用户名: 密码: 验证码:
汽车风窗噪声及风振噪声的机理及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着车辆速度的不断提高以及其他噪声的有效控制,气动噪声已成为高速车辆的主要噪声源之一,严重影响了驾乘的舒适性,同时也对环境产生了极大的污染。另外随着市场竞争的加剧,缩短开发周期成为汽车厂商抢占市场和节约成本的主要方式之一。因此在汽车设计阶段就必须对气动噪声进行预估与分析,为汽车设计提供指导。
     针对消费者最为关注的汽车风窗噪声和风振噪声以及噪声计算当中存在的问题。本文旨在寻求精确求解气动噪声源的计算方法,分析风窗噪声及风振噪声的特性与产生机理,探索控制风振噪声的新方法,为降低车内噪声并提高乘坐舒适性提供可靠的理论依据及有效的研究方法。为此,通过对二维圆柱模型以及三维后视镜模型的外部流场及声场计算,得出适合钝体模型外部气动噪声计算的亚格子尺度模型;为提高对近壁面流动模拟的精确度,引入壁面函数和准κ-ε-v2/LES混合求解方式,并将前者用于简易钝体模型的外部气动噪声以及汽车风振噪声计算,后者用于复杂形体——汽车的外部风窗噪声求解;针对传统天窗导流板存在的问题,提出了新型导流板,通过计算对该导流板控制噪声的机理进行了阐述,并通过风洞实验验证了该导流板的有效性;尝试采用主动控制的方法对天窗风振噪声进行控制;将本文所取得的成果应用到实际车型——“中气”轿车。本文的主要研究内容如下:
     1.低马赫数下钝体模型的外部气动噪声属于宽频带噪声,主要由表面压力脉动所引起,而表面压力脉动是一种宽频带的压力脉动,其中低频部分由大尺度的涡引起,高频部分由小尺度涡运动引起。而在大涡模拟当中,小尺度涡由于被模化(即所谓的SGS模型)而无法直接进行模拟,因此不同的SGS模型必然得到不同的压力脉动。为此利用二维圆柱以及简易的三维后视镜不同的SGS模型进行了对比分析,并针对近壁面的流动特性引入了壁面模型,通过与实验结果进行比较,Smagorinsky-Lilly+壁面函数被认为能较为准确的表面压力脉动。然后采用Lighthill-curle声类比模型对远场噪声进行了数值模拟,通过与实验结果进行比较,验证了模型的准确性。
     2.采用大涡模拟对汽车外部气动噪声计算时,由于车身表面复杂的分离流与再附着流,采用简单的壁面模型已经不能满足实际计算的要求。一种融合了雷诺平均模型和大涡模拟模型优点的RANS/LES混合模型应运而生,同时对RANS模型的选择成为决定混合模型性能的关键。针对目前常用的RANS/LES存在的问题,尝试采用三方程的κ-ε-v2湍流模型作为RANS/LES混合模型中的RANS部分,并且就κ-ε-v2存在的问题对其进行了简化。得到了能用于汽车外部流场计算的准κ-ε-v2/LES混合模型。通过与当前应用较多的混合模型、大涡模拟模型以及风洞试验结果对比,发现该模型能较为准确地预测汽车的外部瞬态流场。而且通过和风洞试验比较,准κ-ε-v2/LES混合模型能获得较为准确的车身表面压力脉动,并能大大节省计算资源。然后在获得精确的压力脉动基础上采用Lighthill-Curle积分公式对外部气动噪声进行了求解。
     3.在对低马赫数下的天窗风振噪声进行研究时,流体的可压缩性是一个不可忽视的物理特性。但是如果采用完全可压缩流体进行计算,对于马赫数如此低的流动,必将引起数值方法的刚问题,导致计算发散。为此通过引入气体状态方程,从可压缩流体的N-S方程入手,推导得出适合低马赫数下的天窗风振噪声计算的弱可压缩模型,这样既考虑了流体的可压缩性,又避免了数值计算的发散。将该模型应用到简易类车厢天窗风振噪声的计算当中,通过与实验结果的比较,证实了该方法的准确性与可行性。
     4.目前在天窗风振噪声的控制目前采用最多的方法就是安装导流板,通过对传统天窗导流板的风洞测试发现,当速度超过一定的时候,传统导流板就失效了。针对该问题,提出了一种新型导流板。并从实验和计算仿真的角度对不同速度下新型导流板控制噪声的效果进行了评价。另外随着控制技术的发展,工程师开始尝试采用主动控制的办法对风振噪声进行控制,本文也尝试了采用主动控制的办法,即在天窗开口的后缘喷射一股随时间呈正弦变化的射流,使上下游相向而行的两股气流相互干涉,相互削弱。
     5.通过对中气轿车侧窗开启时的瞬态外流场进行仿真分析,了解该车的侧窗风振噪声特性。研究不同侧窗开启,驾乘人员的个数,不同风速,侧窗开启位置对驾驶员耳旁风振噪声的影响。针对后窗风振噪声过高的情况,采取相应措施控制风振噪声。通过对天窗开启时的瞬态外流场进行仿真分析,了解该车的天窗风振噪声特性。通过安装导流板和合理开启天窗玻璃来控制风振噪声,并对导流板的相关参数进行了改进设计。通过对天窗玻璃开启的不同位置所产生风振的频率进行分析,结合风振产生机理推导出能有效预测天窗风振噪声频率的经验公式。
     综上所述,本文系统地对汽车风窗噪声以及风振噪声进行了深入细致的研究,对汽车气动噪声的控制研究提供了可供参考的研究思路及方法。
Aerodynamic-noise became one of the most primary noise sources in high-speed vehicles, especially nowadays when the speed of vehicles is rising and effective noise control methods were proposed with respect to other types of noise. It also can greatly affect driving comfort and environmental sustainability. At the same time, from automotive manufacture point of view, it is important to have the aerodynamic noise predicted and analyzed in the designing stage so as to speed up the development cycle, cut the cost and maintain the market competitiveness.
     At present, the wind rush noise and wind buffeting noise are considered as the main complaints by customer and there is some problems is existing in computational aerodynamic noise. The current research is to explore a computational method to obtain more accurate aerodynamic noise sources, to analyze the characteristic and mechanism of wind rush noise and wind buffeting noise, to develop new control methods of wind buffeting noise, to provide a reliable theoretical basis and effective research method to decrease the interior noise and improve ride comfort. Therefore, the two-dimension circular cylinder and generic three-dimension mirror models are used to investigate the influence of different SGS models to the exterior aerodynamic noise; in order to get more realistic near-wall flow flied, a wall function and quasi-κ-ε-v2/LES hybrid approach are introduced, and the former is used to compute the exterior aerodynamic noise of blunt body and wind buffeting noise, the latter is used to compute the wind rush noise; A new type sunroof deflector is proposed to control the wind buffeting noise, and the control mechanism is illustrated by simulation, then the effectiveness of the deflector is validated by wind tunnel test; the active control method is employed to control the wind buffeting noise; in the end, the research was applied to the noise control of an actual car model-Zhongqi car. The main research contents are as follows:
     1. The exterior aerodynamic noise of blunt body is broadband noise in low Mach number, which is induced by surface fluctuation pressure. And the surface fluctuation pressure is also broadband, in which low frequency components are attributed to large scale vortices, whereas high frequency components to small scale vortices. In LES, the small scale vortices are modeled that they can not be resolved directly. Therefore, different pressure fluctuation will be resulted in when different SGS models are chosen. Therefore, the two-dimension circular cylinder and generic three-dimension mirror models are used to investigate the influence of different SGS models, and according to the particularity of the near-wall flow field, the wall function is introduced. Through comparing the computational results with experimental results, the Smagorinksy-Lilly model with wall function is considered as a relatively reasonable approach. Then the far-field sound field is calculated by Lighthill-curle acoustic analogy.
     2. When the LES is used to compute the exterior aerodynamic noise of automobile, because there is complex separated and reattached flow on the surface of car body, the simple wall function can not meet the requirement of the realistic situation. Therefore, a new hybrid approach which mixes the merit of RANS and LES is proposed. And the selection of the RANS is the key of the hybrid approach. In current research, the three equations model κ-ε-v2is selected as the RANS parts of the hybrid approach, and aiming to the problem of κ-ε-v2, some simplified measurements are adopted to simplify the three equations model. Then the quasi-κ-ε-v2/LES is obtained which is more suitable for computing the automotive exterior flow field. Through comparing the results obtained by quasi-κ-ε-v2/LES with other hybrid model, LES and experimental results, we can get the conclusion that the quasi-κ-ε-v2/LES can get more accurate unsteady exterior flow field, meanwhile, greatly reduce computation resources. The aerodynamic noise can then be calculated by applying Lighthill-Curle integral equation on pressure pulses on surfaces.
     3. Wind buffeting noise of sunroof, generated by large scale vortices and usually in low frequency, was simulated by applying LES and wall function technique. Compressible fluid must be assumed in the computation of sunroof wind buffeting noise. However, if fully compressible fluid is assumed in the low-march motion case, numerical divergence will be likely to occur. In this dissertation, therefore, a model of weak compressible fluid was applied, add the compressible term into incompressible equation as a source term, to incorporate fluid compressibility while avoid numerical divergence. The accuracy of the method was verified by experiment result.
     4. In controlling the wind buffeting noise, conventional deflector can only deal with noise in a certain frequency range. This problem was tackled by the introduction of a new type of deflector in this dissertation. Wind buffeting noise can be effectively controlled with independence on driving speed, validated by simulation and wind tunnel measurement, by the implementation of this new type of deflector. Moreover, preliminary progress was achieved in active control of wind buffeting noise based on the understanding of its noise generation.
     5. The related studies is used to analysis the wind buffeting noise characteristics of an upscale cars when side-windows or sunroof is opened. The analysis result shows: The wind-buffeting noise closely related with the size of side-windows and sunroof, the volume of crew department, vehicle speed. According to the simulation results, some measures are used to suppress the wind buffeting noise, such as in order to suppress the rear window wind buffeting, after B pillar a groove is opened and the rear window is divided; in order to suppress the sunroof wind buffeting, the deflector is added and the sunroof opened position is optimized. Furthermore, in order to obtain a more ideal installation angle and height, the deflector relevant parameters is optimized. In the research of the sunroof open position, an empirical formula is summed up to predict the wind buffeting frequency.
     In conclusion, this paper systematically conducts an intensive study on wind rush noise and wind buffeting noise, and contributes valuable reference for thinking and approaches to the research on this subject.
引文
[1]北京中金企信国际信息咨询中心.2010年中国轿车保有量及销售排名分析报告.2010
    [2]李金库,朱荣福.车用进气谐振消声器研究现状分析.交通科技与经济,2008,(5):38-44
    [3]杨安杰.汽车噪声标准与测试探讨.噪声与振动控制,2010,(8):110-114
    [4]张辉平.汽车噪声测量标准分析.客车技术与研究,2009,(1):52-54
    [5]George A. Automobile Aerodynamic Noise.1990, SAE Technical Paper 900315.
    [6]林康美.汽车噪声产生及控制方法研究,http://www.14edu.com/qita/0RM961 HO 10.html
    [7]庞剑,谌刚,何华.汽车噪声与振动--理论与应用.北京:北京理工大学出版社,2005
    [8]Hucho W H. Aerodynamics of Road Vehicles. Warrendale, PA:Society of Automotive Engineers Inc,1998
    [9]Buchheim R, Dobrzynski W, and Mankau H, et al. Vehicle Interior Noise Related to External Aerodynamics. International Journal of Vehicle Design,1982, 3(4):398-410
    [10]谷正气.汽车空气动力学,北京:人民交通出版社,2005
    [11]An C F, Alaie S M, and Sovani S D, et al. Side Window Buffeting Characteristics of an SUV.2004,SAE Technical Paper 2004-01-0230
    [12]Lorea A, Castelluccio V, and Costelli A, et al. A Wind-Tunnel Method for Evaluating the Aerodynamic Noise of Cars.1986, SAE Technical Paper 860215.
    [13]Thomson J, Wind Noise-A Practical Approach. Society of Automotive Engineers, 1964, Mar.30-Apr.3, p.840B
    [14]杨博.汽车外部空气动力噪声研究,[吉林大学博士学位论文].吉林长春:吉林大学,2008
    [15]Watanabe M, Harita M, and Hayashi E. The Effect of Body Shapes on Wind Noise.1978, SAE Technical Paper 780266
    [16]Lee B H K. Vertical Tail Buffeting of Fighter Aircraft. Progress in Aerospace Sciences,2000,36:193-279
    [17]Minh N N, Miyata T, Yamada H, et al.Numerical Simulation of Wind Turbulence and Buffeting Analysis of Long-span Bridge. J. Wind Eng.& Industrial Aerodynamics,1999,83:301-315
    [18]Zhou Y, Kareem A, and Gu M. Equivalent Static Buffeting Loads on Structures. J. Structural Eng.,2000,989-992
    [19]Bodger W K, Jones C M. Aerodynamic Wind Throb in Passenger Cars. SAE Transactions,1965,195-206
    [20]Aspinall D T, An Empirical Investigation of Low Frequency Wind Noise in Motor Cars.1966, UK:MIRA report
    [21]Ukita T, China H, and Kanie K.Analysis of Vehicle Wind Throb Using CFD and Flow Visualization.1997, SAE Technical Paper 970407
    [22]Nelson P A, Halliwell N A, and Doak P E. Fluid Dynamics of Flow Excited Resonance, Part Ⅱ:Flow Acoustic, Interaction. Journal of Sound and Vibration, 1983,91(3):375-402
    [23]Ota D K, Chakravarthy S R, Becker T, et al. Computational Study of Resonance Suppression of Open Sunroof. Journal of Fluids Engineering,1994,877-882
    [24]Karbon K, Kumarasamy S. Computational Aero-acoustics Applications in Automotive Design. First MIT Conference on Computational Fluid and Solid Mechanics,2001
    [25]Karbon K, Kumarasamy S, and Singh R. Applications and Issues in Automotive Computational Aeroacoustics. Canada:10th Annual Conference of the CFD Society of Canada,2002
    [26]Karbon K, Singh R. Simulation and Design of Automobile Sunroof Buffeting Noise Control.8th AIAA/CEAS Aeroacoustics Conference & Exhibit,2002
    [27]An C F, Mitchell M, and Puskarz K S, et al.Attempts for Reduction of Rear Window Buffeting Using CFD.2005, SAE Technical Paper 2004-01-0603
    [28]韩善灵.面向空腔流场与声场数值模拟的格子Boltzmann方法研究,[上海交通大学博士学位论文].上海:上海交通大学,2006
    [29]Hucho W H. The Aerodynamic Drag of Cars. In:Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles. Plenum, New York,1978,1-44
    [30]Dobrzynski W. Sources of Aerodynamic Noise on Cars. SAE SP 96/1184, ISBN 1-56091-827-6, Detroit, USA,1983
    [31]Sadakata O, Kanamaru K, and Kakamu T. A Consideration of Wind Noise Reduction by Air Flow Control.1988, SAE Technical Paper 885115
    [32]Shigeru H, Takahide N, Ichiro K, et al. An Experimental Analysis and Estimation of Aerodynamic Noise Using a Production Vehicle,1990, SAE Technical Paper 900316.
    [33]Shigeru H, Ichiro K, and Satoshi O. Estimation Method for Automobile Aerodynamic Noise.1992, SAE Technical Paper 920205.
    [34]Zhu M, Hanaoka Y, Aoki K, et al. A Numerical Study of Wind Noise around Front Pillar.1993, SAE Technical Paper 930296
    [35]Hanaoka Y, Zhu M, Miyata H. Numerical Prediction of Wind Noise around the Front Pillar of a Car-Like Body.1993, SAE Technical Paper 931895
    [36]Cogotti A. Aeroacoustic Testing Improvements at Pinifarina.1994, SAE Technical Paper 940417
    [37]Cogotti A. Generation of a Controlled Level of Turbulence in the Pininfarina Wind Tunnel for the Measurement of Unsteady Aerodynamics and Aeroacoustics. 2003, SAE Technical Paper 2003-01-0430
    [38]Cogotti A. Update on the Pininfarina "Turbulence Generation System" and its Effects on the Car Aerodynamics and Aeroacoustics.2004, SAE Technical Paper 2004-01-0807
    [39]Cogotti A. Cardano D, and Carlino G, et al. Aerodynamics and Aeroacoustics of Passenger Cars in a Controlled High Turbulence Flow:Some New Results.2005, SAE Technical Paper 2005-01-1455
    [40]Fukushima T et al., Development of a Numerical Analysis System for Car Aerodynamic Noise.'95 Spring Convention Proceedings of JSAE,1995
    [41]Chen K H. Johnson J, Dietschi U, et al. Wind Noise Measurements for Automotive Mirrors.2009, SAE Technical Paper 2009-01-0184
    [42]Kumarasamy S, and Karbon K. Aeroacoustics of an Automobile A-Pillar Rain Gutter:Computational and Experimental Study.1999, SAE Technical Paper 1999-01-1128
    [43]Li Y, Takashi K, Takahide N, et al. Evaluation of Aerodynamic Noise Generated in Production Vehicle Using Experiment and Numerical Simulation.2003, SAE Technical Paper 2003-01-1314
    [44]Bodger W K, and Jones C M, Aerodynamic Wind Throb in Passenger Cars.1964, SAE Technical Paper640797
    [45]Sovani S D, Hendriana D. Predicting Passenger Car Window Buffeting With Transient External-Aerodynamics Simulations. Canada:10th Annual Conference of the CFD Society of Canada,2002
    [46]An C F, Mitchell M, and Puskarz, et al., Attempts for Reduction of Rear Window Buffeting Using CFD.2005, SAE Technical Paper 2005-01-0603
    [47]An C F, and Kanwerdip S. Optimization Study for Sunroof Buffeting Reduction. 2006. SAE Technical Paper,2006-01-0138
    [48]傅立敏.汽车空气动力学.北京:机械工业出版社,2006
    [49]陆森林.高速车辆外部气流噪声及表面脉动压力的研究,[江苏大学博士论文].江苏镇江:江苏大学,2001
    [50]夏恒.高速车辆车内气流噪声的理论计算方法研究,[江苏大学博士学位论文].江苏镇江:江苏大学,2002.
    [51]夏恒,宫镇,陆森林.用边界元法计算高速车辆内部气流噪声.江苏大学学报,2003,24(1):47-50
    [52]葛芚.轿车后视镜尾部气流脉动压力场分布及向车室内传递气流噪声的理论估算.汽车工程,1996,18(2):98-102
    [53]葛芚,宫镇.关于桑塔纳轿车后视镜产生的车外气流辐射声的研究.汽车工程,1995,17(6):379-383
    [54]冷小磊.车外气流噪声产生机理的研究及用谱分解方法求涡动力方程的数值解.[江苏大学硕士学位论文].江苏镇江:江苏大学,1999
    [55]吴立业.汽车外部流场及气流噪声的初步探讨及数值模拟.[江苏大学硕士学位论文].江苏镇江:江苏大学,2000
    [56]陆森林.高速车辆外部气流噪声及表面脉动压力的研究.[江苏大学硕士学位论文].江苏镇江:江苏大学,2001
    [57]夏恒,宫镇.关于高速车辆内部气流噪声计算方法的研究.汽车工程,2003,25(1):78-81
    [58]宫镇,夏恒.高速车辆内部气流噪声的统计能量分析.农业机械学报,2003,34(2):7-10
    [59]肖联毅.高速车辆气动噪声研究.[湖南大学硕士论文].湖南长沙:湖南大学,2007
    [60]田伟.汽车风噪声的数值仿真与分析.[南京理工硕士学位论文].江苏南京:南京大学,2006
    [61]肖军生.高速轿车外流场气动噪声研究.[吉林大学硕士学位论文].吉林长春:吉林大学,2006
    [62]洪四华.某SUV汽车外流场及气动噪声研究.[北京航空航天大学硕士论文].北京:北京航空航天大学,2007
    [63][美]Blevins R D著,吴恕三,王觉等译,流体诱发振动,北京:机械工业出版社,1981
    [64]Lighthill M. On Sound Generated Aerodynamically:Part Ⅱ:Turbulence as a Source of Sound. Proc. Royal Society, London,1954
    [65]Lighthill M. On Sound Generated Aerodynamically. Part Ⅰ. General Theory, Proc. Royal Society, London,1952
    [66]Powell A. Theory of Vortex Sound. Journal of Acoustical Society of America, 1964,36:177-195
    [67]胡国庆,傅德薰,马延文.基于比拟理论的翼型扰流声场数值模拟.力学学报,2000,32(4):392-401
    [68]居鸿宾,沈孟育.计算气动声学的问题、方法与进展.力学与实践,1995,1(5):1-9
    [69]Lighthill M. Report on the final panel discussion on computational aeroacoustics. Proceedings held at the ICASE/NASA Workshop on Computational Aeroacoustics, 1992
    [70]Crighton D. Scattering and diffraction of sound by moving bodies. Journal of Fluid Mechanics,1975,72(2):209-227
    [71]Curle N. The influence of Solid Boundaries Upon Aerodynamic Sound. Proceedings of the Royal Society, London,1955, A231:505-514
    [72]Phillips O. The intensity of Aeolian Tones. Journal of Fluid Mechanics,1956, 1:607-624
    [73]Burton I, and Blevins R. Vortex Shedding Noise from Oscillating Cylinders. J. Acoust.Soc. Am,1976,60:599-606
    [74]Ffowes Williams J, and Hawkings D. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Phil. Trans.Roy.Soc.1969,264A:321-342
    [75]Lowson W. Theoretical Analyses of Compressor Noise. J. Acoust. Soc. Am,1970, 47:371-385
    [76]Wright, S., Sound Radiation from a Lifting Rotor Generated by Asymmetric Disc Loading, Journal of Sound and Vibration,1969,9(2):223-240
    [77]Farassat, F., Theory of Noise Generation from Moving Bodies with an Application on Helicopter Rotors, NASA,TR R4511,1975
    [78]Farassat, F. Discontinuities in Aerodynamics and Aeroacoustics:The Concept and Application of Generalized Derivatives, Journal of Sound and Vibration, 1977,55:165-193
    [79]Farassat, F. and Succi, G., A Review of Propeller Discrete Frequency Noise Prediction Technology with Emphasis on Two Current Method for Time Domain Calculations, Journal of Sound and Vibration,1980,71:399-419
    [80]Farassat, F. and Nvtron, P., A Numerical Technique for Calculation of Noise of High Speed Propellers with Advanced Geometry, NASA TP 1662,1980
    [81]Kenneth, S., Prediction of Helicopter Rotor Discrete Frequency Noise, NASA Technical Memorandum 87721,1986
    [82]Farassat, F., Acoustic Radiation from Rotating Blades-the Kirchhoff Method in Aeroacoustics, Journal of Sound and Vibration,2001,239(4):785-800
    [83]Goldstein, M., Unified Approach to Aerodynamic Sound Generation in the Presence of Sound Boundaries, J. Acoust. Soc. Am.,1974,56:497-509
    [84]Phillips, O., On the Generation of Sound by Supersonic Turbulent Shear Layers, Journal of Fluid Mechanics,1960,9(1):1-28
    [85]Lilley, G., Morris, P. and Tester, B., On the Theory of Jet Noise and its Applications, AIAA Progress in Astronautics and Aeronautics,1975,AIAA paper:1973-987-984
    [86]Crighton, D., Acoustic as Branch of Fluid Mechanics, Journal of Fluid Mechanics, 1981,106:261-298
    [87]Mohring, W., Problems in Flow Acoustics, Reviews in Modern Physics,1983, 55:707-724
    [88]Howe, M., Contributions to the Theory of Aerodynamic Sound with Application to Excess Jet Noise and to Theory of the Flute, Journal of Fluid Mechanics, 1975,71:625-673
    [89]Doak, P., Analysis of Internally Generated Sound in Continuous Materials:2. A Critical Review of the Conceptual Adequacy and Physical Scope of Existing Theories of Aerodynamic Noise, With the Spectral Reference to Supersonic Jet Noise, Journal of Sound and Vibration,1972,25:265-285
    [90]Doak, P., Analysis of Internally Generated Sound in Continuous Materials:3.The Momentum Potential Field Description of Fluctuating Fluid Motion as a Basis for a Unified Theory of Internally Generated Sound, Journal of Sound and Vibration, 1973,26:91-120.
    [91]Yates, J., Interaction with and Production of Sound by Vortex Flow,1977, AIAA 77-1352
    [92]Yates, J. and Sandr, G., Bernoulli Enthalpy:A Fundamental Concept in the Theory of Sound,1975, AIAA 75-439
    [93]Obermeier, F., On a New Representation of Aeroacoustic Source Distribution I.General Theory, Ⅱ.Two-Dimensional Model Flows, Acustica,1979,42:56-71
    [94]Goldsten, M., Turbulence Generated by Interaction of Entropy Fluctuations with Non-Uniform Mean Flow, J. Fluid Mech.1979,93:209-224
    [95]Goldsten, M., The Effect of Finite Turbulence Spatial Scale on the Application of Turbulence by a Contracting Stream, J. Fluid Mech.,1980,98:473-508
    [96]Goldsten, M., The Coupling between Flow Instabilities and Incident Disturbances at a Leading Edge, J. Fluid Mech.,1981,104:217-246
    [97]Goldsten, M., High Frequency Sound Emission from Moving Point Multi-pole Source Embedded in Arbitrary Transversely Sheared Mean Flows, Journal of Sound and Vibration,1982,80:499-521
    [98]孙晓峰,周盛,气动声学,国防工业出版社,1994
    [99]Parker, R., Resonant Effect in Wake Shedding from Parallel plates:Some Experimental Observation, Journal of Sound and Vibration,1974,4:247-261
    [100]Parker, R. and Pryce, D., Wake Excited Resonances in an Annular Cascade:An Experimental Investigation, Journal of Sound and Vibration,1974,37:247-260
    [101]Parker, R., Acoustic Resonances and Blade Vibration in Axial Flow Compressors, Journal of Sound and Vibration,1984,92:529-539
    [102]Stokes, A.N., Welsh, M.C. and Parker, R., Flow-Resonant Sound Interaction in a Dust Containing a Plate, Part I:Semi-Circular Leading Edge, Journal of Sound and Vibration,1984,95:305-323
    [103]Stokes, A. and Welsh, M., Flow-Resonant Sound Interaction in a Dust Containing a Plate, Part Ⅱ:Square Leading Edge, Journal of Sound and Vibration,1986, 104:55-73
    [104]Ahuja, K. and Burrin, R., Control of Flow Separation by Sound,1984, AIAA 84-2298
    [105]Marchman, J., Sumantran, V. and Schaefer, C., Acoustic and Turbulence Influences on Stall Hysteresis, AIAA Journal,1987,23(1):50-52
    [106]Wu.J., Review of the Physics of Enhancing Vortex Lift by Unsteady Excitation, Progress in Aerospace Sciences,1991,28(2):73-131
    [107]Hirschberg, A., Rienstra, S., An introduction to aeroacoustics, Dept. of App. Physics and Dept. of Mathematics and Comp. Science, Eindhoven University of Technology,2004
    [108]Hardin, J., and Hussaini, M.Y., Computational Aeroacoustics, Springer-Verlag, New York.1993
    [109]FLUENT 6.3 User's Guide, FLUENT Inc..2006
    [110]Huh, K.S.. Computational aeroacoustics via linearized Euler equations in the frequency domain, PhD Theses, Massachusetts Institute of Technology,1993
    [111]Gu, Z.Q., Wang, Y.P., Li, W.P., Yang, X., Evaluation of Aerodynamic Noise Generated in a Miniature Car Using Numerical Simulation, SAE International Journal of Passenger Cars-Mechanical Systems,2009,2(1):693-702
    [112]Qiao, W.Y., Michel, U., Theoretical Investigation of the Vortex Shedding Noise from the Wake of Airfoil, Chinese Journal of Aeronautics,2001,14(2):65-72
    [113]Wang, Y.P., Gu, Z.Q., Chen, J., Li, K.M., Accurate Predictions of Cabin Noise for Vehicles Traveling at High Speeds, Journal of acoustic society of America, (submitted)
    [114]Wang, Y.P., Gu, Z.Q., Chen, J., Numerical Simulation of Noise Induced by Flow in HVAC Ventilation Ducts.2011 SAE World Congress, SAE 2011-01-050.
    [115]汪怡平,谷正气,杨雪,李伟平等,汽车空调出风管道气动噪声分析与控制,湖南大学学报(自然科学版),2010,37(3):22-28
    [116]Toshihiko, N., Kengo, K., Keiichi, I., Development of Large Size High Efficiency and Low Noise Fan Series, SAE Technical Paper 2005-01-1768
    [117]Moron, P., Powell, R., Freed, D. et al., A CFD/SEA Approach for Prediction of Vehicle Interior Noise due to Wind Noise, SAE Technical Paper,2009-01-2203
    [118]Proudman, I., The Generation of Noise by Isotropic Turbulence. Proc. Roy. Soc., 1952, A214:119
    [119]Lilley, G. M., The radiated noise from isotropic turbulence revisited. NASA Contract Report 93-75, NASA Langley Research Center, Hampton, VA,1993
    [120]Omar, M., and Perry, J., Broadband Noise Source Models as Aeroacoustic Tools in Designing Low NVH HVAC Ducts. SAE Technical Paper,2006-01-1192
    [121]Christodoulou, D., The Euler Equations of Compressible Fluid Flow, Bulletin of the American Mathematical Society,2007,44(4):581-602
    [122]Lyrintzis, A.S., Review:the use of Kirchhoffs method in computational aeroacoustics, Journal Fluids Eng.,1994,116:665-76
    [123]Halighi, Y., Mani, A., Ham, F., and Moin, P., Prediction of Sound Generated by Complex Flows at Low Mach Numbers, AIAA Journal,2010,8:306-316
    [124]Tam C K W. Computational aeroacoustics:issues and Methods, AIAA Journal, 1995,33(10):1788-1796
    [125]Howe, M. S., Acoustics of Fluid-Structure Interactions, Cambridge University Press,1998
    [126]Ogawa, S. and Kamioka, T., Review of Aerodynamic Noise Prediction Using CFD, SAE Technical Paper 1999-01-1126
    [127]Wang, M., Freund, J. B. and Lele, S. J., Computational Prediction of Flow-Generated Sound," Annual Review of Fluid Mechanics,2006,38:483-512
    [128]Tsai, C. H., Fu, L. M., Huang, Y. L. et al., Computational Aero-acoustic Analysis of a Passenger Car with a Rear Spoiler, Applied Mathematical Modelling,2009, 33:3661-3673
    [129]Moin, P. and Mahesh, K., Direct Numerical Simulation:A Tool in Turbulence Research, Annual Review of Fluid Mechanics,1998,30:359-378.
    [130]Cebeci, T., Turbulence Models and Their Application. Efficient Numerical Methods with Computer Programs, Springer-Verlag, New York 2004
    [131]Karbon, K. J. and Dietschi, U. D., Computational Analysis and Design to Minimize Vehicle Roof Rack Wind Noise, SAE Technical Paper 2005-01-0602
    [132]Orselli, R. M., Meneghini, J. R., and Saltara, F., Two and Three-Dimensional Simulation of Sound Generated by Flow around a Circular Cylinder, AIAA 2009-3270
    [133]Li, Y., Kasaki, N., Tsunoda, S., et.al., Evaluation of Wind Noise Sources Using Experimental and Computational Methods, SAE Technical Paper 2006-01-0343
    [134]Lesieur, M. and Metais, O., New Trends in Large-eddy Simulations of Turbulence, Annual Review of Fluid Mechanics,1996,28:45-82
    [135]Turbulence Theory Gets a Bit Choppy. USA Today. September 10,2006
    [136]王福军主编,计算流体动力学分析:CFD软件原理与应用,清华大学出版社2004
    [137]Smagorinsky, J., General Circulation Experiments with the Primitive Equations, Monthly Weather Review,1963,91(3):99-164
    [138]Deardorff, J., A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, Journal of Fluid Mechanics,1970,41(2):453-480
    [139]张兆顺主编,湍流大涡数值模拟的理论和应用,清华大学出版社,2008
    [140]Hinze, J. O., Turbulence. McGraw-Hill Publishing Co., New York,1975
    [141]Rollet-Miet, P., Laurence, D., Ferziger, J., LES and RANS of turbulent flow in tube bundles, International Journal of Heat and Fluid Flow.1999,2(3):241-254
    [142]何忆斌,汽车车身气动造型优化研究及工程应用:[湖南大学博士论文].湖南长沙:湖南大学,2008
    [143]Pope, S., Turbulent Flows, Cambridge University Press, Cambridge,2000
    [144]Meneveau, C. and Katz, J., Scale-invariance and Turbulence Models for Large-eddy Simulation, Annual Review of Fluid Mechanics,2000,32:1-32
    [145]Lilly, D. K., A Proposed Modification of the Germano Subgrid-Scale Closure Model, Physics of Fluids,1992,4:633-635
    [146]Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., Dynamic Subgrid-Scale Eddy Viscosity Model, In Summer Workshop, Center for Turbulence Research. Stanford, CA,1996
    [147]Derkse, J.. Assessment of Large Eddy Simulations for Agitated Flows, Chemical Engineering Research and Design,2001,79(8):824-830
    [148]Nicoud, F., and Ducros, F., Subgrid-Scale Stress Modeling Based on the Square of the Velocity Gradient Tensor, Flow, Turbulence, and Combustion,1999, 62(3):183-200
    [149]Yakhot, A., Orszag, S. A., Yakhot, V., and M. Israeli. Renormalization Group Formulation of Large-Eddy Simulation, Journal of Scientific Computing,1989, 4:139-158.
    [150]Kim, W.W., and Menon, S., Application of the localized dynamic subgrid-scale model to turbulent wall-bounded flows, Technical Report AIAA-97-0210, American Institute of Aeronautics and Astronautics,35th Aerospace Sciences Meeting, Reno, NV, January 1997
    [151]Davidson, L., Peng, S. H., Hybrid LES-RANS modeling:a one-equation SGS model combined with a k-ω model for predicting recirculating flows, Int. J. Numer. Meth. Fluids,2003,43:1003-1018
    [152]Schumann, U., Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics, 1975,18:376-404
    [153]Grotzbach, G., Direct numerical and large eddy simulation of turbulent channel flow, Encyclopedia of Fluid Dynamics,1987,6:1337-1397
    [154]Piomelli, U.. Ferziger, J., Moin, P., New approximate boundary conditions for large eddy simulations. Physics of Fluids A,1989,1:1061-1068
    [155]Mason, P.J., Callen, N.S., On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. Journal of Fluid Mechanics, 1986,162:439-462
    [156]Werner, H., Wengle, H., Large-eddy simulation of turbulent flow over and around a cube in a plane channel. In 8th Symp. on Turb. Shear Flows,1991,8:155-168
    [157]Bagwell, G., Andrian, R.J., Moser, R.D, Kim, J., Improved approximation of wall shear stress boundary conditions for large eddy simulation. In Near-wall Turbulent Flows, ed. RMC So, CG Speziale, BE Launder, pp.265-75. Amsterdam: Elsevier,1993.
    [158]Temmerman, L., Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions, International Journal of Heat and Fluid Flow,2003, 24(2):157-180
    [159]常思勉,三维流动数值模拟中网格划分方法的研究,武汉工业大学学报,1998, 20(2):1-5
    [160]常思勉,CFD应用与车辆空气动力学特性的研究,武汉工业大学学报1999,21(1):15-19
    [161]Cantwell, B. and Coles, D., An Experimental Study of Entrainment and Transport in the Turbulent Near Wake of Circular Cylinder, J. Fluid Mech.,1983, 136:321-374
    [162]Norberg, C., Fluctuating Lift on a Circular Cylinder:Review and New Measurement, J. Fluids and structures,2002,17(1):57-96
    [163]West, G.S. and Apelt, C.J., Measurement of Fluctuation Pressures and Forces on Circular Cylinder in the Reynolds Number.10.and 2.5 x 105, Fluids and Structures,1993,7(3):227-244
    [164]Achenbach, E., Distribution of Local Pressure and Skin Friction in Cross Flow Around a Circular Cylinder up to Re=5×106, J. Fluid Mech.,1968,34:625-639
    [165]Hold, R., Brenneis, A., and Eberle, A., Numerical Simulation of Aeroacoustic Sound Generated by Generic Bodies Placed on a Plate:Part I-Prediction of Aeroacoustic Sources,5th AIAA/CEAS Aeroacoustics Conference. Seattle, Washington,10-12 May 1999, AIAA-99-1896
    [166]Stapleford, W.R and Carr, G.W., Aerodynamic Noise on Road Vehicle, Part 1, the Relationship between Aerodynamic Noise and the Nature of Airflow, the Motor Industry Research Association, Report, No,1979/2,1970
    [167]Laufer, J.L., On the mechanism of noise generation by turbulence, Omaggio a Carlo Ferrari,1974,10:451-464
    [168]Hussain, A.K.M.F., Coherent Structure-Reality and Myth, Physics of Fluids,1986, 26:2816-2850
    [169]Hussain, A.K.M.F., Coherent Structure and Turbulence, Journal of Fluid Mechanics,1986,173:303-356
    [170]Farabee, T.M., An Experimental Investigation of Wall Pressure Fluctuations beneath Non-Equilibrium Turbulent Flows:PhD Dissertation, The Catholic University of America, David W. Taylor Naval Ship research and Development Centre, USA,1986
    [171]Simpson, R.L., Ghodbane, M., and McGrath, B.E., Surface Pressure Fluctuations in a Separating Turbulent Boundary Layer, Journal of Fluid Mechanics,1987,177: 167-186
    [172]Simpson, R.L., Turbulent Boundary-Layer Separation, Annual Review of Fluid Mechanics.1989.21:205-234
    [173]Sadakata, O., A Consideration of Wind Noise Reduction by Air Flow Control, 22nd FISITA, No.885115, pp.182-189,1988.
    [174]Haruna, S, Nouzawa, T, Kamimoto, I and Sato, H., An Experimental Analysis and Estimation of Aerodynamic Noise Using a Production Vehicle, SAE Technical Paper,900316
    [175]Popat, B.C., Study of Flow and Noise Generation from Car A-Pillars:PhD Thesis, University of London,1991
    [176]Nienaltowska, E., Separated Flow on the Car Body:Spectral and Spatial Characteristics Analyzed from the Aeroacoustic Viewpoint, International Journal of Vehicle Design,1993,14(5/6):11-29
    [177]Zhu, M, Hanaoka, Y and Miyata, H., Numerical Study on the Mechanism of Wind Noise Generation about a Car-Like Body, ASME Transaction,1994,116:424-432
    [178]Hamel, T.A, Ahuja, K.K., Wind-Noise Measurements on an Automobile Side Glass with A-Pillars of Different Height, AIAA Journal,1996,34(3):195-218
    [179]George, A.R, Callister, J.R., Aeroacoustics of Passenger Cars-State-of-the-Art, Seminar on Aerodynamics and Powertrain Automobile Noise, Industrie Pininfarina, Aerodynamic and Aeroacoustic Research Centre, Grugliasco, Italy. 1996
    [180]Alam, F., The Effects of Car A-Pillar and Windshield Geometry and Yaw Angles on Local Flow and Noise:PhD Thesis, RMIT University, Australia,2000
    [181]Bradley, D. D., Raja, S., Swapan, M., Rick, S., Sims-Williams, D. B., Numerical Simulation and Spectral Analysis of Pressure Fluctuations in Vehicle Aerodynamic Noise Generation, SAE Technical Paper,2002-01-0597
    [182]Spalart, P.R., Jou, W.H., Stretlets, M., and Allmaras, S. R., Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach, Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA,1997
    [183]Nurul, M. M., Jamal, N., Firoz, A. and Simon, W., Simulation of Vehicle A-Pillar Aerodynamics using Various Turbulence Models, SAE Technical Paper, 2004-01-0231
    [184]何忆斌,谷正气,吴军,姜波.三方程在汽车外流场仿真计算中的应用,机械工程学报,2008,44(1):184-189
    [185]Launder, B.E., Low-Reynolds-number turbulence near walls, Dept. Mechanical Engineering, UMIST (now School of MACE, University of Manchester), Report TFD/86/4,1986
    [186]Durbin,P.A., Separated Flow Computations with the k-epsilon-v-squared Model, AIAA Journal,1995,33(4):659-664
    [187]Durbin, P.A., Near-wall turbulence closure modeling without'damping functions' Theoretical and Computational Fluid Dynamics,1991,3(1):1-13
    [188]Wang, M., and Chen, Q., Assessment of Various Turbulence Models for Flows in Enclosed Environment (RP-1271). HVAC & R Research,2009,15(6):1099-1119
    [189]Wang, M., and Chen, Q., On a Hybrid RANS/LES Approach for Indoor Airflow Modeling, HVAC & R Research,2010,16(6):731-74
    [190]Ahmad, N.E., Abo-Serie, E., and Gaylard, A., Mesh Optimization for Ground Vehicle Aerodynamics, CFD Letters,2001,2(1):54-65
    [191]Gaylard, A.P., Baxendale, A.J.and Howell, J.P., The Use of CFD to Prediction the Aerodynamic Characteristics of Simple Automotive Shapes, SAE Technical Paper 980036
    [192]Lacey, J., Drag Measurements with High Blockage, SAE Technical Paper 2004-01-0671
    [193]李学武,某微车的气动特性分析及优化:[湖南大学硕士论文].湖南长沙:湖南大学,2008
    [194]陈细军,汽车空气动力学特性风洞试验研究,[湖南大学硕士论文].湖南长沙:湖南大学,2009
    [195]Gaylard, A., Baxendale, A., Howell, J., The Use of CFD to Predict the Aerodynamic Characteristics of Simple Automotive Shapes, SAE Technical Paper 980036
    [196]Shieh, C. M., Parallel numerical simulations of subsonic, turbulent, flow-induced noise from two-and three-dimensional cavities using computational aeroacoustics [D].The Pennsylvania State University,2000
    [197]Delprat, N., Rossiter's formula:A simple spectral model for a complex amplitude modulation process? Physics of Fluids,2006,18(7):294-316
    [198]Rossiter, J., Wind Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds. Royal Aircraft Establishment, Technical Report 64037,1964
    [199]Kinsler, L. E., Frey, A.R., Coppens, A.B. and Sanders, J.V., Fundamental of Acoustics, John Wiley and Sons,3 edition,1982
    [200]Ricot, D. Maillard, V. and Bailly, C., Numerical Simulation of the Unsteady Flow Past a Cavity and Application to the Sunroof Buffeting,7th AIAA/CEAS Aeroacoustics Conference,28-30 May,2011 Maastricht, Netherlands. AIAA 2001-2122
    [201]Roller, S. and Munz, C. D. A Low Mach number Scheme Based on Multi-scale Asymptotics, Computing and Visualization in Science,2000,3(1/2):85-91
    [202]Tyliszczak, A., Application of Preconditioning Methods for Compressible flows, PhD thesis, Politechnika Czestochowska/Von Karman Institute for Fluid Dynamics,2002
    [203]Keshtiban, I.J., Belblidia, F. and Webster, M.F., Compressible Flow Solvers for Low Mach Number Flows- a review. Swansea University Computer Science Research Reports, CSR-2004,2004
    [204]Hardin, J. C., and Pope, D. S., Sound Generation by Flow over a Two-Dimensional Cavity, AIAA Journal,1995,33(3):407-412
    [205]Klainerman, S., Majda, A., Compressible and incompressible fluids. Communications on Pure and Applied Mathematics,1982,35:629-651
    [206]Wang, Y. and Liu Y., Prediction of 3D Cavity Hydrodynamic Noise Based on Equivalent Source Method, Advanced Materials Research,2011,189-193:53-56
    [207]汪怡平,汽车气动噪声数值计算分析与控制,[湖南大学硕士论文].湖南长沙:湖南大学,2009
    [208]Aspinall, D.T., MIRA Report No.1966-2,1966
    [209]D. V. Brown and L. Mongeau, The design, construction, and validation of a small, low-speed, quiet wind tunnel with application to noise from the flow over a cavity, Ray W. Herrick Laboratories Internal Report No.204, Purdue University, West Lafayette, Indiana,1995
    [210]Duell, E. and Everstine, D., A Review of Exterior Measurement Techniques for Aeroacoustic Testing (in Topics in Wind Noise) SP-1457 [M]. Warrendale, PA: Society of Automotive Engineers Inc,1999
    [211]谷正气,肖朕意,莫志姣,汽车风振噪声的CFD仿真研究现状,噪声与振动控制,2007,27(4):65-68
    [212]Gaster, M., Kit, E. and Wignanski, I., Large-scale Structures in a Forced Turbulent Mixing Layer, J. Fluid Mech.,1985,150:23-39
    [213]Larcheveque, L., Sagaut, P., Ivan, M., and Labbe, O., Large-eddy simulation of a compressible flow past a deep cavity, Physics of fluids,2003,15(1):193-210
    [214]Frorestier, N., Jacquin, L. and Geffroy, P., The mixing layer over a deep cavity at high subsonic speed, J. Fluid Mech.,2003,475:101-145
    [215]Rockwell, D., and Knisely, C., Vortex-edge Interaction:Mechanisms for Generating Low Frequency Components, Physics of Fluids,1980,23(2):239-240
    [216]Gharib, M., The Effect of Flow Oscillations on Cavity Drag, and a Technique for their Control, Ph.D. Thesis, California Institute of Technology,1983
    [217]Kegerise, M., Spina, E., Garg, S., and Cattafesta, L., Mode-Switching and NonlinearEffects in Compressible Flow over a Cavity, Physics of Fluids,2004, 16(3):678-687
    [218]Daoud, M., and Naguib, A.M., Microphone-array Measurements of the Floor Pressure in a Low-speed Cavity Flow, AIAA Journal,2006,44(9):2018-2023
    [219]Ashcroft, G., and Zhang, X., Vortical Structures over Rectangular Cavities at Low Speed, Physics of Fluids,2005,17(1):015104-1-015104-8
    [220]Kook, H.S., Shin, S. R. and Ih. G.D., Measurement of the Sunroof Buffeting Noise with an Automatic Deflector-traversing Device, International journal of precision engineering and manufacturing,2010,11(1):5-11
    [221]Krishnamurty, K., Acoustic Radiation from Two-dimensional Rectangular Cutouts in Aerodynamic Surface, NACA TN-3487,1955
    [222]Sarohia, V., Experimental Investigation of Oscillations in Flows over Shallow Cavities, AIAA Journal,1977,15:984-991
    [223]Yoo, S.P. and Lee, D.Y., Time-delayed phase-control for suppression of the flow-induced noise from an open cavity, Applied Acoustics,2008,69(3):215-224
    [224]Rowley, C.W. and Williams D.R., Dynamics and Control of High-Reynolds-number Flow over Open Cavities, Annual Review of Fluid Mechanicsville.2006,38:251-276
    [225]Crouse, B., Senthooran, S., Balasubramanian, G., Freed, D. and Karbon, K. Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting, SAE Technical Paper,2007-01-2403
    [226]Crouse, B., Balasubramanian, G.,Senthooran, S., Freed, D. et.al., Investigation of Gap Deflector Efficiency for Reduction of Sunroof Buffeting, SAE Technical Paper 2009-01-2233
    [227]An, C.F. and Singh, K., Sunroof Buffeting Suppression Using a Dividing Bar, SAE Technical Paper 2007-01-1552
    [228]Rao, J.S., Kumar, M.S., and Singh, A., Numerical Analysis of Sunroof Buffeting, SAE Technical Paper 2008-28-0059
    [229]Park, J. B., Mongeau, L. and Mejia, P.Y., Effects of Notches on Surface Pressure Fluctuations Downstream of a Leading Edge Spoiler, SAE Technical Paper 2009-01-2238
    [230]黄磊,汽车天窗风振问题的研究,噪声与振动控制,2009,2:38-41
    [231]Bhattacharyya, S. and Maiti, D.K., Shear Flow past a Square Cylinder near a Wall, International Journal of Engineering Science,2004,42(19-20):2119-2134
    [232]Panigrahi, P.K., PIV Investigation of Flow Behind Surface Mounted Detached Square Cylinder,2009,131 (1):163-172
    [233]Henderson, B., Sound generation by flow over a cavity, NASA/CP 2004-212954, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700