用户名: 密码: 验证码:
受限空间瓦斯爆炸传播规律数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓦斯爆炸是煤矿安全的重大隐患之一,在受限的巷道空间内瓦斯爆炸会产生高温高压,对作业空间内的人和设备会造成极大损害,导致灾难性后果。因此,研究瓦斯在受限空间的爆炸对于预防矿井瓦斯爆炸或减小瓦斯爆炸的损失具有重要的现实意义。
     在理论分析和借鉴前人研究成果的基础上建立了描述瓦斯在受限空间内爆炸的物理模型和数学模型,并且给出了数值模拟的初始条件和模型的边界条件。采用有限速率/涡耗散模型(Finite-Rate/Eddy-Dissipation)来模拟瓦斯-空气混合气体的爆炸过程,使用SIMPLEC算法来处理爆炸过程中压力和速度的关系,并且使用不平衡函数法处理了壁面附近的流场,提高了数值模拟的精度。为了精确捕捉瓦斯爆炸中流场和火焰阵面的变化,在模拟过程中使用了以温度为标准的网格自适应加密技术。
     分别对密闭直管道和密闭分岔管道中的瓦斯-空气混合气体爆炸过程进行了数值模拟,重点研究了爆炸过程中火焰和冲击波的传播过程。混合气体被点燃后,火焰从点火源向管道末端传播,随着传播的进行管道内的温度和压力不断增加,当火焰传播到管道末端时爆炸结束,此时管道内的压力达到最大值。
     混合气体在分岔管道中爆炸后火焰的传播受到了障碍物式的诱导,形成了障碍物诱导的湍流对火焰传播的正反馈机制。在分岔处火焰的温度和冲击波压力都大幅上升,而且支路分岔的温度和压力要比主路分岔的大;对比了直管道和分岔管道中的火焰和压力变化,当爆炸结束后分岔管道内的温度和压力都要比直管道中的大。
     通过模拟瓦斯在密闭管道中的爆炸过程,并将模拟结果与公开发表过的著作或期刊上的数据进行对比,表明了本文模拟的效果较好,可以为矿井的巷道布置和减小瓦斯爆炸灾害的损失提供一定的指导意见。
The gas explosion is one of the major risks of the coal mine safety, gas explosion in the limited roadway space will produce a high temperature and pressure which cause great damage to people and equipment within the work space, this can lead to disastrous consequences.Therefore, the explosion of the gas in confined spaces has important practical significance for the prevention of gas explosion or reduce the loss of the gas explosion.
     On the basis of theoretical analysis and the results of previous studies to establish the physical and mathematical models that describe the gas explosion in the confined space, and gives the numerical simulation of the initial conditions and boundary conditions of the model. Using the Finite-Rate/Eddy-Dissipation to simulate the process of gas-air mixture explosion, using the SIMPLEC algorithm to handle the pressure and speed of the explosion, and the use of unbalanced function method near the wall of the flow field, to improve the accuracy of the numerical simulation. In order to accurately capture flow field and flame changes in gas explosion,take the temperature as standard adaptive grid encryption technology used during the simulation.
     Take the numerical simulation of gas-air mixture explosion process respectively in the closed straight pipes and the closed bifurcation pipeline, focused on the flame and shock wave propagation in the explosion. After the gas mixture is ignited, the flame spread from the ignition source to the pipe end, increasing with the temperature and pressure within the spread to pipe end, the explosion end when the flame propagation to the end of the pipeline, at this time the pressure within the tubes to reach the maximum.
     After mixed gas in bifurcation pipeline exploded the flame propagation by the obstacle-type induction, forming a positive feedback mechanism obstacle-induced turbulence on flame propagation. Substantial increase of the temperature of the flame and the shock wave pressure in the bifurcation, the temperature and pressure at the main road bifurcation larger than the branch road bifurcation; comparison of flame and pressure in the straight pipe and bifurcation pipeline when the explosion end bifurcation pipe temperature and pressure larger than a straight pipe.
     Simulated gas explosion in a closed pipe, and the simulation results were compared with data of published books or journals, that explain the simulation's result of this article is better, provided a guidance for the roadway layout of the mine and reduce the loss in gas explosion disasters.
引文
[1]矿难资料库[OL].http://www.kuangnan.com/.
    [2]程磊.受限空间煤尘爆炸冲击波传播衰减规律研究[D].河南:河南理工大学,2011.
    [3]安全生产监督管理总局.煤矿安全生产“十一五”规划[R].2007.
    [4]李翼棋,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [5]赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社,1996.
    [6]王从银.瓦斯爆炸火焰高内聚力与火焰传播机理研究[D].徐州:中国矿业大学博士学位论文.2001.
    [7]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,19.
    [8]徐景德,周心权.矿井瓦斯爆炸事故形成过程的物理机制研究[J].华北矿业高等专科学校学报,2000,2(1):1-2.
    [9]徐景德,张莉聪,杨庚宇.激波诱导瓦斯气体爆燃的三维数值模拟[J].武汉理工大学学报,2005,27(6):22-25.
    [10]靳建明.火焰在激波诱导下稳定性问题的数值模拟与实验验证[D].南京:南京理工大学,2004.
    [11]董刚,刘宏伟,陈义良.通用甲烷层流预混火焰半详细化化学反应动力学机理[J].燃烧科学与技术,2002,8(01):44-48.
    [12]Mercx W.P.M,Van deberg A.C.Developments in vapor cloud explosion blast modeling [J] Journalof Hazardous Materials,2000,71(2):301-319.
    []3]梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟[D].辽宁大连:大连理工大学,2005.
    [14]Lebecki K. Gasdynamic. Phenomena Occurring in Coal Dust Explosions[J]. Przegl Gom, 1980,36(4):203-207.
    [15]Even M W, Seheer M D, Schoen L J. A Study of High Velocity Flames DevelopMent by Grids in Tubes[C]. Proc. of 3rd Symposium on Combustion. The Combustion Institute, Pittsburgh:1964,168-185.
    [16]Teodorezay A, Lee JHS, Knystautas R. Propagation Mechanism of Quasidetonations[C]. Twenty-second Symposium on Combustion. Pittsburgh:The Combustion Institute,1988, 1723-1731.
    [17]Moen 10, The Influence of Turbulence on Flame Propagation in Obstacle Environments [C]. Prof of First International Specialist Meeting on Fuel-Air Explosions, Montreal, 1981.
    [18]Barr Pamela K. Acceleration of Flame-Vortex Interactions[J]. Combustion and Flame, 1990,82:115-125.
    [19]Dunn Rankin, MA Mccann. Overpressures from nondetonating baffle accelerated turbu-lent flames in tubes[R]. Combustion Institute,2000(10):504-514.
    [20]Lin Bai quan. The Influence of Barriers on Flame and Explosion Wave in Gas Explosion [J]. Journalof Coal Science of Engineering,1998,4(2):53-57.
    [21]叶青.管内瓦斯爆炸传播特性及多孔材料抑制技术研究[D].江苏徐州:中国矿业大学(徐州)博士学位论文,2007.
    [22]吴兵.矿井封闭空间瓦斯爆炸爆燃过程热动力学研究[D].北京:中国矿业大学(北京)博士学位论文,2003.
    [23]陆守香,范宝春.激波与沉积可燃粉尘相互作用的实验研究实验力学[J].1997,12(1):18-22.
    [24]王大龙,周心权.煤矿瓦斯爆炸火焰波和冲击波传播规律的理论研究与试验分析[J].矿业安全与环保,2002,29(6):4-6.
    [25]A.M.Khokhlov, E.S.Oran and G.O. Thomas.Numerical simulation of deflagration-to-detonation transition:the role of shock-flame interactions in turbulent flames Combustion and Flame, Volume 117, Issues 1-2, April 1999, Pages 323-339.
    [26]A.Kobiera, J.Kindracki, P.Zydak. A new phenomenological model of gas explosion based on characteristics of flame surface. Loss Prevention in the Process Industrial. 2007,20:271-280.
    [27]Ulrich Bielert, Martin Sichel. Numerical simulation of premixed combustion processes in closed tubes. Combustion and Flame,114:397-419 (1998).
    [28]Catlin CA et al. Predictions of turbulent, premixed flame propagation in explosion tubes. Combustion and Flame,102:115-128(1995).
    [29]范喜生.管道内可燃物爆炸问题现状与研究方向[J].工业安全与环保,1998,(07):32-34.
    [30]徐胜利,张红杰,岳朋涛,等.管道内运动火焰生成压力波及其特性的研究[J].中国科技大学学报,2000,30(8):387-392.
    [31]吴兵,张莉聪,徐景德.瓦斯爆炸运动火焰生成压力波的数值模拟[J].中国矿业大学学报,2005,34(4):423-426.
    [32]丁信伟,杨国刚.环栅条形障碍物对可燃气云爆炸影响的数值模拟与实验研究[J].天然气工业,2004,24(4):81-83.
    [33]杨宏伟,范宝春.障碍物高度对火焰加速影响的数值模拟[J].弹道学报,2001,13(2):32-36,59.
    [34]王志荣,蒋军成.受限空间工业气体爆炸研究进展[J].工业安全与环保,2005,3:43-46.
    [35]Michele Maremonti et al. Numerical simulation of gas explosion in linked vessles. Journal of Loss Prevention in the Process Industries,12:189-194 (1999).
    [36]Bretislav Janovsky. Petr Selesovsky, Jan Horkel and Lukas Vejsa. Vented confined explosions in Stramberk experimental mine and AutoReaGas simulation. Journal of Loss Prevention in the Process Industries, Volume 19, Issues 2-3, March-May 2006, Pages 280-287.
    [37]冯长根,陈林顺等.点火位置对独头巷道中瓦斯爆炸超压的影响[J].安全与环境学报,2001,1(5):56-59.
    [38]高尔新,白春华,薛玉等.巷道瓦斯爆炸的计算机模拟研究[J].爆破,2003,(S1):1-2,29.
    [39]蒋勇,邱榕,董刚等.CH4/N2/O2预混气激波火焰结构数值预测[J].火灾科学,2003,12(4):203-208.
    [40]汪泉.管道中甲烷—空气预混气爆炸火焰传播的研究[D].淮北:安徽理工大学,2006.
    [41]王志荣.受限空间气体爆炸传播及其动力学研究[D].南京:南京工业大学,2005.
    [42]李江涛.微型圆管结构对火焰传播抑制作用的数值模拟[D].大连:大连理工大学,2006.
    [43]胡春明.预混火焰在平板狭缝中传播与淬熄的研究[D].大连:大连理工大学,2006.
    [44]国家煤矿安全监察局.煤矿安全规程(2006)[M].北京:煤炭工业出版社,2006,55.
    [45](西德)弗.巴尔特克纳西特著.何宏大译.爆炸过程与预防措施[M].北京:化学工业 出版社,1981.
    [46]Chen J Y. Kollmann W. Combustion and Flame,1990(79):75-99.
    [47]Martin Rein. Phys Fluids A,1992(4):873-886.
    [48]Peters N, Kee R J. The computation of stretched laminar Methane-Air Diffusion flame using a reduced four-step mechanism [J]. Combustion and Flame.1987,68:17-29.
    [49]李宇红,祁海鹰,张宏武.甲烷预混燃烧火焰的详细数值模拟[J].工程热物理学报,2002,23(1):257-260.
    [50]王方编译.火焰学[M].北京:中国科学技术出版社,1991.
    [51]张国顺,文以民,刘定吉译.爆炸危险性及其评估[M].北京:群众出版社,1988.
    [52]曲志明.煤矿巷道瓦斯爆炸冲击波衰减规律及破坏机理研究[D].北京:中国矿业大学(北京),2007.
    [53]高健康,菅从光,林柏泉等.壁面粗糙度对瓦斯爆炸过程中火焰传播和爆炸波的作用[J].煤矿安全,2005(2):4-6,46.
    [54]Fluent. Fluent User's Guide[M]. Lenbanon, NK,2005.
    [55]王福军著.计算流体力学分析:CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [56]张奇.燃烧与爆炸基础[M].北京:北京理工大学出版社.2007:194-212.
    [57]W.Bartknecht. Explosion course prevention protection[M]. Springer-Verlag, Berlin, 1981.
    [58]胡铁柱.瓦斯爆炸传播数值模拟研究[D].北京:中国矿业大学(北京),2008.
    [59]林柏全,叶青,翟成等.瓦斯爆炸在分岔管道中的传播规律及分析[J].煤炭学报,2008(2):138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700