用户名: 密码: 验证码:
跳频信号的侦察技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跳频通信因其良好的抗干扰性、低截获概率及组网能力,在军事通信中得到了广泛的应用,也向通信侦察提出了严峻的挑战。开展对跳频信号侦察的研究,寻求截获、估计、分选跳频信号的方法,已成为当前通信侦察领域紧迫而艰巨的任务之一。论文研究了复杂电磁环境下跳频信号侦察的关键技术,主要包括跳频信号的检测、参数估计和信号分选三部分内容。
     首先,将各种时频表示应用于跳频信号的检测,仿真其性能,在时频聚焦性和抑制交叉项两项指标上定性和定量比较了各种时频表示的优劣,寻求综合性能较好的时频表示。建立了跳频信号的数学模型,给出了跳频信号各种参数的定义;重点研究了各种线性时频表示、二次时频分布、重排类时频分布、组合时频分布在跳频信号检测中的应用;利用信息熵,定量评价了各类时频分布的性能,并估算了几种典型时频分布的计算复杂度,给出了各类时频分布的综合评价。
     其次,针对单天线宽带数字接收系统,研究了复杂电磁环境下基于时频分析的跳频信号参数盲估计算法。针对跳频信号侦察,提出了“复合信息熵”的定量评估指标,该指标综合考虑电磁环境中的信号类型数、跳频信号数目、跳速和信道使用情况,由类型熵、密度熵和分布熵三部分组成;基于信道化门限和时频分析完成了去噪和信号预选;基于谱图对单个跳频信号的跳周期、跳时和载频进行了盲估计;基于组合时频分析(SP&SPWVD),对多个跳频信号的跳周期、跳时、载频和幅度参数进行了盲估计,并给出了各参数估计的仿真性能。
     再次,基于时频分析、空间谱估计,结合数字信道化、时频聚焦等技术对FH信号、FH/DS信号进行空时频测向,实现了欠定条件下的高精度测向。根据传统的空时阵列模型,结合信号的时频分析,建立了空时频分布的数学模型;分析了空时频测向能获得时频增益的原因,研究了增益大小与哪些因素相关;利用空时频分析实现了多个跳频信号的DOA估计,提出了适合无“频率碰撞”情况下的线性空时频DOA估计算法;虽然利用空时频技术能够实现欠定条件的多信号测向,但在N /M值较大情况因为信号之间的互扰较大使测向性能欠佳,故再结合数字信道化技术,解决了N /M值较大情况信号之间互扰很大的问题,实现了多个跳频信号的高精度测向;将空时频分析和宽带信号测向方法,实现了欠定条件下多FH/DS信号的DOA高精度估计。
     最后对跳频信号分选技术进行了深入的研究,针对不同的应用场合提出了相应的分选算法。提出了一种适应于环境中仅存在异步组网电台的实时分选方法,该方法计算量少,便于实时分选,适合应用于快速、高速跳频信号的侦察;提出了一种类数目K值的估计和优选初始聚类中心的改进K-Means算法;初始聚类中心优选能使聚类迭代次数大为减少,并能避免聚类过程中陷入局部最小,增强了聚类的鲁棒性;利用改进K-Means聚类算法对HDW集合进行了聚类分选;针对高斯核参数σ的优选问题,提出了粗搜索和精估计相结合的改进方法,在得到精确的σopt同时减少了总搜索次数;利用密度分布图和领域半径、门限参数实现了KKM算法中类数目K的估计和初始聚类中心的优选;利用基于高斯核函数的K-Means对跳速和到达角均时变的跳频信号进行聚类分选,分选效果良好。
Frequency hopping (FH) communication has been widely applied in military communications, due to its anti-jamming performance, low probability of interception and detection, and networking capability. And it’s a great challenge to carry on radio reconnaissance. Now, the research of FH signals reconnaissance, such as signal interception, parameter estimation, and signal sorting is one of the major tasks in communication reconnaissance. A series of key technologies of FH communication reconnaissance in complex electromagnetic environment (CEE), including FH signals detection, parameter estimation, and signal sorting, etc., were mainly researched in this thesis.
     Firstly, to find the preferable time-frequency representations (TFRs) for FH signals detection, the performance of various TFRs was simulated and quantificationally compared in time-frequency concentration and suppression cross-term interference. Then, the mathematical model of FH signal was build, and the definitions of FH signal’s parameters were introduced. The applications of some linear TFRs, bilinear TFRs, reassigned TFRs, and synthesized TFR for FH signals detection were emphatically researched. The representation performance of various TFRs was evaluated quantificationally utilizing information entropy. Moreover, the compute complexities of some typical TFRs were given.
     Secondly, using single-antenna wideband receiver, a series of new algorithms of blind parameters estimation in CEE based on time-frequency analysis were proposed. In FH signals reconnaissance field, a new quantificational evaluation of electromagnetic environment complexity named‘synthesized information entropy’, which consists of type-entropy, density-entropy and distribution-entropy, was presented. And then, the denoise processing and signal preselection based on TFRs and channelization limits were accomplished. When there was only one FH signal in the interception band, the blind estimation of hop period, hop timming, and carrier frequency would be gained by spectrum and conventional method. The blind parameters estimation algorithm based on synthesized TFR (SP&SPWVD) when there were multicomponent FH signals was proposed, and the performance estimation was simulated numerically.
     Thirdly, based on time-frequency analysis, spatial spectrum estimation, integrating digital channelization and time-frequency focusing technologies, the directions of arrival (DOA) of FH or FH/DS signals were estimated accurately in underdetermined case. The mathematical model of spatial time-frequency distribution (TFD) was built based on conventional spatial-time array model and time-frequency analysis. Exploiting STFD to estimate DOAs of multicomponent FH signals can gain SNR enhancement, and the factors that can affect the enhancement value were discussed. Furthermore, an algorithm to estimate DOAs of multicomponent FH signals based on linear STFD was proposed in non-frequency-collisions case. The DOAs estimation can be achieved in underdetermined case, but when N /M is large, the estimation will not be precise because of the interferences among multicomponent signals. This problem is solved solved by using digital channelized receiver. We also proved that the accurate estimation of DOAs of FH/DS signals could be achieved in underdetermined case, and the method was based on STFD and direction finding technologies of wideband signals.
     At last, the thesis investigted the FH signal sorting technologies. One novel sorting method for non-orthogonal FH signals was presented. In contrast with some conventional techniques, the proposed method has a lower compute complexity, which is convenient for the real-time sorting and appropriate for fast FH signals reconnaissance. And then, an improved K-Means clustering algorithm with optimal initial clustering center and estimation of K value was proposed. Because the initial centers are optimal, the clustering has less iterations, and clustering in the local minimum is also avoided. The improved K-Means clustering algorithm was applied in the clustering of HDW aggregation, which was with lower compute complexity but more robust than conventional K-Means algorithm. To obtain the optimal parameterσof gaussian kernel function, an improved method including coarse searching and precise estimation was presented, which can obtain preciseσopt with less iterations. The optimization of initial clustering centers and the estimation of K value of kernel K-Means (KKM) clustering were achieved by using density distribution, region radius, and adaptive limits. The clustering sorting of FH signals with time-variable hop periods and DOAs was achieved by using gaussian KKM algorithm, and the simulation results demonstrated that the clustering sorting was effective.
引文
[1]罗立春.无线电侦察信号分析与处理[M].北京:国防工业出版社, 2003.
    [2]范伟.跳频信号的盲检测和参数盲估计[D].中国科学技术大学博士学位论文: 2005.
    [3] Beaulieu N C, Hopkins W L, McLane P J. Interception of frequency-hopped spread-spectrum signals[J]. IEEE Journal on Selected Areas in Communications, 1990, 8(5): 853-870.
    [4] Chung C D. Generalized likelihood-ratio detection of multiple-hop frequency-hopping signals[A]. MILCOM'91 [C], 1991, 2: 527-531.
    [5] Dillard R A, Dillard G M. Likelihood-ratio detection of frequency- hopped signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 543-553.
    [6] Waltz Ng, Beaulieu N C. Noncoherent interception receivers for fast frequency-hopped spread spectrum signals[A]. IEEE 1994 Canadian Conference on Electrical and Computer Engineering[C], 1994, 1: 348-351.
    [7] Lehtomaki J J. Maximum based detection of slow frequency hopping signals[J]. IEEE Communications Letters, 2003, 7(5): 201-203.
    [8] Nemsick L W, Geraniotis E. Adaptive multichannel detection of frequency-hopping signals[J]. IEEE Transactions on Communications, 1992, 40(9): 1502-1511.
    [9] Levit B, Simon M, Polydoros A, etc. Partial-band detection of frequency-hopped signals[A]. IEEE GLOBECOM'93[C], 1993, 4: 70-76.
    [10] Miller L E, Lee J S, Torrieri D J. Frequency-hopping signal detection using partial band coverage[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 540-553.
    [11] Polydoros A, Woo K T. LPI detection of frequency-hopping signals using autocorrelation techniques[J]. IEEE Journal on Selected Areas in Communications, 1985, 3(5): 714-726.
    [12] Kim K, Lee J A. M-hop interception of FH/LPI signals using autocorrelation techniques[A]. IEEE Tencon'89[C], Sugarland: 1989.266-269.
    [13] Chung C D, Polydoros A. Detection and hop-rate estimation of random FH signals via autocorrelation technique[A]. MILCOM'91 [C], 1991.345-349.
    [14] Chung C D, Polydoros A. Parameter estimation of random FH signals using autocorrelation techniques[J]. IEEE Transactions on Communications, 1995, 43(2/3/4): 1097-1106.
    [15] Janani M, Va k i l i V T, Jamali H. The modified autocorrelation technique forparameter estimation of random FH signals[A]. ICSP'98[C],, 1998.188-190.
    [16] Barbarossa S. Parameter estimation of spread spectrum frequency hopping signals using time-frequency distributions[A]. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications[C], 1997, 4: 213-216.
    [17]赵俊,张朝阳,赖利峰等.一种基于时频分析的跳频信号参数盲估计方法[J].电路与系统学报, 2003, 8(3): 46-50.
    [18]郑文秀,赵国庆,罗勇江.跳频信号的跳速估计[J].系统工程与电子技术, 2006, 28(10): 1500-1502.
    [19]郭艺,张尔扬,沈荣骏.跳频信号时-频域分析与参数盲估计方法[J].信号处理, 2007, 23(2): 210-213.
    [20] Stankovic L. A method for time-frequency analysis[J] IEEE Transactions on Signal Processing, 1994, 42(1): 225-229.
    [21]张曦,杜兴民.基于Gabor谱方法的跳频信号时频分析[J].数据采集与处理, 2007, 22(6): 150-155.
    [22]张曦,杜兴民,朱礼亚.基于重排SPWVD的跳频信号参数提取方法[J].计算机工程与应用, 2007, 43(15): 144-147.
    [23] Fan H N, Guo Y, Xin F. Blind Parameter Estimation of Frequency Hopping Signals Based on Matching Pursuit[A]. Wireless information Comunication[C], 2008.
    [24] Bin Y. Projection approximation subspace tracking[J]. IEEE Transations on Signal Processing, 1995, 43(1): 95-107.
    [25] Howells P. Intermediate frequency side-lode canceller. U. S. Patent 3202990, 1965,
    [26] Capon J. High resolution frequency wave number spectrum analysis[J]. Proc. IEEE, 1969, 57: 1408-1418.
    [27] Schmidt R O. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas Propagat, 1986, 34(3): 276-280.
    [28] Roy R, Paulraj A, Kailath T. ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34(5): 1340-1342.
    [29] Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984-995.
    [30] Stoica P, Nehorai A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(5): 720-741.
    [31] Stoica P, Nehorai A. MUSIC, Maximum Likelihood, and Cramer-Rao Bound:Further Results and Comparisons[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(12): 2140-2150.
    [32]张贤达,保铮.通信信号处理[M].北京:国防工业出版社, 2000.
    [33] Zhang X D, Lliang Y C. Prefiltering-based ESPRIT for estimating parameters of sinusoids in non-Gaussian ARMA noise[J]. IEEE Transations on Signal Processing, 1995, 43: 349-353.
    [34] Liu X Q. Signal Detection and Jammer Localization in Multipath Channels for Frequency Hopping Communications[R]. ADA-03-0228: 2005.
    [35] Liu X Q, Nicholas D S, Swami A. Blind separation of FHSS signals using PARAFAC analysis and quadrilinear least squares[A]. MILCOM 2001, Communications for Network-Centric operations: Creating the Information Force[C], 2001, 2: 1340-1344.
    [36] Liu X Q, Nicholas D S, Swami A. Blind High-Resolution Localization and Tracking of Multiple Frequency Hopped Signals[J]. IEEE Transactions on Signal Processing, 2002, 50(4): 889-901.
    [37] Liu X Q, Nicholas D S, Swami A. Joint hop timing and DOA estimation for multiple noncoherent frequency hopped signals[A]. IEEE Transactions on Signal Processing, 2002, Sensor Array and Multichannel Signal Processing Workshop Proceedings[C]: 164-168.
    [38] Liu X Q, Nicholas D S, Swami A. Code-blind reception of frequency hopped signals over multipath fading channels[A]. IEEE ICASSP'03[C], 2003, 4: 592-595.
    [39] Liu X Q, Nicholas D S, Swami A. Joint signal parameter estimation of wideband frequency hopped transmissions using 2-D antenna arrays[A]. IEEE SPAWC 2003[C], 2003, 624-628.
    [40] Liu X Q, Nicholas D S, Swami A. Joint Hop Timing and Frequency Estimation for Collision Resolution in FH Networks[J]. IEEE Transations on Wireless Communications, 2005, 4(6): 3063-3074.
    [41] Liu X Q, Nicholas D S, Swami A. An EM Algorithm for Blind Hop Timing Estimation of Multiple FH Signals Using an Array System with Bandwidth Mismatch[J] IEEE Transactions on Vehicular Technology, 2007, 1: 1-10.
    [42] Fresa A, Izzo L, Paura L. Interception of FH spread-spectrum signals: performance advantages of cycle detectors[J]. IEEE, 1988, 42-46.
    [43]姚勇.跳频信号的特征提取与网台分选[D].西安电子科技大学硕士学位论文: 2003.
    [44]高峥.基于STFT的超短波跳频网台信号分选[J].电信技术研究, 2004, 3: 8-14.
    [45]杨宏娃.一种网台分选算法[J].通信对抗, 1999, 67(4): 1-7.
    [46]吴凡,姚富强,李玉生.跳频网台信号分选技术研究.通信对抗, 2005, (1): 11-14.
    [47]吴凡,姚富强,李永贵等.跳频高密度异步网台信号的分选[J].电讯技术, 2006, (5): 45-49.
    [48] http://www.rohde-schwarz.com/.
    [49] http://en.wikipedia.org/wiki/DaimlerChrysler_Aerospace.
    [50]赵明,杨小牛,邹少丞等.电子战技术与应用——通信对抗篇[M].北京:电子工业出版社, 2005.
    [51] Honing H C. Probability of intercept for frequency hop signals using search receivers[R]. Rohde&Schwarz, Inc: 1998.
    [52]张士根.世界舰船电子战系统手册(精)[M].科学出版社, 2000.
    [53]朱文贵.基于阵列信号处理的短波跳频信号盲检测和参数盲估计[D].中国科学技术大学博士学位论文: 2007.
    [54] Tsui J. Digital Techniques for Wideband Receivers[M]. Artech House,Inc, 2001.
    [55] Proakis J G. Digital Coummunications[M]. New York: McGraw-Hill, 2001.
    [56] Mitola J. The soft radio architecture[J]. IEEE Comm. Magazine, 1995, 33(5): 26-38.
    [57]杨小牛,付卫红.盲源分离——理论,应用与展望.通信对抗, 2006, (3): 3-10.
    [58] Zahirniak D R, Sharpin D L, Fields T W. A Hardware-Efficient, Multirate, Digital Channelized Receiver Architecture[J]. IEEE Transations on Aerospace and Electronic Systems, 1998, 34(1): 137-152.
    [59] Gustavo T P, Grajal J, Alvaro S O. Digital Channelized Receiver Based on Time-Frequency Analysis for Signal Interception[J]. IEEE Transations on Aerospace and Electronic Systems, 2005, 41(3): 879-898.
    [60]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社, 1998.
    [61]皇甫堪,陈建文,楼生强.现代数字信号处理.北京:电子工业出版社, 2003.
    [62] Cohen L. Time-Frequency Analysis[M]. New Jersey: Prentice Hall, 1995.
    [63]梅文华.跳频通信[M].北京:国防工业出版社, 2005.
    [64] Analog Devices Datasheet. AD9957-1 GSPS Quadrature Digital Upconverter with 18-Bit IQ Data Path and 14-Bit DAC[R]. 2007.
    [65] Gabor D. Theory of communication[J]. IEE, 1946, 93: 429-457.
    [66]胡广书.现代信号处理教程[M].清华大学出版社: 2004.
    [67] Bastiaans M J. A sampling theorem for the complex spectrogram, and Gabor's expansion of a signal in Gaussian elementary signals[J]. Opt. Eng., 1981, 20: 594-597.
    [68] Cohen L. Generalized phase-space distribution functions[J]. Math. Phys., 1966, 7: 781-786.
    [69] Stankovic L. A method for time-frequency analysis[J] IEEE Transactions on Signal Processing, 1994, 42(1): 225-229.
    [70] Zhao Y, Atlas L, Marks R. . The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7): 1084-1091.
    [71] Jeong J C, Williams W J. Kernel design for reduced interference distributions[J]. IEEE Transations on Signal Proceeding, 1992, 40(2): 402-412.
    [72] Choi H I, Williams W J. Improved time-frequency representation of multicornponent signals using exponential kernels[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(6): 862-871.
    [73] Barkat B, Boashash B. A high-resolution quadratic time-frequency distribution for multicomponent signals analysis[J]. IEEE Transactions on Signal Processing, 2001, 49(10): 2232-2239.
    [74] Kodera K, Villeaary C D, Gendrin R. A new method for the numerical analysis of time-varying signals with small BT values[J]. Phys, Earth Planet. Interiors, 1976, 12: 142-150.
    [75] Kodera K, Gendrin R, Villeaary C D. Analysis of time-varying signals with small BT values[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1986, 34: 64-76.
    [76] Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089.
    [77]邹红星,戴琼海,李衍达等.不含交叉项干扰且具有WVD聚集性的时频分布之不存在性[J].中国科学(E辑), 2001, 31(4): 348-354.
    [78]郭汉伟,梁甸农,董臻.不同时频分析方法综合检测信号[J].信号处理, 2003, 19(6): 586-589.
    [79]熊良才,史铁林,杨叔子. Choi-Williams分布参数优化及其应用[J].华中科技大学学报(自然科学版), 2003, 1(31): 103-104.
    [80]赵国庆.雷达对抗原理[M].西安:西安电子科技大学出版社, 2002.
    [81] GJB 6130-2007.战场电磁环境术语[S].
    [82]国强.复杂环境下未知雷达辐射源信号分选的理论研究[D].哈尔滨工程大学博士学位论文: 2007.
    [83] GJB 2928-1997.战术超短波电台通用规范[S].
    [84] Simon M K, Omura J K, Scholtz R A, et al. Spread Spectrum Communications[M]. Computer Science Press, 1985.
    [85] GJB 2929-1997.战术短波电台通用规范[S].
    [86] Mardia H K. New techniques for the deinterleaving of repetitive sequences[J].IEE Proceedings, 1989, 136 (4): 149 -154.
    [87] Milojevic D J , Popovic B M. Improved algorithm for the deinterleaving of radar pulses[J ]. IEE Proc. F, Commun. Radar Signal Processing, 1992, 139(1): 98-101.
    [88] Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations[J]. IEEE Transactions on Signal Processing, 1998, 46(1): 2888-2897.
    [89] Belouchrani A, Amin M G. Time-Frequency MUSIC[J]. IEEE Signal Processing, Letters, 1999, 6(5): 109-110.
    [90] Zhang Y M, Mu W F, Amin M G. Time-frequency maximum likelihood methods for direction finding[J]. Journal of Franklin Institute, 2000, 337(4): 483-497.
    [91] Jin L, In Q Y, Wang W. Time-frequency signal subspace filting method for direction-of-arrival estimation[A]. The 2000 IEEE International Symposium on Circuits and Systems[C], Geneva: 2000.3: 375-378.
    [92] Zhang Y M, Mu W F, Amin M G. Subspace analysis of spatial time-frequency distribution matrices[J]. IEEE Transactions on Signal Processing, 2001, 49(4): 747-759.
    [93] Richard A P. Target acquisition in communication electronic warfare systems[M]. Artech House, 2004.
    [94] Hassanien A, Gershman A B, Amin M G. Time-frequency ESPRIT for direction-of-arrival estimation of chirp signals[J]. Proc. Sensor Array and Multichannel Signal Processing Workshop, 2002, 337-341.
    [95] Wang Q, Wu C. A high reliability DOA estimation method-TF-ESPRIT method[A]. The 6th International Conference on Signal Processing[C], 2002, 1: 374-377.
    [96] Barabell A J. Improving the resolution performance of eigenstruture based direction-finding algorithms[C]. IEEE ICASSP'83[A], Boston: 1983.336-339.
    [97] Nguyen L T, Belouchrani A, Meraim K. A. Separating more sources than sensors using time-frequency distributions[J]. EURASIP J. Appl. Signal Process, 2005, 25(17): 2828–2847.
    [98] Abdeldjalil A E B, Nguyen L T, Karim A M, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
    [99] Wang H, Kaveh M. Focusing matrices for coherent signal subspace processing[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(8): 1272-1281
    [100] Hong W, Tewfik A H. Focusing matrices for wideband array processing with no a priori angle estimates[J]. IEEE, 1992, 493-496.
    [101] Doron M A, Weiss A J. On focusing matrices for wideband array processing[J].IEEE Transations on Signal Processing, 1992, 40(6): 1295-1302.
    [102]雷中定,黄绣坤,张树京.宽带波达方向估计新方法及性能分析[J].电子学报, 1998, 26(3): 58-61.
    [103]黄可生.宽带信号阵列高分辨处理技术研究[D].国防科学技术大学博士学位论文: 2005.
    [104]邝育军.跳频通信台信号分选方法和通信信号调制方式识别方法研究[D].电子科技大学: 2000.
    [105]陈旗,宋士琼,金嘉旺.低速短波非正交跳频网台信号分选技术研究[J].电子对抗技术, 2005, 20(3): 7-10.
    [106]梅文华,杨义先.跳频通信地址编码理论[M].北京:国防工业出版社, 1996.
    [107]陈利虎,王永明,张尔扬等.一种跳频信号数字信道化侦察接收机的设计及其实现[J].现代军事通信, 2008, 2: 10-14.
    [108]孙即详.现代模式识别[M].长沙:国防科技大学出版社, 2002.
    [109] Lloyd S P. An Algorithm for Vector Quantizer Design[J]. IEEE Transations on Communication, 1982, 28(1): 84-95.
    [110] Kanungo T, Mount D M, Netanyahu N S, et al. An Efficient k-Means Clustering Algorithm:Analysis and Implementation[J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.
    [111] Han J W , Kamber M. Data mining concepts and techniques[M]. Singapore: Elesvier Inc, 2006.
    [112] Ye Y M, Huang Z X, Chen X J, et al. Neighborhood density method for selecting initial cluster centers in K-means clustering[A]. Proceedings of PAKDD'06: Advances in Knowledge Discovery and Data Mining, 10th Pacific-Asia Conference[C], Singapore: Springer, 2006.189-198.
    [113] He J, Lan M, Tan C L, et al. Initialization of cluster refinement algorithms: a review and comparative study[A]. Proceedings of International Joint Conference on Neural Networks[C], Budapest: 2004.297-302.
    [114] Yager R R, Filev D P. Approximate clustering via the mountain method[J]. IEEE Transations on SMC, 1994, 24(8): 1279-1284.
    [115] Chiu S L. Fuzzy model identification based on cluster estimation [J]. Journal of Intelligent and Fuzzy Systems, 1994, 2(3): 267-278.
    [116]裴继红,范九伦,谢维信.聚类中心的初始化方法[J].电子科学学刊, 1999, 21(3): 320-325.
    [117] Kaufman L. Finding groups in data: an introduction to cluster analysis[M]. New York: Wiley, 1990.
    [118] Hung M C, Yang D L. An Efficient Fuzzy C-Means Clustering Algorithm[A]. Proceedings of the 2001 IEEE International Conference on Data Mining[C],Washington: 2001.225-232.
    [119]牛琨,张舒博,陈俊亮.融合网格密度的聚类中心初始化方案[J].北京邮电大学学报, 2007, 30(2): 6-10.
    [120] Camastra F, Verri A. A Novel Kernel Method for Clustering[J]. IEEE Transations on Pattern Analysis and Machine Intelligence, 2005, 27(5): 801-805.
    [121] Müller K R, Mika S, R?tsch G,et al. An Introduction to Kernel-Based Learning Algorithms[J]. IEEE Transations on Neural Networks, 2001, 12(2): 181-201.
    [122] Scholkopf B, MIka S, Burges C, et al. Input Space Versus Feature Space in Kernel-based Methods [J ]. IEEE Transations on Neural Networks, 1999, 10(5): 1000-1017.
    [123] Girolami M. Mercer kernel based clustering in feature space[J]. IEEE Transactions on Neural Networks, 2002, 13(3): 780-794.
    [124]张莉,周传达,焦李成.核聚类算法[J].计算机学报, 2002, 25(6): 587-590.
    [125] Scholkopf B, Smola A, Müller K. R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Comput., 1998, 10(5): 1299-1319.
    [126] Burges C J C. Geometry and invariance in kernel based methods. In: Schlkopf B, Burges C, Smola A. Advance in Kernel Methods—Support Vector Learning[R]. Cambridge, MA: MIT Press: 1999.
    [127]李晓宇,张新峰,沈兰荪.一种确定径向基核函数参数的方法[J].电子学报, 2005, 33(12): 2459-2463.
    [128] Liang J Z, Gao J H. Kernel function clustering algorithm with optimized parameters[A]. International Conference on Machine Learning and Cybernetics[C], Guangzhou: 2005.4400-4404.
    [129]淦文燕,李德毅.基于核密度估计的层次聚类算法[J].系统仿真学报, 2004, 16(2): 302-309.
    [130] Yu X G, Jian Y. A new clustering algorithm based on KNN and DENCLUE[C]. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics[A], Guangzhou, China: 2005.2033-2038.
    [131] Hinneburg A, Keim D A. . An efficient approach to clustering in large multimedia databases with noise [A]. Proc of the 4th International Conference on Knowledge Discovery and Data mining [C], AAAI Press, 1998.58-65.
    [132] Eltoz L, Steinbach U, Kumar V. A new shared nearest neighbor clustering algorithm and its applications[R]. AHPCRC: 2002.
    [133]普运伟,朱明,金炜东等.核聚类算法最佳聚类数的自适应确定方法[J].计算机工程, 2007, 33(4): 11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700