.
    [259]Wang J C, Zeng X, Mullen R L. Three-Dimensional Finite Element Simulations of Ground Vibration Generated by High-Speed Trains and Engineering Countermeasures [J]. Journal of Vibration and Control,2005,11(12):1437-1453.
    [260]Ju S H, Lin H T, Chen T K. Studying characteristics of train-induced ground vibrations adjacent to an elevated railway by field experiments [J]. Journal of geotechnical and geoenvironmental engineering,2007,133(10):1302-1307.
    [261]Dahlberg T. Some railroad settlement models-a critical review [C]. Proceeding of the Institution of Mechanical Engineering, Part F, Journal of Rail and Rapid Transit,2001,215(F4):289-300.
    [262]Lundqvist A, Dahlberg T. Dynamic train/track interaction including model for track settlement evolvement [J]. Vehicle System Dynamic Supplement,2004,41 (s):667-676.
    [263]岳渠德,姜福香,李向国.区间轨道结构双层叠合交叉梁系力学模型研究[J].铁道标准设计,2002,(12):1-4.
    [264]齐春雨.土质路基板式轨道结构强度计算研究[J].铁道标准设计,2006,(02):26-28.
    [265]和振兴,翟婉明,杨吉忠,赵怀耘.铁路交通地面振动的列车-轨道-地基耦合数值方法研究[J].振动工程学报,2008,21(5):488-492.
    [266]蔡成标,翟婉明,王开云.遂渝线路基上板式轨道动力性能计算及评估分析[J].中国铁道科学,2006,27(4):17-21.
    [267]徐庆元,李斌,周小林.高速列车作用下路基上板式无砟轨道动力系数[J].中南大学学报(自然科学版),2011,42(09):2831-2836.
    [268]李志强,赵隆茂.铁路车辆/轨道耦合系统在冲击载荷作用下的动应力分析[J].太原理工大学学报,2005,36(6):713-715.
    [269]Kumaran G, Menon D, Nair K K. Dynamic studies of railtrack sleepers in a track structure system [J]. Journal of Sound and Vibration,2003,268(3):485-501.
    [270]石现峰,宣言,王澜.土质路基上板式无砟轨道结构的动力学性能仿真研究[J].中国铁道科学,2008,29(4):15-20.
    [271]陈鹏.高速铁路无砟轨道结构力学特性的研究[D].北京:北京交通大学,2009.
    [272]沈志云,张卫华,金学松,曾京,张立民.轮轨接触力学研究的最新进展[J].中国铁道科学.2001,22(2):4-17.
    [273]金学松,沈志云.轮轨滚动接触力学的发展[J].力学进展.2001,31(1):3346.
    [274]Knothe K,杨春雷,翟婉明.轮轨接触力学的最新发展[J].国外铁道车辆,2002,(5):27-33.
    [275]常崇义.有限元轮轨滚动接触理论及其应用研究[D].北京:中国铁道科学研究院,2010.
    [276]Hertz H. Uber die Beruhrung fester elastischer Korper [J]. Journal ftir die reine und angewandte Mathematik,1882,92:156-171.
    [277]Kalker J J. The transmission of force and couple between two elastically similar rolling spheres [C]. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam,1964:135-177.
    [278]Kalker J J. Simplified theory of rolling contact [J]. Delft Progress Report,1973,1(1):1-10.
    [279]Kalker J J. A fast algorithm for the simplified theory of rolling contact [J]. Vehicle System Dynamics,1982,11(1):1-13.
    [280]Shen Z Y, Hedrick J K, J E M O Design. A comparison of alternative creep force models for rail vehicle dynamic analysis [J]. Vehicle System Dynamics,1983,12(1-3):79-83.
    [281]王小松,葛耀君,吴定俊.非赫兹接触下轮轨接触蠕滑力的计算[J].铁道学报,2007,29(4):96-100.
    [282]Jin X S, Xu B Q, Shen Z Y. Theoretical and experimental study on dynamic rolling contact mechanics of wheel/rail [C]. Proceedings of 12th International Wheelset Congress, Qingdao,1998: 76-88.
    [283]张军,吴昌华.轮轨接触问题的弹塑性分析[J].铁道学报,2000,22(03):16-21.
    [284]Nackenhorst U. Zur Berechnung schnell rollender Reifen mit der Finite-Element-Methode [D]. Hamburg:Universitat der Bundeswehr Hamburg.1992.
    [285]Johnson K L. One hundred years of Hertz contact [C]. Proceedings of the Institution of Mechanical Engineers 1847-1982,1982.196:363-378.
    [286]Remington P J. Wheel/rail rolling noise, Ⅰ:Theoretical analysis [J]. The journal of the Acoustical Society of America,1987.81(6):1805-1823.
    [287]曹雪琴.钢桁梁桥横向振动[M].北京:中国铁道出版社,1991.
    [288]Yau J D. Vehicle-bridge interaction element for dynamic analysis [J]. Journal of Structural Engineering,1997,123(11):1512-1518.
    [289]Xu Y L, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in cross winds [J]. Engineering structures,2004,26(10):1389-1406.
    [290]Knothe K L, Grassie S L. Modelling of railway track and vehicle/track interaction at high frequencies [J]. Vehicle system dynamics.1993,22(3-4):209-262.
    [291]肖新标,金学松.温泽峰.轨枕支撑硬点对轨枕动力响应的影响[J].交通运输工程学报.2007.7(6):28-35.
    [292]Dong R. Vertical dynamics of railway vehicle-track system [D]. Montreal:Concordia University, 1994.
    [293]陈果.车辆-轨道耦合系统随机振动分析[D].成都:西南交通大学,2000.
    [294]Koh C G, Ong J S Y, Chua D K H, Feng J. Moving element method for train-track dynamics [J]. International journal for numerical methods in engineering,2003.56(11):1549-1567.
    [295]雷晓燕.轨道动力学模型与数值方法研究进展[J].华东交通大学学报,2011,28(3):1-12.
    [296]王健,雷晓燕.移动单元法在车辆-无砟轨道-路基模型中的应用[J].华东交通大学学报,2011,28(6):12-16+120.
    [297]向俊,曾庆元.再论构架蛇行波作为车轨(桥)时变系统横向振动激振源的合理性[J].长沙铁道学院学报,2003,21(1):1-7.
    [298]曾庆元,郭向荣.列车桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [299]曾庆元,杨毅,骆宁安,江锋,张麒.列车-桥梁时变系统的横向振动分析[J].铁道学报,1991,13(2):38-46.
    [300]杨仕若.列车-拱桁组合体系桥梁的空间振动分析[J].石家庄铁道学院学报,1991,4(2):71-78.
    [301]朱汉华,曾庆元.列车—桥梁时变系统振动能量随机分析方法[J].长沙铁道学院学报,1994,12(4):6-10.
    [302]王荣辉,郭向荣,曾庆元.高速列车构架人工蛇行波的随机模拟方法[J].长沙铁道学院学报,1995,13(2):1-7.
    [303]朱汉华,王荣辉,曾庆元,郭向荣.高速列车构架人工蛇行波V-σ曲线关系的确定[J].长沙铁道学院学报,1996,14(01):13-19.
    [304]李德建,曾庆元.列车-直线轨道空间耦合时变系统振动分析[J].铁道学报,1997,19(01):101-107.
    [305]Xiang J, Li D J, Zeng Q Y. Simulation of spatially coupling dynamic response of train-track time-variant system [J]. Journal of Central South University of Technology,2003,10(3):226-230.
    [306]曾志平,陈秀方,赵国藩.铁路直线轨道空间振动时变模型[J].交通运输工程学报,2005,5(01):33-35+65.
    [307]Zhou Z H, Zeng Q Y. Dynamic analysis of train-track-underground gallery bridge time-varying system [J]. Journal of Central South University of Technology,2003,34(2):162-165.
    [308]张媛.车辆-轨道-桥梁系统的空间耦合振动及其环境振动[D].天津:天津大学,2007.
    [309]曾志平.高速铁路桥上无缝道岔伸缩力及列车-道岔-桥梁系统空间振动研究[D].长沙:中南大学,2006.
    [310]向俊,曾庆元.列车脱轨机理与脱轨分析理论研究[J].中国铁道科学,2008,29(01):127-129.
    [311]王英杰.考虑车体柔性的车-桥动力响应分析及行车舒适性影响因素研究[D].北京:北京交通大学,2011.
    [312]曾庆元,周智辉,赫丹,文颖.列车-轨道(桥梁)系统横向振动稳定性分析[J].铁道学报,2012,34(05):86-90.
    [313]周峰.基于小波神经网络的车辆构架人工蛇形波重构技术的研究[D].长沙:中南大学,2008.
    [314]李小珍.高速铁路列车-桥梁系统耦合振动理论及应用研究[D].成都:西南交通大学,2000.
    [315]张学仁.机车车辆对轨道随机不平顺垂向动力响应分析[J].内燃机车,1984,(1):7-11.
    [316]李成辉,万复光.轨道结构随机振动[J].铁道学报,1998,20(03):97-101.
    [317]徐劲,蒋沧如,谢伟平.武汉轻轨系统轨道结构随机振动研究[J]武汉理工大学学报,2007,29(06):100-103.
    [318]陈果,翟婉明,左洪福.轨道随机不平顺对车辆/轨道系统横向振动的影响[J].南京航空航天大学学报,2001,33(03):227-232.
    [319]Zhao C F, Zhai W M. Maglev vehicle/guideway vertical random response and ride quality [J]. Vehicle System Dynamics,2002,38(3):185-210.
    [320]时瑾,魏庆朝,万传风,邓亚士.随机不平顺激励下磁浮车辆轨道梁动力响应[J].力学学报,2006,38(6):850-857.
    [321]Lei X Y, Noda N A. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile [J]. Journal of Sound and Vibration,2002,258(1): 147-165.
    [322]张斌,雷晓燕.基于车辆-轨道单元的无砟轨道动力特性有限元分析[J].铁道学报,2011,33(7):78-85.
    [323]Dumitriu D, Baldovin D, Sireteanul T. Numerical simulation of the vertical interaction between railway vehicle and track [C]. Proceedings of the Annual Symposium of the Institute of Solid Mechanics with International Participation, Bucharest,2004.
    [324]徐志胜,翟婉明,王开云,王其昌.车辆-轨道系统振动响应分析--Timoshenko梁与Euler梁轨道模型的比较[J].地震工程与工程振动,2003,23(06):74-79.
    [325]龙许友,魏庆朝,冯雅薇,时瑾.轨道不平顺激励下直线电机车辆/轨道动力响应[J].交通运输工程学报,2008.8(02):10-13.
    [326]徐劲,谢伟平,蒋沧如.城市轨道交通系统轨道结构随机振动分析[J].路基工程,2008,(1):19-20.
    [327]徐庆元,张旭久,曾志平.无砟轨道纵向连接形式对列车-板式无砟轨道-路基系统振动特性影响[J].中国铁道科学,2010,31(1):32-37.
    [328]陈双喜,林建辉,陈建政.基于改进的EMD方法提取车辆-轨道垂向耦合系统动态特性[J].振动与冲击,2011,30(8):212-216.
    [329]Xu W T, Lin J H, Zhang Y H, Kennedy D, Williams F W. Pseudo-excitation-method-based sensitivity analysis and optimization for vehicle ride comfort [J]. Engineering Optimization,2009, 41(7):699-711.
    [330]徐文涛,张亚辉,林家浩.基于虚拟激励法的车辆振动灵敏度分析及优化[J].机械强度,2010,32(03):347-352.
    [331]Dahlberg T. Parametric optimisation of a 1-DOF vehicle travelling on a randomly profiled road [J]. Journal of Sound and Vibration,1977,55(2):245-253.
    [332]Dahlberg T. An optimised speed controlled suspension of a 2-DOF vehicle travelling on a randomly profiled road [J]. Journal of Sound and Vibration,1979,62(4):541-546.
    [333]谢卫国,汪红心.客车平顺性预测与优化[J].汽车科技,1991,(01):50-61.
    [334]于翔.汽车悬挂参数的多级优化[J].汽车技术,1994,(07):10-12.
    [335]Eberhard P, Bestle D, Piram U. Optimisation of damping characteristics in non-linear dynamic systems [C]. The First World Congress of Structural and Multidisciplinary Optimisation, Goslar, 1995:863-870.
    [336]Sun T C, Luo A C J, Hamidzadeh H R. Dynamic response and optimization for suspension systems with nonlinear viscous damping [J]. Journal of Multibody Dynamics,2000,214(3):181-187.
    [337]Etman L F P, Vermeulen R C N, Van Heck J, Schoofs A J G, Van Campen D H. Design of a stroke dependent damper for the front axle suspension of a truck using multibody system dynamics and numerical optimization [J]. Vehicle system dynamics,2002,38(2):85-101.
    [338]Els P S, Uys P E. Investigation of the applicability of the dynamic-Q optimisation algorithm to vehicle suspension design [J]. Mathematical and Computer Modelling,2003,37(9):1029-1046.
    [339]Naude A F, Snyman J A. Optimization of road vehicle passive suspension systems-part 1: optimisation algorithm and vehicle model [J]. Applied Mathematical Modelling,2003,27(4): 249-261.
    [340]Thoresson M J, Uys P E, Els P S, Snyman J A. Efficient optimisation of a vehicle suspension system, using a gradient-based approximation method, Part 1:Mathematical modeling [J]. Mathematical and Computer Modelling,2009,50(9):1421-1436.
    [341]Cheney E W. Introduction to Approximation Theory (AMS Chelsea Publishing) [M]. Ann Arbor: Amer Mathematical Society,1982.
    [342]Baumal A E, McPhee J J, Calamai P H. Application of genetic algorithms to the design optimization of an active vehicle suspension system [J]. Computer Methods in Applied Mechanics and Engineering,1998,163(1):87-94.
    [343]Alkhatib R, Jazar G N, Golnaraghi M F. Optimal design of passive linear suspension using genetic algorithm [J]. Journal of Sound and Vibration,2004,275(3):665-691.
    [344]杨荣山,袁仲荣,黄向东,赵克刚,陈金华.基于近似模型的车辆操纵稳定性及平顺性的优化研究[J].汽车技术,2009,(07):18-22.
    [345]Yuen T J, Raml R. Comparison of computational efficiency of MOEA/D and NSGA-II for passive vehicle suspension optimization [C].24th European Conference on Modelling and Simulation, Kuala Lumpur,2010:219-225.
    [346]Gobbi M, Mastinu G, Doniselli C, Guglielmetto L, Pisino E. Optimal and robust design of a road vehicle suspension system [J]. Vehicle System Dynamics Supplement,1999,33(s):3-22.
    [347]Kim Y G, Park C K, Park T W. Design optimization for suspension system of high speed train using neural network [J]. JSME International Journal Series C 46,2003,46(2):727-735.
    [348]郑军,钟志华.非线性汽车行驶平顺性模型的神经网络优化[J].汽车工程,2001,23(03):172-176+159.
    [349]Rajendran I, Vijayarangan S. Simulated annealing approach to the optimal design of automotive suspension systems [J]. International Journal of Vehicle Design,2007,43(1):11-30.
    [350]Kuznetsov A, Mammadov M, Sulta Ⅰ, Hajilarov E. Optimization of a quarter-car suspension model coupled with the driver biomechanical effects [J]. Journal of Sound and Vibration,2011,330(12): 2937-2946.
    [351]张弓.基于预决策粒子群算法的悬架仿真优化[D].杭州:浙江大学,2011.
    [352]秦民.汽车驾驶室平顺性优化设计[J].计算机辅助工程,2006,15(S1):161-162.
    [353]李叶松.基于改进遗传算法的刚柔耦合非线性悬架汽车平顺性优化[D].长沙:湖南大学,2010.
    [354]高云凯,吴锦妍,徐瑞尧,高冬.基于ADAMS/View的刚柔耦合大客车悬架优化分析[J].机械设计与制造,2011,(05):65-67.
    [355]林家浩,易平.线性随机结构的平稳随机响应[J].计算力学学报,2001,18(4):402-408.
    [356]Zhong W X, Williams F W. A precise time step integration method [J]. Journal of Mechanical Engineering Science,1994,208(C6):427-430.
    [357]Perotti F. Structural Response to Non-Stationary Multi-Support Random Excitation [J]. Earthquake Engineering and Structural Dynamics,1990,19(4):513-527.
    [358]To C W S. Non-Stationary Random Responses of a Multi-Degree of Freedom System by the Theory of Evolutionary Spectra [J]. Journal of Sound and Vibration,1982,83(2):273-291.
    [359]To C W S. Time-Dependent Variance and Covariance of Responses of Structures to Non-Stationary Random Excitations [J]. Journal of Sound and Vibration,1984,93(1):135-156.
    [360]To C W S. Response Statistics of Discretized Structures to Non-Stationary Random Processes. Journal of Sound and Vibration,1986,105(6):217-231.
    [361]郑晓静,武建军,周又和.周期变系数常微分方程动力系统稳定性分析的Liapunov指数判据[J].兰州大学学报,1999,35(2):21-24.
    [362]居荣初.在结构动力分析中对称性条件的利用[J].浙江工业大学学报,1983,(02):22-32.
    [363]International Organization for Standardization ISO 2631-1, Mechanical vibration and shock evaluation of human exposure to whole-body vibration-part 1:general requirements [S].1997.
    [364]Kreisselmeier G. Steinhauser R. Systematic control design by optimizing a vector performance index [C]. IFAC Symposium on Computer Aided Design of Control Systems, Zurich,1979: 113-117.
    [365]Barthelemy J. Riley M F. An Improved Multilevel Optimization Approach for Design of Complex Engineering System [J]. AIAA Journal,1988.26:353-360.
    [366]http://www.mathworks.cn/help/toolbox/optim/index.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700