用户名: 密码: 验证码:
SIRT1在高糖培养人脐静脉血管内皮细胞损伤中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     近期发现长寿蛋白SIRT1可改善肥胖大鼠的胰岛素敏感性,降低血糖,改善动脉粥样硬化。但SIRT1改善糖尿病的机制未明,其是否参与了2型糖尿病及其大血管并发症的发生发展尚缺乏深入的研究。本研究以高糖培养原代人脐静脉内皮细胞(HUVEC)为研究对象,研究SIRT1在其损伤中的作用及可能的机制。
     方法:
     0.25%胰蛋白酶灌注消化法分离HUVEC细胞。取生长良好的第2~3代细胞用于实验。实验分4个部分。第1部分:高糖对内皮细胞SIRT1表达及内皮细胞功能指标的影响。培养细胞分为正常对照组(5.5 mmol/L葡萄糖)、高糖培养组(33.3mmol/L葡萄糖)、甘露醇高渗对照组(5.5 mmol/L葡萄糖+27.8 mmol/L甘露醇)。细胞处理48小时。应用RT-PCR法检测SIRT1、E-选择素、eNOS、内皮素-1基因的表达情况,以Western印迹法检测培养细胞SIRT1的蛋白水平,以硝酸还原酶法检测培养细胞上清中NO的含量。第2部分:SIRT1激动剂白藜芦醇对高糖处理内皮细胞功能指标的影响。细胞分为正常对照组、高糖组、1μmol/L白藜芦醇预处理24小时+高糖组。高糖处理48小时。分析指标及方法同第一部分。第3部分:白藜芦醇对SIRT1基因“沉默”后高糖处理内皮细胞功能指标的影响。细胞分5组:正常对照组、高糖组、白藜芦醇预处理+高糖组、SIRT1 siRNA+白藜芦醇预处理+高糖组、Lipo 2000+白藜芦醇+高糖组(空载体组)。前3组细胞处理同第2部分。SIRT1 siRNA组细胞以Lipofectamine 2000脂质体为载体转染1 6.7 nmol/LSIRT1 siRNA入内皮细胞,以干扰内皮细胞SIRT1的表达,干扰后6小时更换为正常培养液,24小时后进行后续的白藜芦醇和高糖处理。空载体组单纯以Lipofectamine 2000脂质体处理内皮细胞,其余处理同SIRT1 siRNA组。分析指标及方法同第一部分。第4部分:白藜芦醇对高糖处理内皮细胞胰岛素抵抗的影响。培养细胞分为对照组、胰岛素处理组、高糖组+胰岛素处理组、1μmol/L白藜芦醇预处理24小时+高糖+胰岛素处理组。高糖处理48小时。后3组细胞以100 nmol/L胰岛素刺激30 min。检测上清中内皮细胞NO分泌含量。
     结果:
     (1)与正常对照相比,高糖培养48小时使内皮细胞SIRT1的mRNA及蛋白表达均降低(P<0.05);内皮细胞eNOS mRNA的表达及NO分泌降低(P<0.01);而反映内皮细胞损伤的因子如E-选择素及内皮素-1的表达却明显升高(P<0.05)。甘露醇组与正常对照相比没有显著差异。
     (2)与高糖组相比,1μmol/L白藜芦醇预处理24小时明显升高高糖处理内皮细胞SIRT1的表达水平(P<0.01);同时内皮细胞eNOS的表达(P<0.05)、NO分泌均明显升高(P<0.01);E-选择素、内皮素-1明显降低(P<0.05)。
     (3)与单纯白藜芦醇处理组相比,SIRT1 siRNA组细胞SIRT1的mRNA及蛋白水平均显著降低(P<0.05),SIRT1蛋白表达的干扰效率为45.9%;内皮细胞的eNOS表达、NO的分泌明显降低(P<0.05),与高糖处理组没有差异,提示随SIRT1的表达“沉默”白藜芦醇促进eNOS表达、NO分泌的作用“消失”;内皮素-1的表达没有变化(P>0.05),均显著低于高糖组,提示随SIRT1的表达“沉默”白藜芦醇对内皮素-1的抑制作用不受影响;E-选择素的表达明显升高(P<0.05),与高糖处理组差异不明显,提示随SIRT1的表达“沉默”白藜芦醇对E-选择素的抑制作用也“消失”。空载体组与白藜芦醇处理组相比各指标无明显差异。
     (4)100 nmol/L胰岛素处理30 min明显刺激内皮细胞NO的分泌。高糖使内皮细胞胰岛素刺激的NO分泌降低,产生了内皮细胞胰岛素抵抗。但是白藜芦醇预处理可以明显促进高糖培养内皮细胞胰岛素刺激的NO分泌。P均<0.01。
     结论
     (1)SIRT1通过促进eNOS表达及刺激NO分泌而具有舒张血管的作用,还通过抑制E-选择素的表达降低白细胞对内皮细胞的黏附。SIRT1的表达降低在高糖诱导的血管内皮细胞损伤中具有重要作用,SIRT1激动剂可保护内皮细胞不受高糖的影响,因而在预防和治疗糖尿病大血管病变中具有广阔的前景。
     (2)白藜芦醇可通过促进SIRT1的表达而具有促进高糖培养内皮细胞eNOS表达、NO分泌及降低E-选择素表达的作用。白藜芦醇还具有抑制内皮细胞内皮素-1表达的作用,且该作用与SIRT1无关。白藜芦醇还具有改善高糖环境下内皮细胞胰岛素抵抗的作用。因此,白藜芦醇在预防和治疗糖尿病大血管病变中具有广阔的前景。
Objective:
     SIRT1 has been shown recently to lower plasma glucose levels,improve insulinsensitivity and atheroslerosis.To investigate the possible roles of SIRT1 in diabeticmacrovascular diseases,high glucose cultured primary human umbilical veinendothelial cells(HUVEC) is used.The underlying mechanisms are also investigated.
     Methods:
     Part 1,the expression of SIRT1 in high glucose culured HUVEC cells wereinvestigated,cells were divided into control group (5.5 mmol/L glucose),highglucose group (33.3 mmol/L glucose),hyperosmotic control group (27.8 mmol/Lmannitol+5.5 mmol/L glucose) The expression of SIRT1,eNOS,E-selectin,endothelin-1 mRNA were analyzed using RT-PCR;and the expression of SIRT1protein using Western blot.Supernatent of cells were collected for the analysis of thecontents of NO using nitric acid reductase.Part 2,the effects of SIRT1 activatorresveratrol on the function of high glucose culured HUVEC cells were investigated.Cells were divided into control group,high glucose group(48hours),1μmol/Lresveratrol pretreatment (24hours)group plus high glucose group.Part 3,the effects ofresveratrol on the functions of high glucose culured HUVEC after SIRT1“silence”were investigated.Cells were divided into control group,high glucose group,1μmol/L resveratrol pretreatment (24hours)group plus high glucose group,SIRT1siRNA or LipofectamineTM 2000 combined with resveratrol and high glucose group.For the latter two groups,cells were treated with 16.7 nmol/L SIRT1 siRNA (or not)in the assistance of Lipofectamine 2000 in order to interfere the expression of SIRT1.Part 4,cells were divided into control group,normal glucose group,high glucosegroup,1μmol/L resveratrol pretreatment (24 hours)group plus high glucose group.After 48 hours,cells in the latter three groups were stimulated by 100 nmol/L insulinfor 30 min.Nitric acid reductase was used to analyze the NO contents in supernatent.
     Results:
     (1) Compared with normal control cells,high glucose downregulated the levels ofSIRT1 both at the level of mRNA and protein(P<0.05),and downregulated thelevels of eNOS mRNA (P<0.01) and the secretion of NO (P<0.01),butupregulated the levels of E-selectin (P<0.05) and endothelin-1 (P<0.05);the levels of SIRT1,eNOS,E-selectin,endothelin-1 and NO ofmannitol group did not change.
     (2) Compared with high glucose groups,1μmol/L resveratrol pretreatment for 24hours significantly increased the expression of SIRT1 mRNA(P<0.01) and protein(P=0.01) of high glucose cultured HUVEC.Resveratrol also increased the level ofeNOS mRNA (P<0.05),the secretion of NO (P<0.01),but decreased the level ofE-selectin (P<0.05),and the level ofendothelin-1 (P<0.05).
     (3) After“knock out”the expression of SIRT1 of HUVEC,the up-regulating effectsof eNOS,NO and the down-regulating effects of E-selectin induced by resveratroldisappeared.But the down-regulating effects of resveratrol on the expression ofendothelin-1 did not change.The levels of SIRT1,eNOS,NO and endothelin-1 inLipofectamine 2000 group were not different from those in resveratrol alonetreatment group.
     (4) 100 nmol/L insulin treatment for 30 rains significantly stimulated the secretion ofNO in HUVEC.But high glucose impires the insulin roles on endothelial cells.Whenpretreatment endothelial cells with resveratrol significantly promote the stimulatingeffects of insulin on the secretion of NO in endothelial cells(P<0.01).
     Conclusions:
     (1) SIRT1 is down-regulated when endothelial cells is cultured at high level ofglucose,SIRT1 activitor can improve the dilation of endothelial cell and downregulate the expression of E-selectin in endothelial cells cultured in high glucose,andfunctions as an endothelial cell protector,and therefore may have the great promise inthe prevention or therapy of diabetic macrovascular diseases.
     (2) Resveratrol can protect the endothelial cells from high glucose induced damageby stimulating the expression of eNOS and the secretion of NO and by inhibiting theexpression of E-selectin in SIRT1 dependent manner.Morover,resveratrol can inhibitthe expression of endothelin-1 in SIRT1 non-dependent manner in endothelial cellscultured in high glucose.Resveratrol may also have the potential to improve theinsulin resistance of endothelial cells induced by high glucose.In conclusion,resveratrol has the great prospects in the protection and therapy of diabeticmacrovascular diseases and atherosclerosis.
引文
[1]雷闽湘,廖二元.糖尿病心脑血管病变[A].见:廖二元,超楚生主编.内分泌学.北京:人民卫生出版社.2001: 1574.
    [2]胡大一,潘长玉,中国心脏调查组.中国住院冠心病患者糖代谢异常研究——中国心脏调查[J].中华内分泌代谢杂志,2006, 22 (1): 7-10.
    [3]石永英,赵拥军.中老年糖尿病并发脑血管病的临床特点[J].河南实用神经疾病杂志,2001, 4 (1) :26.
    [4]孙皎,尢传一,付美娜等.老年糖尿病临床与脑CT、 MRI检查对比分析[J].实用老年医学,1999, 13(3):141.
    [5]韩仲岩,唐盛孟,石秉霞等,主编.实用脑血管病学[A].第1版.上海科学技术出版社,1994: 43.
    [6]李茂全,冯波.糖尿病外周血管病变的诊断与介入治疗[[J].介入放射学杂志,2006,15(7):441-444.
    [7]Kannel WB, Skinner JJ Jr, Schwartz MJ, et al.Intermittent claudication.Incidence in the Framingham Study[J].Circulation, 1970, 41(5):875-883.
    [8]邬美翠,陆林,吴立群,等.冠心病合并2型糖尿病冠状动脉造影特点分析[J].上海交通大学学报(医学版),2008, 28 (9):1196-1197.
    [9]郑 莺综述,刘建平.糖尿病致冠状动脉粥样硬化的机制[J].心脏杂志,2007,19(3): 347-350.
    [10]Basta G, Schmidt AM, De Caterina R.Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes[J]Cardiovasc Res, 2004, 63(4):582-592.
    [11]Kouroedov A,EtoM,Joch H,et al.Selective inhibition of p rotein kinase Cbeta2 p revents acute effects ofhigh glucose on vascular cell adhesion molecule2l exp ression in human endothelial cells[J].Circulation, 2004, 110 (1) 91-96.
    [12]Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ,Raskin P, Zinman B: Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes [J]. N Engl J Med, 2005, 353 (25): 2643-2653.
    [13]UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33) [J]. Lancet,1998, 352(9131): 837-853.
    [14]Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE,and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association [J]. Diabetes Care, 2009, 32(1): 187-192.
    [15]Holman RR, Pa μl SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes [J]. N Engl J Med, 2008, 359(15): 1577-1589.
    [16]Muniyappa R, Montagnani M, Koh KK, et al. Cardiovascular actions of insulin[J]. Endocr Rev, 2007,28(5): 463-491.
    [17]Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes [J]. Nature, 2007, 450(7170):712-716.
    [18]Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific Overexpression of ClassⅢ Deacetylase SIRT1 Decreases Atherosclerosis in Apolipoprotein E-Deficient Mice [J]. Cardiovasc Res, 2008, 80(2): 191-199.
    [19]Pfluger PT, Herranz D, Velasco-Miguel S, et al.Sirtl protects against high-fat diet-induced metabolic damage [J]. Proc Natl Acad Sci U S A, 2008, 105(28):9793-9798.
    [20]Mattagajasingh I, Kim CS, Naqvi A, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase [J]. Proc Natl Acad Sci U S A, 2007, 104(37): 14855-14860.
    [21]Ota H, Akishita M, Eto M, et al.Sirtl modulates premature senescence-like phenotype in human endothelial cells[J].J Mol Cell Cardiol, 2007, 43 (5):571-579.
    [22]Suchankova G, Nelson LE, Gerhart-Hines Z, et al.Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells [J].Biochem Biophys Res Commun [J].2009, 378(4): 836-841.
    [23]Balestrieri ML, Rienzo M, Felice F, et al.High glucose downregulates endothelial progenitor cell number via SIRT1 [J].Biochim Biophys Acta, 2008,1784(6): 936-945.
    [24]Ding Y, Vaziri ND, Co μlson R, et al.Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression [J].Am J Physiol Endocrinol Metab, 2000, 279(1): E11-E17.
    [25]黑飞龙,龙村,孙桂民,等.老年冠心病并存糖尿病患者冠状动脉旁路移植术内皮素和降钙素基因相关肽变化[J].中华老年医学杂志,2003,22 (1):44-45.
    [26]Koch AE, Halloran MM, Haskell CJ, et al.Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1 [J].Nature, 376(6540) 517-519.
    [27]Napoli C, Balestrieri ML, Sica V, et al.Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis [J].Heart Vessels, 2008, 23(2): 124-133.
    [28]Picard F, Kurtev M, Chung N, et al.Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma [J].Nature, 2004, 429 (6993): 771-776.
    [29]ZHANG Jiandi.Resveratrol inhibits insulin responses in a SirT1 -independent pathway [J].Biochem J, 2006, 397 (3): 519-527.
    [30]Reynolds A, Leake D, Boese Q, et al.Rational siRNA design for RNA interference [J].Nat Biotechnol, 2004, 22(3):326-330.
    [31〕Nemoto S, Finkel T.Ageing and the mystery at Arles[J].Nature, 2004,429(6988): 149-152.
    [32] Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRTl) functions as an NAD-dependent p53 deacetylase [J]. Cell, 2001,107(2): 149-159.
    [33] Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase [J]. EMBO J, 2004,23(12): 2369-2380.
    [34] Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase [J]. Science, 2004,305(5682): 390-392.
    [35] Picard F, Kurtev M, Chung N, et al. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma [J]. Nature, 2004,429(6993): 771-776.
    [36] Wang C, Chen L, Hou X, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage [J]. Nat Cell Biol, 2006, 8(9): 1025-1031.
    [37] Rodgers JT, Lerin C, Haas W, et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 [J]. Nature, 2005, 434(7029):113-118.
    [38] Kume S, Haneda M, Kanasaki K, et al. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation [J]. J Biol Chem, 2007,282(1): 151-158.
    [39] Pagans S, Pedal A, North BJ, et al. SIRT1 regulates HIV transcription via Tat deacetylation [J]. PLoS Biol. 2005, 3(2): e41.
    [40] Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J]. Science. 2004, 303(5666):2011-2015.
    [41] Bouras T, Fu M, Sauve AA, et al. SIRT1 deacetylation and repression of p300 involves lysine residues 1020/1024 within the cell cycle regulatory domain 1 [J].J Biol Chem, 2005, 280(11): 10264-10276.
    [42] Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway [J]. Science, 2004, 306(5704):2105-2108.
    [43] Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice [J]. Cell Metab, 2005, 2(2): 105-117.
    [44] Vaquero A, Scher M, Lee D, et al. Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin [J]. Mol Cell, 2004, 16(1):93-105.
    [45] Sun C, Zhang F, Ge X, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B [J]. Cell Metab, 2007, 6(4):307-319.
    [46] Zhang J. The Direct Involvement of SirTl in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation[J]. J Biol Chem,2007,282(47):34356
    [47] Wallerath T, Deckert G, Ternes T, et al. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase [J]. Circulation, 2002,106(13): 1652-1658.
    [48] Ota H, Akishita M, Eto M, et al. Sirt1 modulates premature senescence-like phenotype in human endothelial cells [J]. J Mol Cell Cardiol, 2007, 43(5):571-579.
    [49] Lekli I, Szabo G, Juhasz B, et al. Protective mechanisms of resveratrol against ischemia-reperfusion-induced damage in hearts obtained from Zucker obese rats:the role of GLUT-4 and endothelin [J]. Am J Physiol Heart Circ Physiol, 2008,294(2): H859- H866.
    [50] Csiszar A, Labinskyy N, Podlutsky A, Kaminski PM, et al. Vasoprotective effects of resveratrol and SIRT1: attenuation of cigarette smoke-induced oxidative stress and proinflammatory phenotypic alterations [J]. Am J Physiol Heart Circ Physiol,2008, 294(6):H2721-H2735.
    [51] Kopp P. Resveratrol, a phytoestrogen found in red wine. A possible explanation for the conundrum of the 'French paradox'[J]. Eur J Endocrinol, 1998, 138(6):619-620.
    [52]Howitz KT, Bitterman KJ, Cohen HY, et al.Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan [J].Nature.2003, 425(6954):191-196.
    [53]Robb EL, Page MM, Wiens BE, et al.Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD [J].Biochem Biophys Res Commun, 2008, 367 (2): 406-412.
    [54]Chow SE, Hshu YC, Wang JS, et al.Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages [J].J Appl Physiol, 2007, 102 (4): 1520-1527.
    [55]Su HC, Hung LM, Chen JK.Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats[J].Am J Physiol Endocrinol Metab, 2006, 290(6): E1339-E1346.
    [56]Chi TC, Chen WP, Chi TL, et al.Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats [J].Life Sci, 2007, 80 (18): 1713-1720.
    [57]Hambrock A, de Oliveira Franz CB, Hiller S, et al.Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner [J].J Biol Chem, 2007, 282(5): 3347-3356.
    [58]Walle T, Hsieh F, DeLegge MH, et al.High absorption but very low bioavailability of oral resveratrol in humans[J].Drug Metab Dispos, 2004,32(12): 1377-1382.
    [59]侯志强,李宏亮,李光伟.饮酒与糖尿病:福兮?祸兮?[J].药品评价,2008,5(11):503-504.
    [60]杨菊红,王楠,孙艳华等.大孔吸附树脂结合酶解法分离纯化虎杖中白藜芦醇的研究[J].离子交换与吸附,2009, 25 (3):待发表
    [1] Su HC, Hung LM, Chen JK.Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats[J].Am J Physiol Endocrinol Metab, 2006, 290(6): E1339-E1346.
    [2] Chi TC, Chen WP, Chi TL, et al.Phosphatidylinositol-3-kinase is involved in the antihyperglycemic effect induced by resveratrol in streptozotocin-induced diabetic rats[J].Life Sci, 2007, 80(18): 1713-1720.
    [3] Sun C, Zhang F, Ge X, et al.SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTPlB[J].Cell Metab, 2007, 6 6(4):307-319.
    [4] Park CE, Kim MJ, Lee JH, et al.Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-activated protein kinase[J].Exp Mol Med,2007, 39(2): 222-229.
    [5] Penumathsa SV, Thirunavukkarasu M, Zhan L, et al.Resveratrol enhances GLUT-4 translocation to the caveolar lipid raft fractions through AMPK/AKT/eNOS signaling pathway in diabetic myocardium[J].J Cell Mol Med, 2008,12(6A):2350-2361.
    [6] Robb EL, Page MM, Wiens BE, et al.Molecular mechanisms of oxidative stress resistance induced by resveratrol: Specific and progressive induction of MnSOD[J].Biochem Biophys Res Commun, 2008, 367(2): 406-412.
    [7] Chow SE, Hshu YC, Wang JS, et al.Resveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages[J].J Appl Physiol, 2007,102(4): 1520-1527.
    [8] Dekkers DH, Bezstarosti K, Gurusamy N, et al.Identification by a differential proteomic approach of the induced stress and redox proteins by resveratrol in the normal and diabetic rat hearts[J].J Cell Mol Med, 2008,12(5A):1677-1689.
    [9] Subauste AR, Burant CF.Role of FoxO1 in FFA-induced oxidative stress in adipocytes[J].Am J Physiol Endocrinol Metab, 2007, 293(1): E159-E164.
    [10]Venkatachalam K, Mummidi S, Cortez DM, et al.Resveratrol inhibits high glucose-induced PI3K/AKT/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts[J].Am J Physiol Heart Circ Physiol, 2008,294:H2078-H2087.
    [11]Zhu J, Yong W, Wu X, et al.Anti-inflammatory effect of resveratrol on TNF-alpha-induced MCP-1 expression in adipocytes[J].Biochem Biophys Res Commun, 2008, 369(5): 471-477.
    [12]Das S, Das DK.Anti-inflammatory responses of resveratrol[J].Inflamm Allergy Drug Targets, 2007, 6 (3):168-173.
    [13]Salminen A, Ojala J, Huuskonen J, et al.Interaction of aging-associated signaling cascades: Inhibition of NF-kappaB signaling by longevity factors FoxOs and SIRT1[J].Cell Mol Life Sci, 2008, 65(7-8):1049-1058.
    [14]Chen WP, Chi TC, Chuang LM, et al.Resveratrol enhances insulin secretion by blocking K(ATP) and K(V) channels of beta cells[J].Eur J Pharmacol, 2007,568(1-3):269-277.
    [15]Moynihan KA, Grimm AA, Plueger MM, et al.Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice[J].Cell Metab, 2005, 2 (2): 105-117.
    [16]Bordone L, Motta MC, Picard F, et al.Sirtl regulates insulin secretion by repressing UCP2 in pancreatic b cells[J].PLoS Biol, 2006, 4 (2): e31.
    [17]Ramsey KM, Mills KF, Satoh A, et al.Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in BESTO mice[J].Aging Cell, 2008, 7 (1):78-88.
    [18]Szkudelski T.The insulin-suppressive effect of resveratrol一An in vitro and in vivo phenomenon[J].Life Sci, 2008, 82(7-8):430-435.
    [19]Milne JC, Lambert PD, Schenk S, et al.Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J].Nature, 2007, 450 (7170):712-716.
    [20]Mancuso C, Bates TE, Butterfield DA, et al.Natural antioxidants in Alzheimer's disease[J]. Expert Opin Investig Drugs, 2007,16(12): 1921-1931.
    [21]Klinge CM, Wickramasinghe NS, Ivanova MM, et al.Resveratrol stimulates nitric oxide production by increasing estrogen receptor {alpha}-Src-caveolin-1 interaction and phosphorylation in human umbilical vein endothelial cells[J].FASEB J, 2008,22 (7): 2185-2197.
    [22]Gatz SA, Wiesmuller L.Take a break-resveratrol in action on DNA[J].Carcinogenesis, 2008, 29 (2): 321-332.
    [23]Thirunavukkarasu M, Penumathsa SV, Koneru S, et al. Resveratrol alleviates cardiac dysfunction in streptozotocin-induced diabetes: Role of nitric oxide,thioredoxin, and heme oxygenase [ J]. Free Radic Biol Med, 2007,43(5):720-729.
    [24]Kumar A, Kaundal RK, Iyer S, et al. Effects of resveratrol on nerve functions,oxidative stress and DNA fragmentation in experimental diabetic neuropathy [ J].Life Sci, 2007, 80(13): 1236-1244.
    [25]Ates O, Cayli SR, Yucel N, et al. Central nervous system protection by resveratrol in streptozotocin-induced diabetic rats[J]. J Clin Neurosci. 2007,14(3):256-260.
    [26]Hambrock A, de Oliveira Franz CB, Hiller S, et al. Resveratrol binds to the sulfonylurea receptor (SUR) and induces apoptosis in a SUR subtype-specific manner[J]. J Biol Chem, 2007, 282(5):3347-3356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700